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Primary Vertices
● A Primary Vertex (PV) is the accurate estimation of the inelastic p-p interaction point
● 50-70 collisions per event in Run3 of LHC, 150-200 expected at HL-LHC 
● A fast and efficient algorithm is needed to identify PVs from the reconstructed tracks

An actual collision environment in ATLAS



Tracks and Track Reconstruction

➢ Tracks are the paths taken by charged particles while traversing through the detector
➢ Track Reconstruction: Finding sets of measurement coming from one charged particle and 

building the associated trajectory

A helical track can be defined 
by 5 parameters

For our study we are using 2; 
d_0 and z_0 and their 

uncertainties



A Previous Study on a PV Identification Algorithm on ATLAS Data

Promising Results:
The PV-Finder algorithm first developed for LHCb, was adapted for ATLAS simulated data and achieved comparable 
performance to Adaptive Multi-Vertex Finder (AMVF), and obtained better efficiency and more than two times better 
resolution with a slight increase in fake rate over all the pile-up range

https://cds.cern.ch/record/2858348
https://inspirehep.net/literature/1740667

https://cds.cern.ch/record/2858348
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Tracks to KDEs : Analytical Approach to Kernel Density Estimation

- KDE: 1D probability distribution estimation technique that transforms the tracks and 
their measured resolutions into representations of the track density

- A track’s density in the (d0,z0)-plane is given by a transverse and longitudinally 
correlated Gaussian probability distribution centered around (d0_i, z0_i)



ACTS - A Common Tracking Software
● ACTS is an independent, free, open-source software project for track reconstruction in 

particle physics experiments
● It’s designed to be easily adapting to specific experiment’s needs
● Provides essential components, such as:
- Track models (e.g. helical, linear)
- Fitting algorithms
- Geometry components (surfaces, volumes, detector elements, etc)
- Propagation components
- Visualization

And much more!

https://link.springer.com/article/10.1007/
s41781-021-00078-8

https://link.springer.com/article/10.1007/s41781-021-00078-8
https://link.springer.com/article/10.1007/s41781-021-00078-8


Setup in ACTS

1. Detector used: Open Data Detector (ODD)
2. Event generation: Pythia8 with ttbar
3. Reference PVs: AMVF algorithm
4. Pile-up: 50
5. Events Number: 3000
6. Number of tracks/event ~ 300 tracks

https://iopscience.iop.org/article/10.1
088/1742-6596/2438/1/012110

https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012110
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012110


Implementing PDFs in ACTS to generate KDE histograms

Gather track parameters and their covariances from tracks generated by CKF algorithm
(d0, z0, 𝛔_d0, 𝛔_z0, 𝛔_d0z0)

KDEgenerator
Constructor{ Initializing I/O ROOT files, TTrees, Branches, vectors, etc. }
Execute { sorting tracks, defining lambda functions for binning and pdf evaluation, filtering 
tracks, calculating covariance matrix, grid search, outputs best kernel value for that bin, etc }
Finalize { write data to output ROOT file, clean-up }

Run KDEgenerator on 3000 events 
and generate 1-D binned histogram with 12,000 bins with z-range [-24,24] cm (40μm wide 

bins)



We encoded the PDFs calculation analytically

https://github.com/Layan-Sarayra/acts/blob/ACTS_Layan/Examples/Algorithms/Vertexing/src/KDEgenerator.cpp

https://github.com/Layan-Sarayra/acts/blob/ACTS_Layan/Examples/Algorithms/Vertexing/src/KDEgenerator.cpp


Results from Analytical Approach
KDE-A represents the kernel value = pdf of this track
KDE-B represents the square of the kernel value = the squared value of pdf of this track

These KDE distributions will be fed into DNN to get PV predictions 
A small z-range is shown to better observe the structure



NN Architecture for KDE
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Results from NN Based-Approach
Analytically calculated KDE-A
NN predicted KDE-A

By Ananya Singha, HSF-India Fellow



Conclusion and Future Work

❖ Next step is to feed KDEs into DNN to get PV predictions
❖ Use of neural network for KDE generation (Ananya is working on it)
❖ We are Integrating this algorithm within ACTS to enable adoption by other 

experiments for broader uses

❏ Completed the first step in the project; to build a DL-based PV Identification 
algorithm within ACTS

❏ Compared the results from analytical vs NN approach
❏ A drawback is our analytical method to produce KDEs takes large run-time



Thank you!

My gratitude to Rocky Bala Garg and Lauren Tompkins, 

and to all the help and support from Bastian Schlag and Rory O’Dwyer

Questions?


