

Application of single-layer particle tracking for radiation field decomposition and interaction point reconstruction at MoEDAL

Declan Garvey, Benedikt Bergmann, Petr Mánek, Stanislav Pospíšil, Petr Smolyanskiy,

On behalf of MoEDAL

Declan.Garvey@utef.cvut.cz

Timepix3: Radiation Imaging Detector

Timepix and Timepix3

- 256 x 256 pixels with 55 µm pitch (1.98 cm²)
- Sensor layer (silicon, GaAs, CdTe, ...) flip-chip bump bonded to the ASIC

Timepix

- Frame-based readout (92 fps) dead time > 11 ms
 - Information is read out on a frame-by-frame basis
- Measurement of <u>energy</u> **or** <u>time</u> ($\Delta t = 20.8 \text{ ns}$)
- Minimal detectable energy: ~ 3.5 keV

Timepix3

- Data-driven readout (max. count rate 40 Mpix/s)
 - Pixels are continuously read out throughout the entire measurement
- Per pixel dead time: 475 ns
- Measurement of <u>energy</u> **and** <u>time</u> ($\Delta t = 1.56$ ns)
- Minimal detectable energy per pixel: 3 keV

Particle Tracking by Connecting the Dots

- Traditionally, particle tracking is performed using multiple layers of thin detectors
- Tracking information is then calculated by recording coincidence measurements in each detector and "connecting the dots"

So, the question is:

Can we achieve similar results using only a singlelayer detector?

Solid-State Time-Projection Chamber: **3D Reconstruction of Particle Tracks**

Ζ

<u>Charge carrier drift motion:</u> e⁻ and h⁺ drift described by $v_e = -\mu_e \times E(z)$ $v_h = \mu_h \times E(z)$

 $\mu_{e/h}$: Mobility of e⁻/h⁺

Electric field parametrisation:

Si:
$$\vec{E}(z) = \frac{U_B}{d} \vec{e_z} + \frac{2U_{dep}}{d^2} \left(\frac{d}{2} - z\right) \vec{e_z}$$
;

CdTe:
$$\vec{E}(z) = \frac{U_B}{d}\vec{e_z}$$

 U_B : Bias voltage; U_{dep} : Depletion voltage; d: Sensor thickness

\rightarrow Look up table: z(t_{meas.}, E_{meas.})

Bergmann et al. Eur. Phys. J. C (2017) 77: 421. <u>https://doi.org/10.1140/epjc/s10052-017-4993-4</u>

Bergmann et al., Eur. Phys. J. C (2019) 79: 165. <u>https://doi.org/10.1140/epjc/s10052-019-6673-z</u>

3D Tracking in 500 µm Si Timepix3

<u>A cosmic µ measured in the Prague laboratory:</u>

Bergmann et al. Eur. Phys. J. C (2017) 77: 421. https://doi.org/10.1140/epjc/s10052-017-4993-4

Energy Deposition Spectra of Charged Energetic Particles

P. Smolyanskiy *et al. JINST* **16** P01022, 2021. <u>https://dx.doi.org/10.1088/1748-0221/16/01/P01022</u>

Single-Layer Particle Tracking in MoEDAL

Timepix3 in MoEDAL at Run 2 - Feasibility Study

Installation of two Timepix3 detectors in MoEDAL in **September 2018**. Timepix3 are placed at 1.1 m distance to IP8 with a relatively unobstructed view

MOEDAL TPX

Continuous quasi dead-time free measurement (in real time) keeping a permanent record of **all particle traces**

- Tracking and identification of **all** particles
- Online outlier detection to search for exotics (highly ionising events)
- Bunch-by-bunch luminosity measurement
- Search for exotic signatures, e.g., "soup" events requiring timing information

Radiation Levels and Radiation E (keV) Pixel No.Y 500 **Field** 400 300 Pixel No.Y 180 200 **Bunch-bunch** 160 Collisions 140 100 120 100 Integration time: 1 s 200 Beam 80 Pixel No. X 100 alignment 60 40 20 Integration time: 100 s 200 Pixel No. X 400 **Bunch train** injections? 200 25.11.07:00 24.11.07:00 24.11.13:00 24.11. 19:00 25.11.01:00 Start time (UTC)

Theta Predictor Model

- To reduce the complexity of the problem, only the following two incidence angles are predicted: Azimuthal and perpendicular. Reducing it to regression problem
- Datasets used for model development:

⇒ 0.01-10 MeV electrons (curly tracks)
⇒ 10-500 MeV protons (thick, straight tracks)
⇒ 40 GeV pions (thin, straight tracks)

• It was found through an extensive study that a Random Forrest Regressor with a selection of input features produced optimal results

Input Features:

- 1. Size [no. of pixels]
- 2. Line standard deviation
- 3. Box dimensions
- 4. End point distance

Theta Prediction Results

For testing separate simulation datasets were created

Phi Determination

- An analytic approach was used as no improvement using machine learning algorithms was achieved
- Following an extensive study, Time of Arrival [ToA] weighted averaging was found to produce the most accurate results*
- In this method, we utilise the effect that drift time within the sensor has on ToA to approximate the "mean" entry and exit points

*P. Mánek et al. In: Journal of Instrumentation (2022), p. C01062. https://dx.doi.org/10.1088/1748-0221/17/01/C01062

Phi Model Results

For testing separate simulation datasets were created

Field Directionality During Proton-Proton Collisions

Field Directionality During Pb-Pb Collisions

17

Time-Resolved Measurement of the Directionality Map Pb-Pb Collision Period

For increased accuracy only 5 minutes of data acquisition is need to produce reasonable statistics

18

Radiation Field Decomposition According to Stopping Power

SATRAM And MOEDAL

A Brief Excursion:

Radiation Field Decomposition in Space

- Why the detour?
 - The mixed radiation field present in space has much lower complexity allowing us to more effectively develop and test algorithms for classification
- The data that will be used will come from the **S**pace **A**pplication **T**imepix **Ra**diation **M**onitor (**SATRAM**)
- The acquired knowledge can then be applied to the MoEDAL experiment

Space Application of Timepix Radiation Monitor (SATRAM)

- First Timepix in open space
- Power consumption of 2.5 W
- Total mass **380 g** (107 x 70 x 55 mm)

Proba-V

- Minisatellite (158 kg)
- Altitude ~820 km (LEO)
- 101.21 minutes orbit duration
- Inclination 98.6°
- Sun-synchronous
- Launched 7th March 2013

The Radiation Environment

https://satram.utef.cvut.cz/

Particle Classification - Bayesian Deconvolution

This method works by decomposing the stopping power "signal" of the field into its contributing particle signals, from which the particle's distributions can be

dE/dX and Particle Classification

Electron and Proton Flux Maps

First Measurement of the Trapped Proton Energy Spectrum with a Single-Layer Detector

Stopping Power Classification at MoEDAL

A Closer look at Stopping Power

Region 2:

⇒Protons <250 MeV</p> ⇔Pions <15 MeV ⇒Muons <10 MeV</p>

Regions 3:

⇒Fragmentations ⇒ Z>1 particles

Conclusions

• 3D tracking

The capabilities of reconstructing particle trajectories from IP8 in real time and with single layer Timepix3 detectors have been demonstrated

- Stopping power and radiation field decomposition
 - The current are state-of-the-art algorithms in particle classification were shown and validated in the environment found in low earth orbit
 - Future work will be to improve particle classification by using advanced machine learning algorithms

Can we use Timepix3 in Search for the Avatars of New Physics?

Highly charged energetic particles are known to produce distinct cluster pattern within Timepix3

Associated with:

- ➡ High Stopping Power
- Large number of delta rave

rays

$$\left\langle -\frac{dE}{dx}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_{\rm e}c^2 \beta^2 \gamma^2 W_{\rm max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

Thank you for your attention

This research was funded by the Czech Science Foundation grant number GM23-04869M.

Instruments for measurements in LEO

Next Generation Radiation Monitor (NGRM)

- Mass ~ 1 kg
- Consumption ~1-2 W

EPT (Energetic Particle Telescope)

- Mass: **4.6 kg**
- Consumption: 5.6 W

p p p Al shield Ta degrader Diode

ICARE-NG:

- Mass: 2.4 kg
- Consumption: 3
 W

Particle Fluence

The formula was derived analytically to account for the removal of edge clusters

The new algorithm was tested in a Geant4 omnidirectional field simulation.

Testing Accuracy: 97%

Second Peak Localisation

- Follow correct alignment of the interaction of point
- It becomes possible to project the second peak in 3D space to determine its origin
- Projection shows the origin along the beam line further the theory of scattering beam
 due to wider
 0.25

Bayesian Deconvolution Mathematical Background

