8th International CTD Workshop Université Paul Sabatier, Toulouse, France 10-13 October 2023

Connecting The Dots 2023

FASER tracking system and performance

Ke Li 11/10/2023

Connecting the dots 2023

WASHINGTO₁N

W

UNIVERSITY of

Ke Li (University of Washington)

FASER-

CTD2023

Outline

- Introduction of FASER experiment
- Silicon-strip tracker
- Tracking based on ACTS
- Alignment
- First physics results
- Summary and next todos

ForwArd Search ExpeRiment (FASER) at the LHC

- FASER is designed to search for LLPs and neutrinos produced in pp collisions at the ATLAS IP
- Light LLPs are produced in the decay of SM mesons, which are predominantly produced very collimated in the beam direction
- Even small detectors on (or close to) the **LOS** can have good sensitivity in these scenarios
 - N~ 10¹⁶ pions/10¹² neutrinos in LHC Run 3 (2022-2025)
 - E~ TeV, $\dot{\theta}_{\text{beam axis}}$ ~ mrad
 - e.g. 1% of pions with E > 10 GeV are produced in the forward 0.000001% of the solid angle (η > 9.2)
 - Even with 1 fb⁻¹ of data FASER will have sensitivity to unconstrained parameter space
- Unique opportunities to search for long-lived particles and measure very high energy neutrino interactions

• Almost **background free**

FASER operation at Run3

- Successfully constructed, installed and commissioned
- Smoothly operated throughout 2022
 - Continuous data taking
 - Largely automated
 - $\circ \qquad \text{Up to 1.3 kHz}$
- Recorded 96.1% of delivered luminosity
 - DAQ dead-time of 1.3%
 - A couple of DAQ crashes
- Emulsion detector exchanged twice
 - Needed to manage the occupancy
 - First box only partially filled
- Calorimeter gain optimised for:
 - Low E (<300 GeV) before 2nd exchange
 - High E (up to 3 TeV) after the exchange
- Smoothly operating at 2023
 - Another ~30 fb⁻¹ data

Analyses presented use 27.0 fb⁻¹ or 35.4 fb⁻¹ collected at 2022

11/10/2023

CTD2023

FASER detector

Ke Li (University of Washington)

Silicon-strip Tracker

- Made by 4 tracking stations (including interface station)
 - Each containing a 3 layer (24cm x 24cm) of double-sided silicon micro-strip detectors
 - Each layer has 8 SCT modules
 - same SCT modules with ATLAS
 - 80µm strip pitch, 40mrad stereo angle
 - 12 layers => 96 SCT modules

SCT module Same with SCT in ATLAS

Tracking station

6

Tracker performance

- Build of same silicon strip module (SCT) as ATLAS, module fine time tuned with 390 ps precision
- Hit efficiency of 99.64±0.10% at threshold of 1.0 fC and sensor bias 150V

- Total number of dead/noisy strips < 0.5%
- Inefficiency from module edges are expected

CTD2023

Clucterization

Same with ATLAS (Athena)

- Same EDM
- Similar algorithm

<u>Acts</u>

CTD2023

• (Combinatorial) Kalman Filter using cluster or spacepoint

Track Seeds

Tracking geometry with ACTS

- One cuboid volume for whole detector
 - One sub-volume for each tracker and veto/trigger stations
 - Each module has two plane surfaces and has shift on Z with nearby modules in the same layer
 - One material cylinder surface for magnets

Material mapping

- Shoot geantino particles through whole detector and record the interactions with material
- Map the material to the simplified tracking geometry, i.e. surface, to consider the interactions with material correctly

Ke Li (University of Washington)

Track reconstruction

- Three approaches
 - ACTS Kalman Filter (KF)
 - Loop over all the track candidates
 - ACTS Combinatorial Kalman Filter (CKF)
 - Tracking finding + fitting
 - Loop over the initial parameters from all track candidates
 - Solve the ambiguity while propagating
 - Chi2Fitter
 - Loop over all the track candidates
 - Use ACTS to propagate the track parameters to other layers
 (xmass = Xand)²
 - Use TM inuit to minimize $\chi^2 = \sum_i \frac{\left(x_{\text{meas}_i} x_{\text{pred}_i}\right)^2}{\sigma_x^2} + \frac{\left(y_{\text{meas}_i} y_{\text{pred}_i}\right)^2}{\sigma_x^2}$
 - Cross check with each other

11

11/10/2023

× drop hole

Combinatorial Kalman Filter

- The momentum resolution is tested with a series of MC simulations in ideal geometry
- Around 10% resolution at 100 GeV, and 17% at 1 TeV
- CKF input: a large covariance for initial parameter and all measurements
 - Refit with the previous results as input can improve the precision

Track parameters from CKF

- Tested with single particle MC simulation
- Track parameter is defined at a fixed plane surface
- Resolution for track x/y is \sim 400/10 μ m
 - \circ For single measurement (space point), resolution is 816/16 μ m

Preliminary study with MC

Track parameters: truth - reco

CTD2023

13

Reconstruction efficiency

- Reconstruction efficiency for two collimated tracks from MC and data
 - Dark photon is highly boosted
 - Two tracks are close to each other
 - Difficult to model the MC and remaining mis-alignment correctly
- Overlay events
 - Select two 1-track events and overlay the raw data
 - Re-run tracking and compare with
 1-track event to get the efficiency
- Efficiency is ~70%
- Difference between data and MC is taken as a systematic uncertainty
 - Dominant uncertainty, ~7%

Alignment

Purpose:

Calibrate the geometry

Method:

Minimize the chi2 defined with residuals

Two approaches in FASER

- Global chi2 using Millepede II

 W.I.P.
- Iterative local chi2

Weak mode and Alignment strategy

Validation with mis-aligned MC

- Single muon MC (E = [100, 1000] GeV) with mis-aligned geometry (randomly mis-align all station/layer/module)
- Good tracks: pz>300GeV, nClusters>14, chi2 <200, r<95mm
- ~20 iterations
- Both residual and track chi2 improved significantly and more consistent with the results in ideal geometry

17

First alignment on collision data

- Main challenge: no good prior knowledge to set constraints
- Iterative local chi2 alignment
- Validated with MC simulation
- Only consider 2 of 6 degree of freedoms, Y translation and Z rotation
 - Silicon strip detector, precision on Y is much better than X
 - Track parameters and residuals are improved significantly
 - Remaining discrepancy will be taken as systematic uncertainty

Physics results: dark photon

CTD2023

Hyperon Decay

/µ going through FASER/ 25cm×25cm area, L=150fb⁻¹

Pion Decay Kaon Decay

Charm Decay Bottom Decay

10¹

10¹²

10¹

10¹

10

10

First direct observation of collider neutrinos

- A huge number of neutrinos produced in the LHC collisions traverse the FASER • location covering an unexplored neutrino energy regime
 - Originate from hadron decays, mainly pion, kaon and charm mesons
- Expected to record several 1000 of neutrino interactions in Run3
- **~1000** $v_{\rm e}$, **~10000** v_{μ} , **~50** v_{τ} For first study, we use silicon tracker to detect neutrino interaction at FASERv•
 - Focusing on $\pmb{v}_{\mathbf{u}}$ CC interactions Ο

2, No signal (<40pC) in 2 front vetos, but signal (>40pC) in other 3 vetos

- 3, Exactly 1 good fiducial track
 - p >100 GeV, θ<25 mrad, r<95mm
 - Extrapolated to r<95 mm at veto scintillators

Ke Li (University of Washington)

CTD2023

20

First physics results

- No event in SR for dark photon is observed
- FASER sets limits in previously unexplored parameter space !
 - Probes new territory in the interesting thermal-relic region

- Track reconstruction and alignment are crucial for these two analyses
- **Updating the studies** with a better track finding algorithm and detector alignment
- Possible future improvement:
 - ML track finder for two collimated tracks

- Observed **153 neutrino events** with 0.2 background
 - Consistent with prediction: 151 ± 41
- Significance of **16**

$$n_{\nu} = 153^{+12}_{-13}(\text{stat})^{+2}_{-2}(\text{bkg}) = 153^{+12}_{-13}(\text{tot})$$

11/10/2023

CTD2023

Summary

- FASER successfully constructed and took data in 2022 and 2023 of Run 3
 Running with fully functional detector and very good efficiency
- Track reconstruction is developed using ACTS, e.g. CKF
 - Good reconstruction efficiency and resolution (10% at 100 GeV)
 - First experimental result using ACTS
- Preliminary alignment with iterative local chi2 approach
 - Better consistency of track chi2 after alignment w.r.t MC in ideal geometry
- Good efficiency for LLP signature, e.g. ~50% for A->ee
- Further improvements
 - Developing new alignment with millepede II
 - Misalignment is the dominant systematic uncertainty, ~7%
 - ML track finder for collimated tracks (<70% efficiency)
 - o ...

back-up

Inefficiency for overlay tracks

• One of the reasons

- >=2 segments in each station
- Due to the geometry, no precise track parameter until fitting with 3 stations
- There is a possibility to select wrong segment especially at second station

Alignment

6 alignment parameters per module (X/Y/Z shift and rotations) Residual is defined as: $\vec{r} = \vec{f}(\vec{a}, \vec{\pi}) - \vec{m}$

 $\frac{d\chi^2(\vec{a})}{d\vec{a}} = \vec{0}$

- Define the total chi2 from all the tracks as:

$$\chi^2 = \sum_{tracks} \vec{r_i}^T \cdot V_i^{-1} \cdot \vec{r_i}$$

- $\vec{f}(\vec{a},\vec{\pi})$: Prediction from track fitting
 - \vec{m} : Measurements
 - V_i^{-1} : Covariance matrix of residuals measurements

11/10/2023

$$\Delta \vec{a} = -\left(\sum_{tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right)^T\right)^{-1} \cdot \left(\sum_{tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \vec{r}_i(\vec{a}_0)\right)$$

Alignment parameters

Minimize the chi2

25

Track seeding

- Start with track segments in each stations
 - 3 layers of SCT modules
 - Each layer is expected to have 2 clusters
 - Linear chi2 fit (no magnet field in stations)
 - Allows for missing hits (can create track segment from only 4 clusters)
- Combine 3 or 4 track segments to build a track candidate

	Efficiency in % $\epsilon = \frac{\# \text{ segments with all hits matched to the same particle}}{\# \text{ events} \cdot 6}$	Purity in % $p = rac{\# \text{ segments with all hits matched to the same particle}}{\# \text{ segments}}$
all segments	93.4	3.5
segment selection	90.0	46.9
remove ghosts	89.6	83.6

W.I.P. More study are on going

Track finding

- Track finding = find the correct clusters to build a track candidate
- Combine 3 or 4 track segments from different stations
 - \circ $\,$ Each combination will go to track fitting
- Efficiency = truth-matched tracks / all truth tracks

Truth-matched track:

- Momentum is close to truth momentum
- At least 4 Truth-matched clusters per station

11/10/2023

W.I.P. More study are on going

CTD2023

27

Detector performance - alignment

-itted residual mean (μm

Fitted residual STD (µm)

> Mean and std of the residuals for each module

Module ID

Coordinate systems

Same with ATLAS

Global

Origin point is defined by the center of magnets

- Global chi2 alignment: residuals are defined in local frame
- Local chi2 alignment: residuals are defined in global frame for layer/station and local frame for module alignment

Alignment

6 alignment parameters per module (X/Y/Z shift and rotations) Residual is defined as: $\vec{r} = \vec{f}(\vec{a}, \vec{\pi}) - \vec{m}$

 $\chi^2 = \sum_{tracks} \vec{r_i}^T \cdot V_i^{-1} \cdot \vec{r_i}$

1.2(2)

- Define the total chi2 from all the tracks as:

 $\vec{f}(\vec{a},\vec{\pi})$: Prediction from track fitting

 \vec{m} : Measurements

: Covariance matrix of V_i^{-1} nents

$$\frac{d\chi(d)}{d\vec{a}} = 0$$
residuals measuren
$$\Delta \vec{a} = -\left(\sum_{tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right)^T\right)^{-1} \cdot \left(\sum_{tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \vec{r}_i(\vec{a}_0)\right)$$

Alignment parameters

Minimize the chi2