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Introduction
• LHC collides proton bunches every 25ns
• Colliding pairs of protons can form 𝑏𝑏 

quark pairs
• Usually close to the beamlines

• Measuring these allow exploitation of the 
‘precision fontier’ in an attempt to find 
physics beyond the Standard Model
• High precision measurements of high 

frequency collisions → A lot of data!
• Any experiment under these conditions will 

require a very good trigger system
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LHCb experiment

• LHCb is a spectrometer experiment at 
the point 8 of the LHC, in France
• Run 1 between 2011-2012, Run 2 

between 2015-2018

• It was recently upgraded (final 
elements installed at the end of 
2022) for Run 3 – ongoing
• Increased the intantaneous luminosity 

5× compared to Runs 1 and 2
• This necessitates an entirely new trigger
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The LHCb Upgrade I, 2023

https://arxiv.org/abs/2305.10515
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The trigger: general overview

• Data arrives at 5TB/s
• Impossible to store in its entireity

• No hardware trigger
• HLT1

• Processing into inclusive lines
• Runs on GPUs
• Outputs to a buffer

• Real time alignment
• Improves detector response

• HLT2
• Takes data from the buffer
• Processing into exclusive lines
• Runs on CPUs
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http://cds.cern.ch/record/2730181/files/


The trigger: HLT1 overview
• The data taken is impossible to 

store in its entirety
• Only the most interesting 

events are kept
• Filtered into inclusive ‘lines’ – 

approximately 1/30 of all events
•  Allen software package is used
• Source written in Cuda with 

cross-architecture compatability
• Despite bandwidth increasing, 

events can be reconstructed at 
the full detector output rate!
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• HLT1 does not use the entire detector for its inputs to maintain high throughput

• For tracking:
• VELO
• UT
• SciFi

• For PID:
• Muon stations
• Electromagnetic calorimeter

The trigger: HLT1 inputs
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HLT1 real-time monitoring

• Allen provides real-time 
monitoring of data as it is 
taken
• Allows problems to be 

identified quickly
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Nice Gaussian PV 
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The trigger: HLT2 overview

• Runs fully on CPUs
• Full reconstruction including 

PID from RICH subdetectors 
and a more sophisticated track 
fit and pattern recognition
• Filtered into exclusive lines 

with loose selection for 
physics
• Saves ‘physics objects’ into 

data streams
• Sometimes also persists the raw 

machine output
• The final output is ~10GB/s to 

storage
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Alignment: overview

• The detector model used by trigger as well as 
for simulation follows the technical designs 
of where each piece should be
• In reality each piece will be positioned slightly 

differently from the design
• Not modelling this misalignement leads to 

poorer detector response
• The alignment project attempts to model the 

true position of each piece of the detector in 
6 degrees of freedom in real time
• This is solved in real time at LHCb using data 

from the buffer
• Not a trivial problem!
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Alignment: results – PID

• PID performance is already better than 
Run 2 for comparable numbers of 
primary vertices
• Alignment of RICH mirrors

• Generally accounting for affects such as
• Flexing of modules due to their own weight
• Temperature contraction
• Imprecission in installation
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LHCb-FIGURE-2023-023

http://cds.cern.ch/record/2871842/files/


Alignment: results – Tracking

• The alignment in the SciFi modules was completed first, now finer 
tuning can be done of the mats – improving track quality
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VELO

MUON

SciFi

UT Tag-track

Probe track (Velo reconstruction
efficiency)

Probe track (SciFi reconstruction
efficiency)

Data driven tracking efficiency
• Callibration of tracking efficiency is completed with the tag-and-probe 

method
• Allows data-driven tracking of efficiency as a function of kinematic 

variables
• Work on this still ongoing
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Looking at physics
The decays we’ve been able to find thanks to these efforts



Finding mass peaks with HLT1 – 𝐷! → 𝐾"𝜋#

• HLT1 is able to find mass peaks in real time!
• Straight from raw detector output to clear signal with only minimal offline cuts 

in 2022!
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Loose selection

Tighter selection
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http://cds.cern.ch/record/2859402/files/


Finding mass peaks with HLT1 – 𝐾$ → 𝜋#𝜋"

• 𝐾!𝐾! pairs can be isolated where 𝐾! → 𝜋"𝜋#
• Used for study of e.g. 𝐷! → 𝐾"𝐾" decays
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http://cds.cern.ch/record/2856769/files/


Adding HLT2 – 𝐷 → 𝐾𝜋, 𝐽/𝜓 → 𝜇𝜇, 𝐷∗ → 𝐷𝜋
• HLT2 uses ‘exclusive’ trigger lines
• All of these decay modes have been 

found in 2022 data!
• Shown here with tighter PID 

requirements
• Muon PID has since been improved 

further by better muon station alignment
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Finding excited states – 𝑐𝑐 → 𝜇𝜇

• Using HLT2, excited states have been found
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Electronic states – 𝐵# → 𝐽/𝜓 → 𝑒𝑒 𝐾#

• We can look at decays with a secondary vertex and with electrons
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𝐽/𝜓 reconstruction 𝐵 reconstruction

LHCb-FIGURE-2023-010

http://cds.cern.ch/record/2859403/files/


Electronic states – 𝐵# → 𝐽/𝜓 → 𝑒𝑒 𝐾#

• We can even look in different bremsstrahlung categories!
• Higher brem gives a more-symmetric distribution for 𝐽/𝜓 as more energy can 

be recovered
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Summary & Conclusions

• LHCb’s heterogeneous trigger is doing a fantastic job at 
reconstructing, filtering, and monitoring the data taken in Run 3 with 
a very high throughput

• Alignment measured from the output of HLT1 allows for optimised 
performance of the detector

• HLT2 allows for full reconstruction and PID information allowing for 
greatly suppressed background

• We have been able to use the output of our trigger system to 
reconstruct several decay modes in the comissioning of our detector
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Backup
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The trigger: HLT1 parallelism

• Hardware acceleration is an obvious candidate for 
increasing trigger throughput
• Easily parallelisable

• HLT1 is runs in parallel:
• Within each event
• Across events in a batch
• Across batches

• Runs at a dedicated data centre
• 6 modules × 132 racks × 2 GPUs/rack

• Nvidia RTX A5000 cards are used running source code in Cuda
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The trigger: HLT1 - examples of algorithms
• Tracking can be done

• Within any individual tracker – The VELO, UT or SciFi
• Across trackers – “Long”, “Upstream” or “Downstream” tracks

• This can be done using one of two different methods
• Forward or Seeding/Matching

• Tracking of electrons
• Recovering and compensating for bremsstrahlung

• Tracking gives access to kinematic variables
• Useful for selection

• Basic PID
• Identification of Muons and Electrons

• Event Reconstruction
• Combining tracks into parent particles
• Finding primary vertices (PVs)

• Machine learning
• MLP’s, similar to those typical in LHCb analyses, may be applied for selection
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The trigger: HLT1 performance in simulation

• Efficiency of HLT1 may be given in bins of other variables
• Some examples given
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