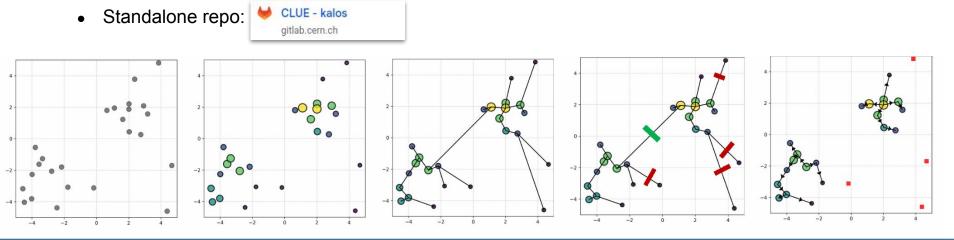

k4Clue: the CLUE Algorithm for Future Collider Experiments

Erica Brondolin,

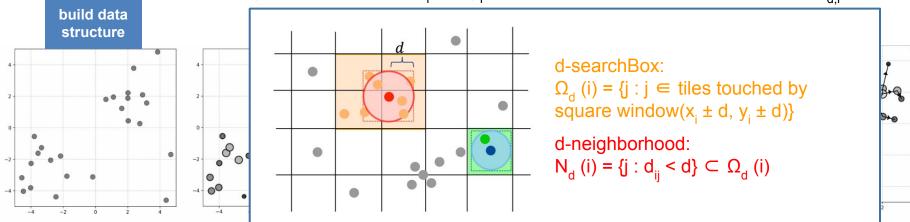
Felice Pantaleo, Marco Rovere

Connecting The Dots 2023, 10th October 2023

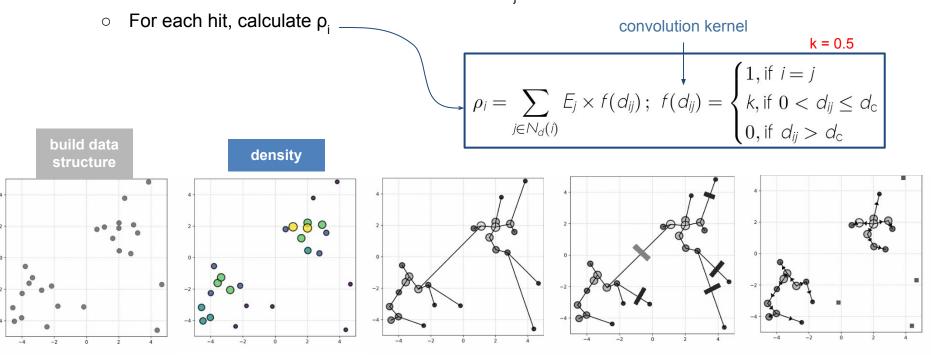
Introduction


CLUstering of Energy

• CLUE (**CLUstering of Energy**) is a fast density-based clustering algorithm for the next generation of sampling calorimeter with high granularity in HEP

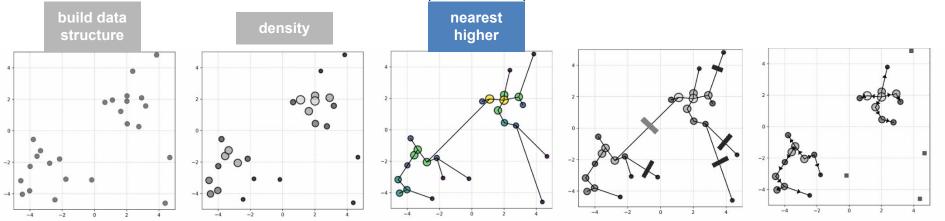

- It uses energy density rather than individual cell energy to establish seeds, outliers, and followers in 2D planes.
- GPU-friendly, i.e. suitable for the upcoming era of heterogeneous computing in HEP

Step 1: Building Data Structure


- To enable efficient neighbor search in CLUE, a fixed-grid spatial index is constructed as a first step
- Build Fixed-Grid Spatial Index for hits on each layer:
 - Each tile in the grid hosts indices of hits inside it and has a fixed length of memory to store the hosted indices. It is independent by the detector granularity.
- When searching for neighbors within a specified distance d, CLUE only examines hits within the bins touched by a window of size (x_i ± d, y_i ± d) centered on each point of interest (N_{d i})

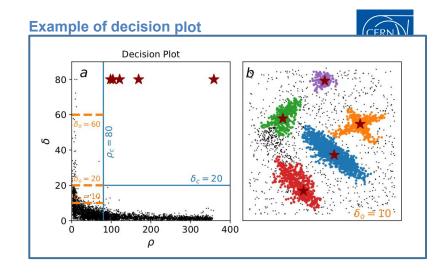
Step 2: Local energy density

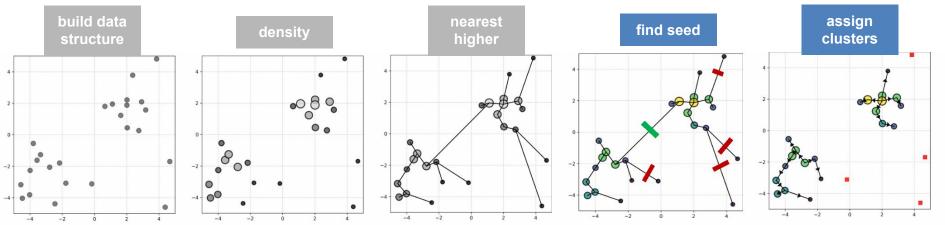
- Calculate local energy density (ρ_i) in a distance (d_c)
 - Each hit *j* weighted by the deposited energy (E_i)



Step 3: Find "closest higher hit"

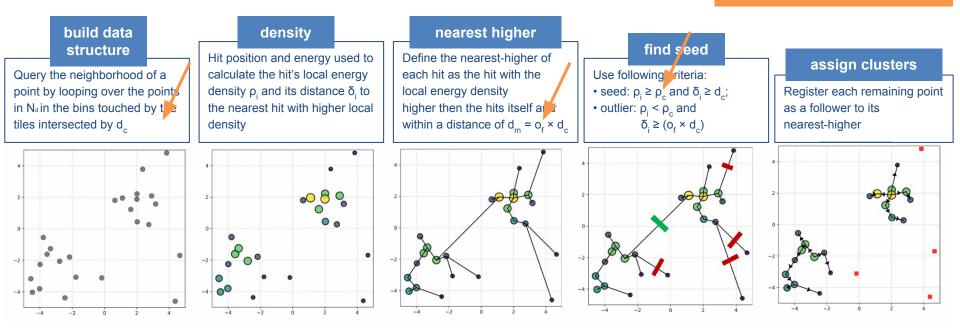
- Calculate "Nearest-Higher" hit within N_{dm}(i)
 - Define $d_m = o_f * d_c$
 - \circ Find the closest hit with higher local energy density, nh_i

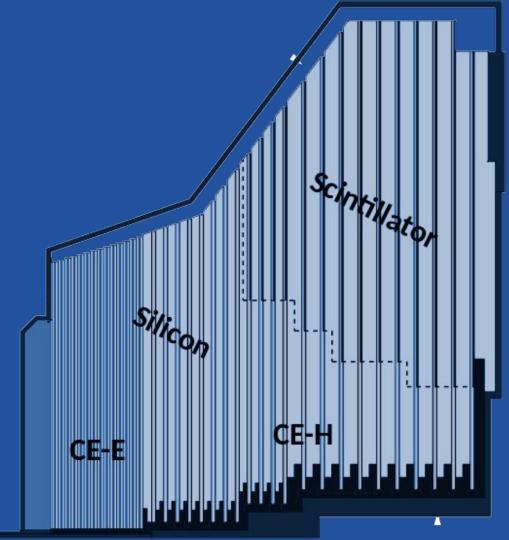

$$nh_{i} = \begin{cases} argmin_{j \in \hat{N}_{d_{m}}(i)} d_{ij}, \text{if } |\hat{N}_{d_{m}}| \neq 0, \hat{N}_{d_{m}}(i) = \{j : j \in N_{d_{m}}(i), \rho_{j} > \rho_{i}\} \\ -1, \text{otherwise} \end{cases}$$


• Calculate the separation distance $\delta_i = \text{dist}(i, nh_i)$

Step 4: Classify hits

- Promote as **seed** if $\rho_i > \rho_c$, $\delta_i > d_c$
- Demote as **outlier** if $\rho_i < \rho_c$, $\delta_i > o_f * d_c$
- Assign unique, progressive cluster ID to each cluster
 - Followers are defined and associated to their closest seed

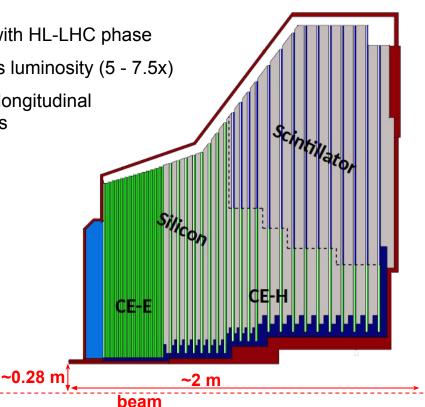



Clustering procedure recap

Input parameters:

- d_c: Critical Distance
- o_f: Outlier Delta Factor
- ρ_c: Minimum Local Density

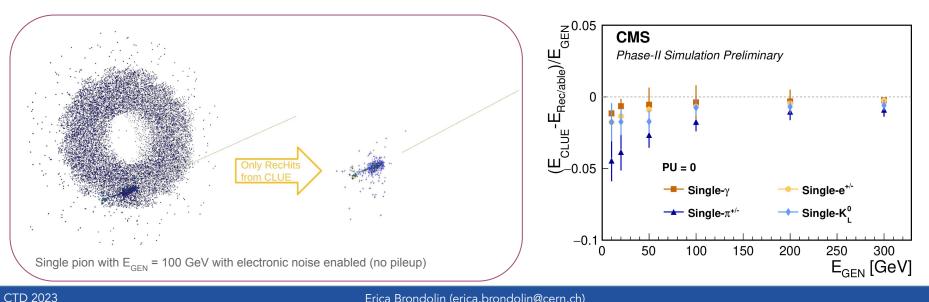
CLUE in the HGCAL reconstruction

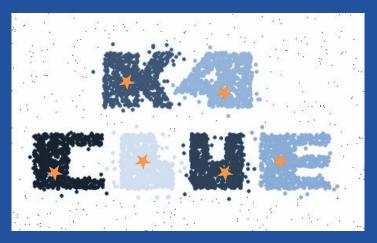


CMS High Granularity Calorimeter

- Phase-2 upgrade of CMS is needed to cope with HL-LHC phase
 - A significant increase in the instantaneous luminosity (5 7.5x)
- Imaging calorimeter with very fine lateral and longitudinal segmentation, and precision timing capabilities
 - $\circ~$ Covering 1.5 < η < 3.0

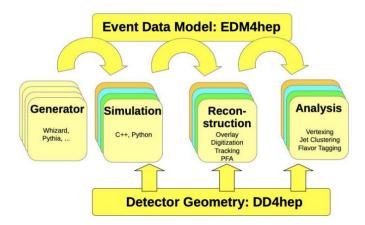
Both endcaps	Silicon	Scintillators
Area	~620 m²	~400 m²
Channel size	0.5 - 1 cm ²	4 - 30 cm ²
#Modules	~30'000	~4'000
#Channels	~6 M	240 k
Op. temp.	-30 °C	-30 °C
Ref.		

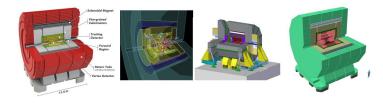

CE-E : Electromagnetic Endcap Calorimeter CE-H : Hadronic Endcap Calorimeter


HGCAL Software Reconstruction

- The HGCAL reconstruction framework is **TICL** (The Iterative Clustering)
- It starts by calibrating deposited energy in individual cells, also called RecHits . \rightarrow an order of 10⁵ RecHits in the HGCAL detector for events @ 200 pileup
- **CLUSTERS** the RecHits in the same layer to produce Layer Clusters (LCs)

The


package


Key4hep in a nutshell

• key4hep is a huge ecosystem of software packages

- It is adopted by all future collider projects
- It implements complete workflows from generator to analysis
- Main ingredients
 - EDM4hep : common event data model for exchange among framework components
 - Podio used as underlying tool
 - Gaudi: software processing framework
 - DD4hep: description of geometry with ability to include CAD files
 - Spack: package manager used for building the SW stack

Integrating CLUE in Key4hep

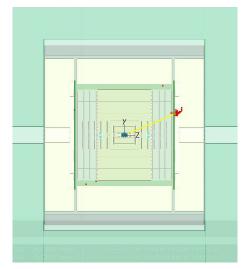
- **k4Clue v01-00-03** (doi: <u>10.5281/zenodo.8256333</u>)
 - It's adapted to the common event data model, EDM4hep
 - It includes a wrapper class to run in the Gaudi software framework
 - It's included in the new Key4hep releases managed by Spack

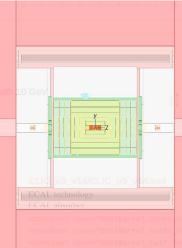
☐ Repositories		People
Q Find a repository Type - Language	✓ Sort ✓ □ New	
k4FWCore Public Core Components for the Gaudi-based Key4HEP Framework ●C++ ☆ 3 ¥ 13 ○ 13 (1 issue needs help) 1 3 Updated 2 hours ago	.M	Top languages
spack (Public) A flexible package manager that supports multiple versions, configurations, platforms, and compilers. ● Python Ŷo Ŷ 1,532 O N 3 Updated 12 hours ago	mmM	● C++ ● Python ● CMake ● JavaScript ● TeX
key4hep-validation Public ● Python ☆ 0 ¥ 2 O 1 1 Updated 21 hours ago	^	
k4Clue Public	h	

Additional features w.r.t. kalos/Clue

- Cluster hits in the entire 4π detector region
 - Definition of the tessellated space (LayerTile) in the standalone version defines coordinates and searches only in the transverse plane
 - Modified basic structure of the LayerTile and the search algorithm to to allow for the definition of a cylindrical surface

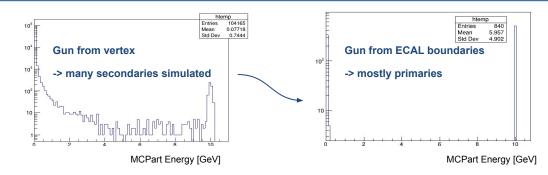
 $x \rightarrow r\Phi$ $y \rightarrow z$

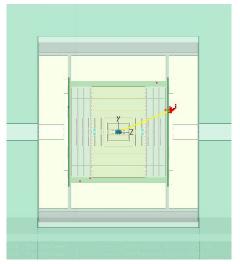

- Template CLUE algorithm classes
 - To allow the possibility of defining several different calorimeter layouts
 - A dedicated documentation page in the package (<u>include/readme.md</u>) allows the user to follow a simple but detailed step-by-step procedure to introduce and test the preferred layout.
- GitHub CI & EDM4hep Validation
 - edm4hep:CLUECalorimeterHit :CalorimeterHit class with specific methods related to the CLUE algorithm

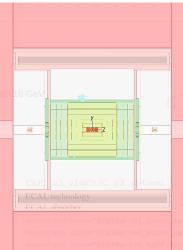


Detectors: CLD & CLICdet

ECAL of CLICdet & CLD

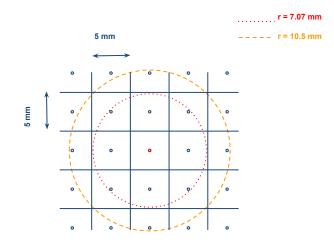

- 40 layers of 5x5 mm² Silicon cells & W
- The main difference between the two calorimeters lies in the layout parameters → To compensate for a lower detector solenoid field, the CLD design starts from a larger radius both in the barrel and in the endcap region w.r.t. CLICdet.
 - Further details in backup



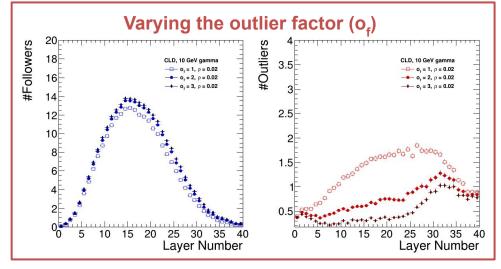


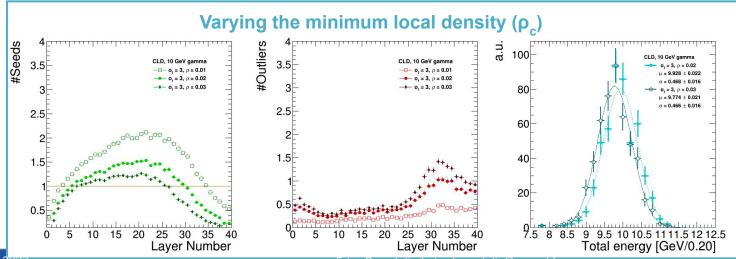
ECAL of CLICdet & CLD

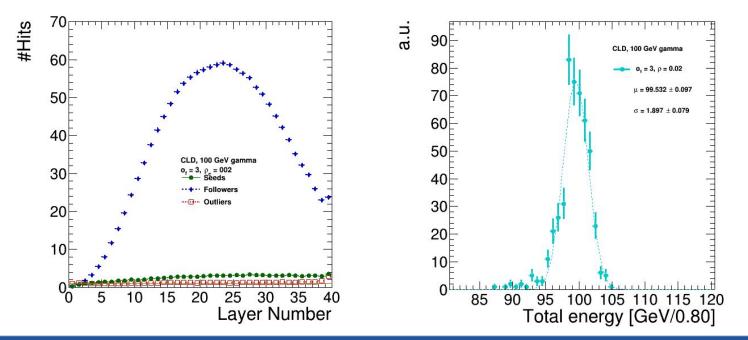
- 40 layers of 5x5 mm² Silicon cells & W
- The main difference between the two calorimeters lies in the layout parameters → To compensate for a lower detector solenoid field, the CLD design starts from a larger radius both in the barrel and in the endcap region w.r.t. CLICdet.
 - Further details in backup
- 500 events of single gamma at 10 GeV generated perpendicular to the surface with <u>Geant4 General Particle Source</u>
 - Main reason: no conversion in the tracker volume

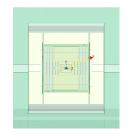


Parameters tuning


- Input parameters tuned for CLD
- Same ones tested also for CLICdet (similar geometry, same granularity)
- Critical Distance (d_c) is established by geometry granularity to contain (minimum) the close neighbors cells:

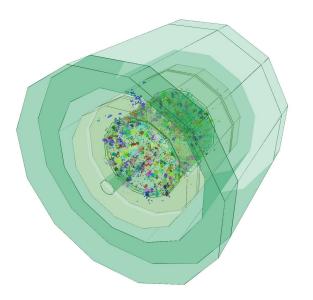

 \circ d_c = 15 mm

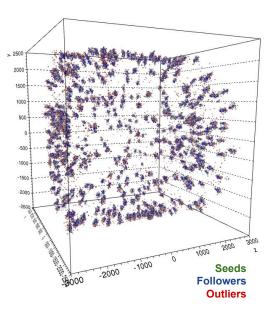

Parameters tuning

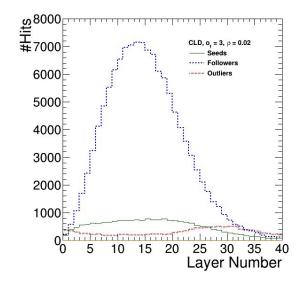


Higher energies

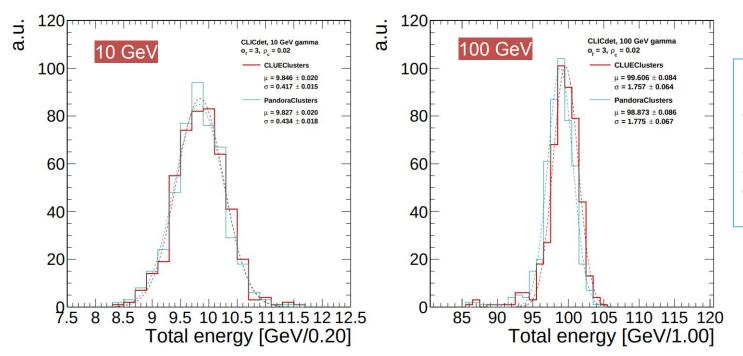
- 500 events with single gamma (from ECAL surface) at 100 GeV
- $d_c = 15.00, \rho_c = 0.02, o_f = 3.0$

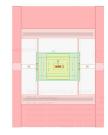





Multiple gamma event

- Produced with normal gun, i.e. particles generated from vertex
- 1 event with 500 single gammas each produced with 10 GeV Only simulated calorimeter hits are shown





CLICdet results

• Using same input parameters selected for CLD

Comparison with Pandora Clusters not completely equitable comparison (it includes a dedicated calibration procedure), but comparable results in terms of energy linearity and resolution

Detector: Noble Liquid Calorimeter

Noble Liquid ECAL for FCC-ee

(cm)

256 56.5

252.5 51.6 249 46.6

245.5-41.7 242-36.7

231.5-21.9

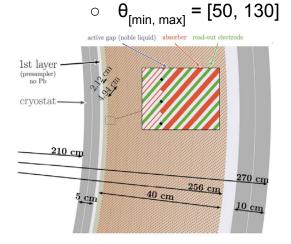
228-16.9

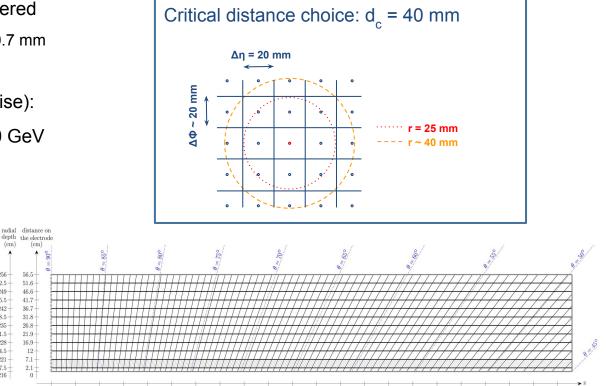
224.5-

221 -7.1

217.5 -2.1-

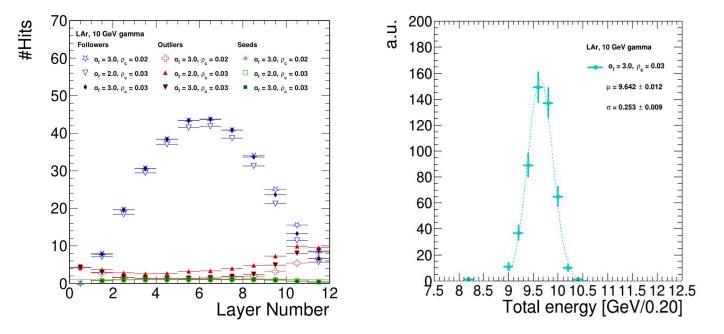
216


31.8 238.5-235 -26.8


12

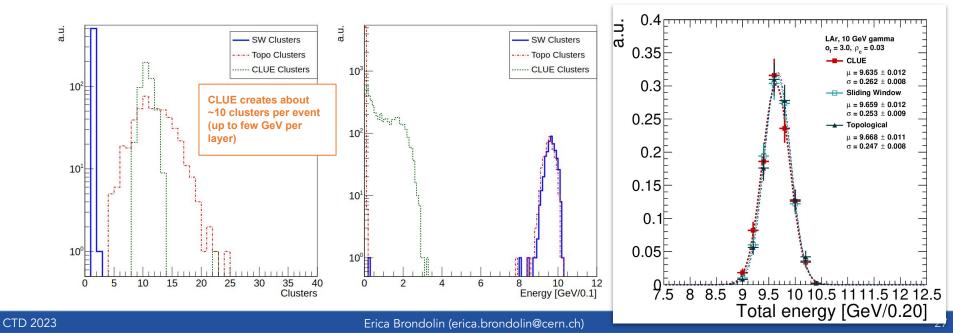
0

- 12 layers, only barrel considered •
 - cell size in Φ⁻ 17 9 mm 20 7 mm 0
 - cell size in n: ~ 20 mm 0
- Sample (if not stated otherwise):
 - 500 single gamma at 10 GeV Ο



Parameters tuning

- 500 events with single gamma (from vertex) at 10 GeV
- $d_c = 40.00, \rho_c = 0.03, o_f = 3.0$

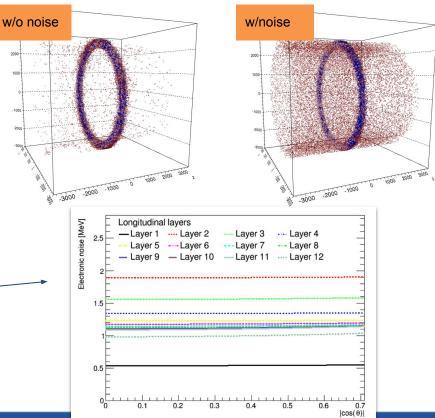


Comparison with other cluster algorithms

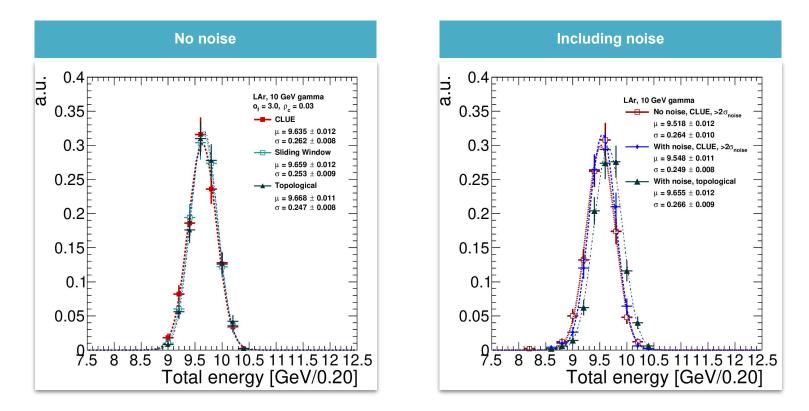
Calorimeters for the FCC-hh, Dec 2019

- Sliding window: It considers the calorimeter as a two-dimensional grid in η-φ space, neglecting the longitudinal segmentation of the calorimeter.
- **Topological clustering**: It starts with a seed cell and then adds topologically connected calorimeter cells

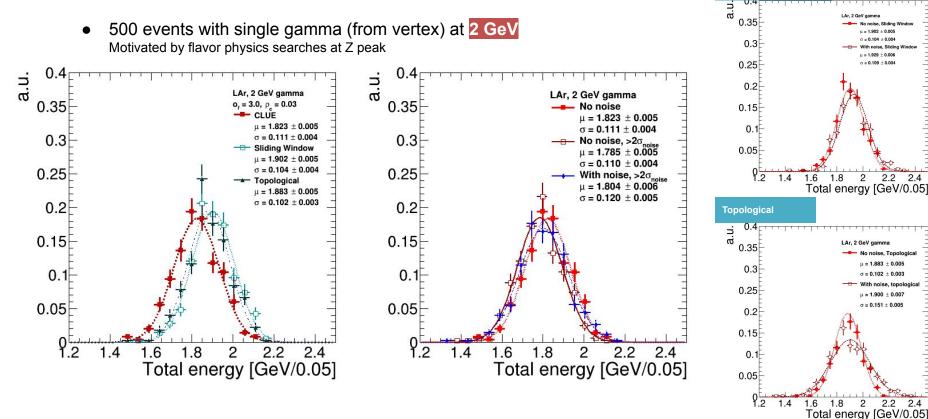
Noise in Liquid Argon Calorimeter



- High level of noise in the detector
- In the topoclustering, there is no filter directly at the beginning for the noise, but this is done using cuts in the algorithm itself
- The main observable is the cell significance ξ_{cell} which is defined as the absolute value of the ratio of the cell signal to the expected noise in this cell

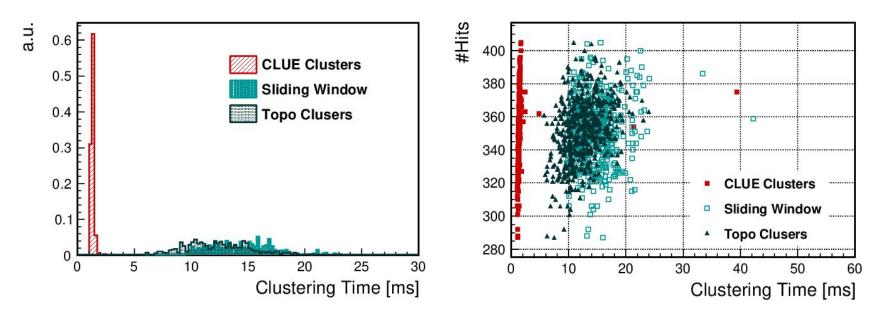

 CLUE hits w/noise selected with filter of > 2σ_{noise}

Signal produced only with $\theta \sim 90.25^{\circ}$



Comparison with other cluster algorithms

Low(er) energy



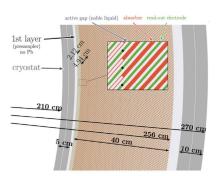
Sliding Window cluster energy > 1GeV

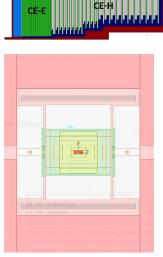
Execution Time

- CLUE demonstrates impressive timing capabilities, outperforming the other algorithms by completing the task in about a tenth of the time, regardless of the number of input hits
- Currently only CPU version is used

Outlook & Conclusions

CTD 2023


E


Summary

- k4Clue package (<u>v01-00-03</u>) has improved upon the standalone CLUE
 - Run on the full detector (barrel & endcap)
 - Adapted for different types of calorimeters
- Analysis on three different future calorimeters has demonstrated the good performance for single gamma events
 - Good performance even in the **presence of noise**
 - Similar performance w.r.t. other baseline algorithms
 - Clear advantage in terms of timing performance

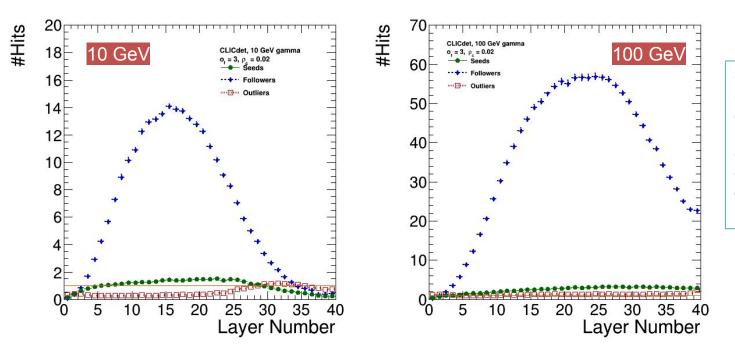
Next steps

- Bringing improvements in original repo
- Implement 3D algorithm for full pattern reco (CLUE3D)

Conclusions

- This work highlights the adaptability and versatility of the CLUE algorithm for a wide range of experiments and detectors, as well as its potential for future high-energy physics experiments beyond CMS
 - Improvements from k4clue also under discussion for CMS Phase-2 barrel region
- This research was supported by the CERN Strategic R&D Programme on Technologies for Future Experiments
- Special thanks go to the Key4hep team and the FCC-ee liquid calorimeter software experts for the support

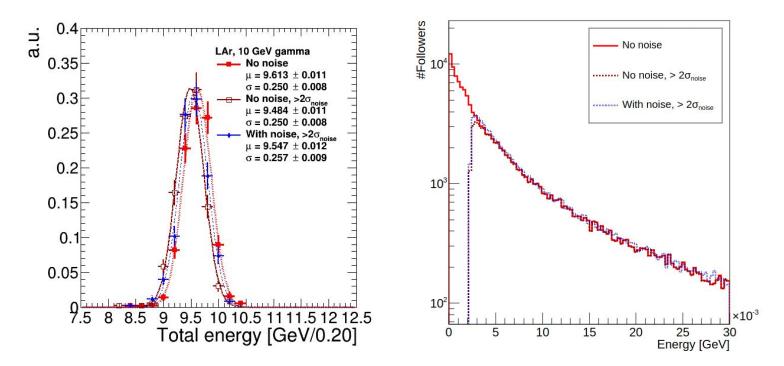
		UDmin	
		Submitte	b;
			ų,
1		The k4Clue package:	
		Empowering Future Collider Experiments	
		with the CLUE Algorithm	
,		while the Chorn regoliting	
4		E Brondolin ^{*1} , M Rovere ¹ , and F Pantaleo ¹	
5		¹ CERN, Switzerland	
6		August 22, 2023	
7		Abstract	
		High granularity calorimeters have become increasingly crucial in modern particle physics ex	2
٠		periments, and their importance is set to grow even further in the future. The CLUstering of	
10		Energy (CLUE) algorithm has shown excellent performance in clustering calorimeter hits in th High Granularity Calorimeter (HGCAL) developed for the Phase-2 upgrade of the CMS exper	
12		iment. In this paper, we investigate the suitability of the CLUE algorithm for future collide	
13		experiments and test its capabilities outside the HGCAL software reconstruction. To this end, w	
14		developed a new package, k4Clue, which is now fully integrated into the Gaudi software framewor and supports the EDM4hep data format for inputs and outputs. We demonstrate the performance	
16		of CLUE in three detectors for future colliders: CLICdet for the CLIC accelerator, CLD for th	e
17		FCC-ee collider and a second calorimeter based on Noble Liquid technology also proposed for	
18		FCC-ee. We find excellent reconstruction performance for single gamma events, even in the presence of noise, and also compared with other baseline algorithms. Moreover, CLUE demonstrate	
20		impressive timing capabilities, outperforming the other algorithms and independently of the num	
21		ber of input hits. This work highlights the adaptability and versatility of the CLUE algorithm fo	
22		a wide range of experiments and detectors and the algorithm's potential for future high-energ physics experiments beyond CMS.	6
24	С	Contents	
25	1	Introduction	2
26	2	CLUE	2
27		2.1 Clustering procedure	2
28	3	The k4Clue package	3
29		3.1 Integrating CLUE in Key4hep	
30		3.2 k4CLUE additional features	
31		Ster Byers a generative statistic hold by both manager, both manager, both manager, both	
32	4	Performance evaluation	4
11		4.1 Performance for CLD and CLICdet detector	
34		4.1.1 CLD calorimeter results 4.1.2 CLICdet calorimeter results	
22		4.1.2 CEPCuet chormace for Noble Liquid Calorimeter	
36		4.3 Execution time	
36 37			



Backup

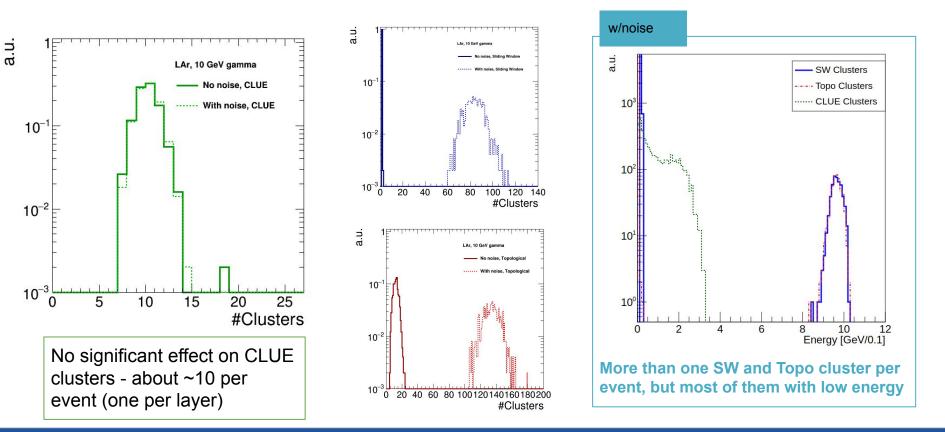
CLICdet results

• Using same input parameters selected for CLD


Comparison with **Pandora Clusters** not completely equitable comparison (it includes a dedicated calibration procedure), but comparable results in terms of energy linearity and resolution

Noble Liquid Calo

Pre-filtering


• CLUE hits w/noise selected with filter of > $2\sigma_{noise}$

Noble Liquid Calo

Comparison with other cluster algorithms

Noble Liquid Calo **Sliding Window** Summary for 10 GeV gammas cluster energy > 1GeV 0.4 a.u. LAr. 10 GeV gamm 0.35 No noise. Sliding Window u = 9.622 ± 0.011 0.3 $\sigma = 0.237 \pm 0.008$ With noise, Sliding Window 0.25 u = 9.649 ± 0.012 0.4 0.4 a.u. a.u. $\sigma = 0.261 \pm 0.010$ 0.2 LAr, 10 GeV gamma LAr, 10 GeV gamma 0.35 $o_t = 3.0, \rho_c = 0.03$ 0.35 ---- No noise 0.15 - CLUE $\mu = 9.613 \pm 0.011$ $\mu = 9.613 \pm 0.011$ $\sigma = 0.250 \pm 0.008$ 0.1 $\sigma = 0.250 \pm 0.008$ 0.3 0.3 ----- No noise, >2σ_{noise} ---- Sliding Window 0.05 $\mu = 9.484 \pm 0.011$ $\mu = 9.623 \pm 0.011$ $\sigma = 0.250 \pm 0.008$ $\sigma = 0.237 \pm 0.008$ 0.25 0.25 0 1 → With noise, >2σnoise ----- Topological $\mu = 9.547 \pm 0.012$ Total energy [GeV/0.20] $\mu = 9.634 \pm 0.011$ $\sigma = 0.257 \pm 0.009$ $\sigma = 0.234 \pm 0.008$ 0.2 0.2 Topological 0.4______ Ľ. 0.15 0.15 ų. LAr, 10 GeV gamma 0.35 No noise, Topological $\mu = 9.634 \pm 0.011$ 0.3 0.1 0.1 $\sigma = 0.234 \pm 0.008$ With noise, topological 0.25 $\mu = 9.675 \pm 0.013$ σ = 0.258 ± 0.008 0.05 0.05 0.2 0.15 9.5 9 9.5 10 10.5 11 11.5 12 12.5 7.5 9.5 10 10.5 11 11.5 12 12.5 8 8 8.5 9 8.5 0.1 Total energy [GeV/0.20] Total energy [GeV/0.20] 0.05

7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 Total energy [GeV/0.20]