

GNN-based pipeline for track finding in the Velo at LHCb

Anthony Correia, Fotis Giasemis, Nabil Garroum, Vava Gligorov On behalf of the LHCb real-time analysis project 10th October 2023

Collisions and Trigger

— Collisions (Run 3)

- 20 MHz non-empty bunch crossing rate
- \sim 5 collisions / bunch crossing
- p-p collision at $\sqrt{s} = 13.6 \text{ TeV}$

Collisions and Trigger

Collisions and Trigger

3 Tracking detectors

Tracks

Tracks

Motivations

Graph Neural Network (GNN)-based track-finding pipeline based on the work of **Exa.Trkx** (*Eur. Phys.* <u>J. C 81, 876 (2021)</u>)

- Demonstrated **near-linear** inference time w.r.t. # hits
 - *Conventional* algorithms are worse-than-quadratic
 - In future LHCb upgrades: increase in instaneous luminosity and detector granularity
 → need for even more high-throughput track-finding algorithms
- High-parallelisation potential → compatible with current GPU-based Allen trigger
- Conventional algorithms implemented in Allen ⇒ allow like-for-like comparison between GNNbased algorithms and conventional algorithms (on the very same device!)
- Representation of tracks with a graph quite *natural*

Pure graph representation

In the Velo

- Around ~ 2200 hits / event
- Around 150 particles to reconstruct / event

Graph Building

GNN: filter edges

Build tracks from graph

Graph Building

GNN: filter edges

Build tracks from graph

15

Edges are not random

- Forward
- Away from *z*-axis ↔ more tilted
- \Rightarrow this features could be learnt by a Neural Network

DNN trained so that in the embedding space

- If hit A and hit B are likely to be connected by an edge $d(A, B)^2 = \|\vec{e_A} \vec{e_B}\|^2 < 0.010$
- Otherwise, $d(A, B)^2 > 0.010$

⇒ You've got your rough graph

Graph Building

GNN: filter edges

Build tracks from graph

- Overall training strategy in back-up
- After training, we choose maximal number of neighbours $k_{max} = 50$ (not optimised)

Graph Building

GNN: filter edges

Build tracks from graph

(evaluated on 200 events)

19

- Overall training strategy in back-up
- After training, we choose maximal number of neighbours $k_{max} = 50$ (not optimised)
- To choose maximal squared distance d_{max}^2 , for various values for d_{max}^2 :
 - 1. Build the rough graph using d_{max}^2
 - 2. Remove all fake edges in the rough graph and build the tracks from this purified graph
 - 3. Compute track-finding performance \Rightarrow correspond to the **best performance given** d_{max}^2

Performance if all the fake edges are discarded(\equiv best performance)

 \Rightarrow We will try $d_{\text{max}}^2 = 0.010$ and $d_{\text{max}}^2 = 0.020$

Change: Incoming and outgoing neighbours are **aggregated separately**, which increased overall GNN performance

Tracks obtained by identifying connected hits

Tracks obtained by identifying connected hits

But if you do this... track efficiency on long electrons is terrible!

Metric	Allen	etx4velo	
Efficiency	98.17%	46.23%	
Clone rate	3.07%	0.47%	
Hit efficiency	95.35%	98.89%	
Hit purity	99,67%	93.89%	

(evaluated on 1000 events)

The Case of Electrons

Observations

- \sim 55 % electrons share hits with another electron
- The 2 electrons share ≥ 1 hit(s) before splitting up

Example 1: share the first hit only

Example 2: share several hits before splitting up

⇒ the **connected component algorithm** consider the **2** electron tracks as a **single** track

2. Issue of Shared Hits Other Tracks With Shared Hits

• Tracks crossing (> 524 in 1000 events)

Track ends on a shared hit

Track starts on a shared hit

 The last hit of a track is the first hit of another track (>141 in 1000 events)

2. Issue of Shared Hits Edge-Edge Connections

In this case, one cannot even guess that there are *possibly* 2 tracks!

Hit-hit connection is not enough ⇒ need **edge-edge connections**

2. Issue of Shared Hits Edge-Edge Connections

3 kind of **edge-edge connections** (or *triplets*) are possible

From the purified graph of hit-hit connections

Build edge-edge connections (or triplets)

From the purified graph of hit-hit connections

Build edge-edge connections (or triplets)

Classify the triplets with the GNN Filter out the fake triplets

Classify the triplets with the GNN Filter out the fake triplets

Algorithm to build tracks from triplets

Don't repeat the overall GNN inference: start from the previous GNN

- Compute triplet score from node and edge encodings of the GNN
- Train GNN with overall loss $\mathcal{L} = \mathcal{L}_{edges} + \mathcal{L}_{triplets}$

Connect left and right elbows and remove duplicate edge-edge connections

34

Before building the tracks from the graph of triplets...

• Choose $s_{edge,min} = 0.4$ to optimise performance (could be increased to optimise throughput)

35

Before building the tracks from the graph of triplets

- Choose $s_{edge,min} = 0.4$ to optimise performance (could be increased to optimise throughput)
- Choose $s_{\text{triplet,min}}$ by evaluating track-finding performance as a function of $s_{\text{triplet,min}}$
 - High efficiency
 - Ghost rate < 1%

 \Rightarrow choose $s_{\text{triplet,min}} = 0.32$

Category	Metric
Long, no electrons	Efficiency
 Reconstructible in the velo 	Clone rate
 Reconstructible in the SciFi Not an electron 	Hit efficiency
	Hit Purity
Long electrons	Efficiency
 Acceptance Reconstructible in the velo 	Clone rate
✓ Reconstructible in the SciFi✓ Electron	Hit efficiency
	Hit purity
Long, from strange	Efficiency
 Reconstructible in the velo 	Clone rate
 Decays from a strange Good proxy for displaced 	Hit efficiency
tracks	Hit purity
X	Ghost rate

• Evaluation with 5,000 events

 Track matched to a particle if at least 70% of its hits belong to this particle

Category	Metric	Allen
Long, no electrons	Efficiency	99.26%
 In acceptance Reconstructible in the velo 	Clone rate	2.54%
 Reconstructible in the SciFi Not an electron 	Hit efficiency	96.46%
	Hit Purity	99.78%
Long electrons	Efficiency	97.11%
 In acceptance Reconstructible in the velo 	Clone rate	4,25%
Reconstructible in the SciFiElectron	Hit efficiency	95.24%
	Hit purity	97.11%
Long, from strange	Efficiency	97.69%
 In acceptance Reconstructible in the velo 	Clone rate	2.50%
 Decays from a strange Good proxy for displaced 	Hit efficiency	97.69%
tracks	Hit purity	99.34%
Х	Ghost rate	2.18%

- Evaluation with 5,000 events
- Track matched to a particle if at least 70% of its hits belong to this particle
- Allen algorithm described in <u>arXiv:2207.03936v2</u>

	$s_{\text{triplet}} > 0.32$		
Category	Metric	Allen	Etx4velo $d^2 = 0.010$
			$u_{\rm max} = 0.010$
Long, no electrons	Efficiency	99.26%	99.28%
 Reconstructible in the velo 	Clone rate	2.54%	0.96%
 ✓ Reconstructible in the SciFi ✓ Not an electron 	Hit efficiency	96.46%	98.73%
	Hit Purity	99.78%	99.94%
Long electrons	Efficiency	97.11%	98.80%
 ✓ In acceptance ✓ Reconstructible in the velo ✓ Reconstructible in the SciFi ✓ Electron 	Clone rate	4,25%	7.42%
	Hit efficiency	95.24%	96.54%
	Hit purity	97.11%	98.46%
Long, from strange	Efficiency	97.69%	97.50%
 ✓ In acceptance ✓ Reconstructible in the velo ✓ Decays from a strange Good proxy for displaced tracks 	Clone rate	2.50%	0.92%
	Hit efficiency	97.69%	98.22%
	Hit purity	99.34%	99.68%
X	Ghost rate	2.18%	0.76%

- Evaluation with 5,000 events
- Track matched to a particle if at least 70% of its hits belong to this particle
- Allen algorithm described in <u>arXiv:2207.03936v2</u>

	$s_{\text{triplet}} > 0.32$	$s_{\text{triplet}} > 0.36$		
Category	Metric	Allen	Etx4velo $d^2 = 0.010$	Etx4velo $d^2 = 0.020$
			$u_{\text{max}} = 0.010$	$a_{\rm max} = 0.020$
Long, no electrons	Efficiency	99.26%	99.28%	99.51%
 Reconstructible in the velo 	Clone rate	2.54%	0.96%	0.89%
 ✓ Reconstructible in the SciFi ✓ Not an electron 	Hit efficiency	96.46%	98.73%	98.90%
	Hit Purity	99.78%	99.94%	99.94%
 Long electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Reconstructible in the SciFi ✓ Electron 	Efficiency	97.11%	98.80%	99.22%
	Clone rate	4,25%	7.42%	7.31%
	Hit efficiency	95.24%	96.54%	96.79%
	Hit purity	97.11%	98.46%	98.46%
 Long, from strange ✓ In acceptance ✓ Reconstructible in the velo ✓ Decays from a strange Good proxy for displaced tracks 	Efficiency	97.69%	97.50%	98.06%
	Clone rate	2.50%	0.92%	0.81%
	Hit efficiency	97.69%	98.22%	98.77%
	Hit purity	99.34%	99.68%	99.68%
X	Ghost rate	2.18%	0.76%	0.81%

• Evaluation with 5,000 events

 Track matched to a particle if at least 70% of its hits belong to this particle

- Allen algorithm described in <u>arXiv:2207.03936v2</u>
- 2 different GNN trainings for $d_{\text{max}}^2 = 0.010$ and $d_{\text{max}}^2 = 0.020$

		$s_{\text{triplet}} > 0.32$	$s_{\text{triplet}} > 0.36$			
Category	Metric	Allen	$\frac{\text{Etx4velo}}{d_{\text{max}}^2 = 0.010}$	$\frac{\text{Etx4velo}}{d_{\text{max}}^2 = 0.020}$		
 Velo-only, no electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Not reconstructible in the SciFi ✓ Not an electron 	Efficiency	96.84%	97.03%	97.86%		
	Clone rate	3.84%	1.08%	1.02%		
	Hit efficiency	93.89%	97.93%	98.32%		
	Hit Purity	99.50%	99.84%	99.82%		
 Velo-only electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Not reconstructible in the SciFi ✓ Electron 	Efficiency	67.81%	85.10%	86.69%		
	Clone rate	10.27%	5.02%	4.97%		
	Hit efficiency	79.21%	93.33%	93.88%		
	Hit purity	97.35%	99.07%	98.99%	Velo-only	categories
 Velo-only, from strange ✓ In acceptance ✓ Not reconstructible in the velo ✓ Decays from a strange Good proxy for displaced tracks 	Efficiency	93.53%	93.07%	96.05%		
	Clone rate	5.60%	1.97%	1.77%		
	Hit efficiency	90.05%	93.92%	96.05%		
	Hit purity	99.36%	99.67%	99.64%	Worse	Better

Conclusion

Track-Finding Physics Performance of GNN-based pipeline

- Comparable or superior performance to Allen's velo track-finding algorithm
- Excellent electron reconstruction
- Low ghost rate

Ongoing Work

- Implementation in Allen to
 - properly optimise the throughput of the GNN-based pipeline
 - Compare the optimal throughput to conventional algorithm
- Extension to other LHCb tracking detectors, starting from the SciFi

Thank You For Your Attention!

43

Backup Slides

Velo geometry

1 plane = 4 sensor planes

Use **700,000 events** for training, with the following selection

- Particles are straight enough
- **Particles** leave \geq **3** hits in the Velo
- **Event** has \geq 500 genuine hits

1. GNN-based Track Finding Approach

Graph Building

GNN: filter edges

Build tracks from graph

Training set of 700,000 events divided into sub-epochs of 7,000 events

1. GNN-based Track Finding Approach

Graph Building

GNN: filter edges

Build tracks from graph

Rough graph with $k_{\text{max}} = 50$ and $d_{\text{max}}^2 = 0.010$

Even though 1% of genuine edges are 2-plane apart, the rough graph needs to contain almost 50% of such edges

 $\Rightarrow k_{\text{max}}$ could probably be reduced to increase throughput

Graph Building	Building GNN: filter edges		lges	>	Build tracks from grap		
1 Encode every hit and edge in a high-dimensional space	edge ace		$\vec{r} = (r, \phi, z)$ –		Node Encoder	$\rightarrow \vec{n} \in \mathbb{R}^{256}$	
		$(r_{\rm in},\phi_{\rm in},z_{\rm in},r)$	$f_{\rm out}, \phi_{\rm out}, z_{\rm out})$	-	Edge Encoder	$\rightarrow \vec{e} \in \mathbb{R}^{256}$	

Trained with a sigmoid focal loss

Trained with a sigmoid focal loss

 Solve the ambiguity of shared hits under the following hypothesis: "All hits that precede a splitting point can be attributed to all the newly identified tracks"

• \Rightarrow Assume that this does not happen

Overall GNN loss = GNN loss on edges + GNN loss on triplets

GNN loss on edges

0.01750.0025Training Training Validation Validation 0.01500.0020 LHCb Run 3 Simulation LHCb Run 3 Simulation 0.0125ss 0.0015 Tosy SS 0.0100 0.00750.0010 0.00500.00050.002580 80 100 20 40 60 100 120 140 160 20 40 60 120 140 160 0 0 Sub-epoch Sub-epoch

Training set of 700,000 events divided into sub-epochs of 7,000 events

GNN loss on triplets

57

Connect left and right elbows and remove duplicate edge-edge connections

Apply connected components, excluding splitting edge-edge connections

New Hypothesis: a track may split into 2 tracks only one time → Allow to keep *locality*

(track, particle) couple for which **70% of the hits of track belong to the particle**

