Object Condensation Tracking

Kilian Lieret (Princeton)

Gage DeZoort (Princeton)

Jian Park (Chicago)

Devdoot Chatterjee (Delhi Tech U)

Siqi Miao (Georgia Tech)

Pan Li (Georgia Tech)

Core team

Summer fellows

Transformer exploration

Javier Duarte (UCSD)

Savannah Thais (Columbia)

Feedback & input

Jonathan Guiang (UCSD)

Philip Chang (Florida)

Liaisons to CMS LST tracking

Vision: One-shot tracking with learned clustering

⇒ Everything everywhere all at once

parameters like p_T (WIP for our approach)

Object condensation: Training losses

GNN predicts condensation likelihoods (CL) for every hit. Hit with max CL for particle* is condensation point (CP)

*during inference: for cluster

Attractive loss function

rewards hits close to their CP

quadratic potential Attraction stronger if CP's CL is high

Repulsive loss function

penalizes hits close to other CP

hinge loss: no more repulsion after certain distance repulsion stronger for strong CP CLs

Background loss functionnoise hits should have low CL

Loss functions implemented from Kieseler 2020 (2002.03605)

Detail: Multi-objective optimization

- OC comes with a lot of different loss functions (attractive, repulsive, background, track parameters)
- We currently use linear scalarization, i.e.,

$$\mathcal{L} = \mathcal{L}_{\text{attr.}} + w_{\text{rep.}} \mathcal{L}_{\text{rep.}} + w_{\text{bkg.}} \mathcal{L}_{\text{bkg}} + w_{\text{param.}} \mathcal{L}_{\text{param}}$$

- Tried a different method over the summer:
 Modified Differential Multiplier Method (MDMM),
 minimizing primary loss function relative to others
 subject to constraints
- Confirmed that linear scalarization converges nicely along a convex pareto front and generally gives same results as MDMM (and MDMM is more complex and comes with additional hyperparameters)
- Bottom line: Might take another look at MDMM once we zoom in on track param. prediction, currently overkill

Trained with MDMM, constraining repulsive loss to < 20 and minimizing attr. loss

Devdoot Chatterjee (Delhi Tech U)

Original MDMM paper
Very nice blog post series

Dataset

All results shown use the pixel layers of the trackML dataset

trackML dataset generated by ACTS

Input features: Hit coordinates + cluster shapes

Metrics

Perfect

Cluster contains only hits from one particle and no hits outside of cluster

Cluster contains >= 75% hits from one particle

Double Majority (DM)

Cluster contains >= 50% hits from one particle and
This particle has < 50% of its hits outside

Clusters with < 3 hits or non-reconstructable majority particle are discarded

#reconstructable particles

Perfect efficiency = 1/5

Perfect fakes = 5/5

#clusters with >= 3 hits & majority particle reconstructable

LHC efficiency = 2/5 LHC fakes = 4/6

#reconstructable particles

DM efficiency = 2/5

DM fakes = 4/5

We also evaluate these **metrics at pT thresholds**: pT cut is applied to majority particle of cluster or particle (this is <u>not</u> a truth cut on the data, but simply a efficiency vs pT study)

Reconstructable: >= 3 hits

General GNN pipeline

STAGE 1: Graph construction (GC)

(Optional STAGE 1a: Graph refinement)

¹Edge Classifier

STAGE 2: Object condensation

(Optional STAGE 2a...)

Build new edges based on OC latent space

Run OC GNN
 on new graph
 for even better
 OC latent space

STAGE 3: Collect clusters

Pipeline 1.1 (@CHEP proceedings): Geometric GC + EC FCNN + OC GNN

STAGE 1 + 1a: GC + EC

STAGE 2: Object condensation

STAGE 3: Collect clusters

- Significantly improved since CHEP presentation: No EC GNN needed anymore
- Can combine geometric constraints with EC in inference ⇒ Much faster inference
- Purity of GC + EC: 68%, 90k
 edges
- OC: interaction networks with residual connections (5 layers, 192 node/edge dim)

arXiv: 2309.16754

Pipeline 1.1 (@CHEP proceedings): Geometric GC + EC MLP + OC GNN

Model:

EC: 270k parametersOC: 1.9M parameters

Performance for pT > 0.9 GeV:

• DM: 95%

• LHC: 97%

Perfect: 80%

• Fake DM: 1.7%

arXiv: 2309.16754

Pipeline 1.1 (@CHEP proceedings): Geometric GC + EC MLP + OC GNN

OC can fix/is more robust to missing edges, i.e., can perfectly reconstruct tracks that are impossible to perfectly reconstruct based on EC scores alone because of missing edges

To show this:

- 1. Construct graph as before
- Remove all edges crossing from barrel to right endcap (2 < η < 3)
- 3. Calculate "perfect EC" uppber bound by taking all true edges and identify tracks with connected components (drops to 0 for 2 < n < 3)
- 4. Compare with OC results

arXiv: 2309.16754

Pipeline 2.0: Metric learning GC + OC GNN STAGE 1: GC with metric learning

Heavily inspired by ExaTrkx

Difference: Currently also training to build edges that skip detector layers

STAGE 2: Object condensation

STAGE 3: Collect clusters

- FCNN: 6 layers, hidden dim 256
- Residual connection from GC latent space to OC output
- OC network almost the same as described in arXiv:2309.16754 (5 interaction networks with 192 node/edge dim and residual connections)

Pipeline 2.0: Metric learning GC + OC GNN

Model:

GC: 300K parameters

• OC: 1.9M parameters

kNN k=10

Performance for pT > 0.9 GeV

DM: 96%

• LHC: 98%

Perfect: 86%

• Fake DM: 0.9%

Training time ~30h (GC) + 60h (OC) on A100; probably still some performance left to recover with careful fine-tuning & training

Experimental pipeline: GravNet

STAGE 1+2: Embedding

This block is similar to pipeline 2.0, only repeated and trained all at once

Jian Park (Chicago)

OC loss (attractive + repulsive)

STAGE 3: Collect clusters

FCNN

- End-to-end training (which is good and bad)
- As the embedding gets better, so do the message passing edges ⇒ only need small k
- GravNet slightly modified (e.g., FCNNs instead of simple linear layers)
- Currently only prototype; confirmed to reach around 90% DM eff., but probably more given enough training time
- OC with GravNet seems to work very well for the Belle II outer tracker (Lea Reuter et al.)

https://github.com/gnn-tracking/jian-gnn-tracking-experiments

Experimental pipeline: Transformer

STAGE 1: OC

STAGE 2: Collect clusters

Siqi Miao (Georgia Tech)

liao **Pan** Li Tech) (Georgia Tech)

Motivation:

- kNN used in GC is often O(n²) in GPU implementations
- GNNs have lots of irregular computations → not optimal on GPU; want model that is hardwarefriendly/as fast as possible
- Transformer pipeline can be trained end-to-end

Proposition: Efficient sparse transformers

- Scaled dot product attention with relative positional encoding and E2 locality sensitive hashing (E2LSH)
- Trained with contrastive learning & hard negative mining

Result:

- Computations parallelizable and regular O(n log n)
- Inference on Quadro RTX 6000 around 500x faster at similar

Summary & Outlook

- Learned clustering (OC) is an alternative to EC-based track reconstruction
- Ran experiments on pixel layers of trackML dataset
- Two different architectures achieved high efficiencies:
 - Geometric GC + FCNN EC + OC: 95% DM, 80% perfect (pT > 0.9) (details in arXiv:2309.16754)
 - Metric learning GC + OC: 96% DM, 85% perfect (pT > 0.9)
- Several other architectures under consideration:
 - GravNet layers (repeated embedding + kNN edge building)
 - Kernalized Local Transformers
- OC can handle missing edges to a certain degree
- WIP:
 - Application to full detector
 - Studies with CMS data

Thanks!

Find us on GitHub! New contributors welcome! https://github.com/gnn-tracking

Shoutouts: More object condensation

Daniel Murnane

"Influencer" approach (next up!)

Lea Reuter

Object condensation tracking for the Belle II outer tracker @CHEP23