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ACTS: A Common Tracking Software project

▶ Experiment-independent toolkit for tracking

▶ Free software (Mozilla Public License v2.0)

▶ Considered for use by ATLAS, FASER, Belle
II, CEPC, sPHENIX, PANDA, EIC, . . .

▶ Three overarching goals:
1. Preserve current tracking approaches while

enabling development for HL-LHC
2. Serve as an algorithmic test bed incl.

ML-based algorithms and accelerated
hardware

3. Enable rapid and realistic development of
new tracking detectors

▶ Includes an ONNX plugin, to enable import of
various ML models anywhere in the tracking
workflow

▶ Ongoing R&D for GPU tracking (traccc)

▶ Overview paper: [2106.13593]

▶ Project webpage: acts.readthedocs.io

▶ Code repository: github.com/acts-project/acts
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https://onnx.ai/
https://github.com/acts-project/traccc
https://arxiv.org/abs/2106.13593
https://acts.readthedocs.io
https://github.com/acts-project/acts/


Introduction: Kalman Filter

▶ ACTS Track state model: (d0, z0, θ, ϕ, q/p, t)
▶ with associated covariance

▶ Estimated with measurements from detector
▶ E.g. for pixel detector: m = (x , y)

▶ with associated covariance, usually diagonal

▶ Track state incorporates measurements via
Kalman Filter formalism
▶ Start from track seed parameters
▶ Predict parameters at next surface
▶ Search for matching measurements
▶ Kalman update stage: Update track state

using matching measurement
▶ Repeat until no more surfaces

▶ Usually followed by Kalman “Smoothing”
▶ Replace each local state estimate with an

optimal estimate given a complete set of
measurements

▶ Nucl.Instrum.Meth.A 262 (1987) 444-450
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https://doi.org/10.1016/0168-9002(87)90887-4


Introduction: Measurements

▶ From pixel detector, need measurements m = (x , y)

▶ However, only get individual pixels from readout

▶ → Use connected component analysis to obtain clusters
▶ Then can estimate measurement position:

▶ (x , y) = charge-weighted cluster center
▶ (σx , σy ) = pix. width /

√
12

▶ Possible to improve:
▶ Take direction into account
▶ Do fancier shape analysis
▶ . . .

▶ Measurement calibration paradigm: Apply corrections to
estimated measurements during Kalman update stage
▶ Simple scale-and-offset schemes
▶ ATLAS: “Analogue clustering”, NN-based clustering
▶ . . . many other possibilities
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Example 1: Single pixel clusters

▶ Primarily rely on shape analysis to constrain
position

▶ Edge case: 1-pixel clusters, “no” shape
information

▶ However: Angles of incidence give some
constraint!
▶ ≈ 90◦ crossing: Anywhere on surface
▶ → 0◦ crossing: Near center (else, ≥ 2 pixel)

▶ N.B. position defined at middle of Si bulk, by
convention
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1-pixel cluster: Local positions vs Angles of incidence

▶ Clear relationship between σ(pos) and angle
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▶ Transverse direction: Shift due to B field
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Measurement Calibration with Neural Networks

▶ MDN ≡ Mixture Density Network

▶ i.e. any neural network trained to output parameters of a gaussian mixture

▶ Model output: parameters πi , µi , σi such that:

P(Y |X ) ∼
∑
i

πi (X )N (Y |µi (X ), σi (X ))

▶ X is set of variables describing a measurement (e.g. charge, volume/layer, angles of incidence)
▶ Y is true crossing position in Si bulk (ground truth)
▶ πi (X ): Prior probability for i-th component (if using ≥ 2 components)
▶ µi (X ): Calibrated position estimate (Supervised learning)
▶ σi (X ): Uncertainty estimate (Unsupervised learning)

▶ If using single component, model is a simple normal distribution

▶ Trained using probabilistic programming paradigm: loss is directly − logP(Y |X )

▶ At runtime, use µi ± σi corresponding to highest πi as position estimate

▶ This method naturally generalizes to clusters with ≥ 2 particles
▶ Method used by ATLAS collaboration for pixel measurement calibration

▶ See e.g. ATL-PHYS-PROC-2019-082
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https://cds.cern.ch/record/2687968


Measurement Calibration with Neural Networks

▶ Clear relationship between σ(pos) and angle
▶ Stronger constraint at large angles
▶ Weaker constraint for head-on particles
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▶ Asymmetry due to Lorentz Angle in transverse
direction (known constant shift due to B-field
and Si thickness → easy to correct)
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N.B. σx/y are model-estimated uncertainties, not residuals
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Calibration interface in ACTS

▶ The ACTS tracking toolkit contains Kalman Filter-based track finding & fitting algorithms

▶ Calibrations can be applied on-the-fly during track finding / track fitting

▶ Interface implemented using template-based delegation:

class KalmanFitterExtensions {

using Calibrator = Delegate<void(const GeometryContext&, const CalibrationContext&,

const SourceLink&, TrackStateProxy)>;

/// The Calibrator is a dedicated calibration algorithm that allows

/// to calibrate measurements using track information, this could be

/// e.g. sagging for wires, module deformations, etc.

Calibrator calibrator;

...

};

▶ Calibrator class acts directly on track state proxy, which holds the current measurement

▶ Dynamic geometry effects and intra-run calibration changes encapsulated via contextualization
▶ ONNX plugin: NN-based calibration methods are supported!

▶ See NeuralCalibrator in ACTS Examples
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https://github.com/acts-project/acts/pull/2111


Example 2: Detector alignment

▶ Alignment ≡ deriving corrections to geometry
description for shifts in element positions

▶ Work ongoing in ACTS on Kalman
Filter-based alignment algorithm

▶ If detector is very misaligned, performance is
degraded:
▶ Track efficiency drops
▶ measurements are lost

▶ Can “bootstrap” the alignment procedure with
measurement calibration:
▶ Scale measurement errors up

→ recover tracking efficiency
▶ Perform alignment with unscaled errors ▶ Alignment minimizes track–hit χ2

▶ c.f. [2007.07624]
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https://arxiv.org/abs/2007.07624


Example 2: Detector alignment

▶ Simulated “large” misalignment:
linear shift ∼ N (0, 20µm) for each module

▶ Clear effect on efficiency &
measurements per track

▶ Using the ACTS ScalingCalibrator, apply a ×2
factor to the measurement variances
▶ Emulates artificially-large clusters
▶ Efficiency is recovered
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https://github.com/acts-project/acts/pull/2085


Conclusion

▶ Measurement Calibration: Correcting the measurement positions & errors
on-the-fly during track finding & track fitting

▶ The ACTS Kalman Filter includes efficient template-based interface to measurement calibration

▶ Different examples are provided: Simple ScalingCalibrator, Fancy MDN-based NeuralCalibrator

▶ Future plans:
▶ Provide documentation and tutorials for the interface and the examples
▶ Explore more calibration methods (e.g. ATLAS “Analogue Clustering”)
▶ Implement ATLAS-inspired dense environment calibration

(Cluster splitting, positions for ≥ 2 particles, . . . )
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