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Collisions (Run 3)

Collisions and Trigger

• 20 MHz non-empty bunch crossing rate
• ~ 5 collisions / bunch crossing
• 𝑝-𝑝 collision at 𝑠 = 13.6 TeV

10.1088/1742-6596/878/1/012012
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LHCb Detector in Run 3 4

J. Phys.: Conf. Ser., vol. 878, p. 012012, 2017Allen (High-Level Trigger 1)
fully GPU-based online partial 
reconstruction and selection

• 20 MHz non-empty bunch crossing rate
• ~ 5 collisions / bunch crossing
• 𝑝-𝑝 collision at 𝑠 = 13.6 TeV

Collisions (Run 3)

LHCb Subdetectors
Acceptance
2 < 𝜂 < 5

5 TB/s

High-Level Trigger 2
CPU-based full reconstruction and 

selection

70-200 GB/s

Storage buffer 10 GB/s

Better trigger efficiency than previous L0 FPGA-based 
trigger

Numbers taken from LHCB-FIGURE-2020-016

Collisions and Trigger

10.1088/1742-6596/878/1/012012
https://cds.cern.ch/record/2730181


LHCb Detector in Run 3 5

Velo
Vertex Locator
With silicon pixels
No magnetic field

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥

Magnet 
stations

3 Tracking detectors

J. Phys.: Conf. Ser., vol. 878, p. 012012, 2017

10.1088/1742-6596/878/1/012012
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Velo
Vertex Locator
With silicon pixels

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧
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26 planes



LHCb Detector in Run 3 7

Velo
Vertex Locator
With silicon pixels

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥
Magnet stations

Magnetic field 𝑩

Velo track
Reconstructible in the Velo
(≡ at least 3 pixels activated)

No momentum measurement

Long track
Reconstructible in the Velo and SciFi

Tracks

26 planes
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Graph Neural Network (GNN)-based track-finding pipeline based on the work of Exa.Trkx (Eur. Phys. 
J. C 81, 876 (2021))

• Demonstrated near-linear inference time w.r.t. # hits
• Conventional algorithms are worse-than-quadratic
• In future LHCb upgrades: increase in instaneous luminosity and detector granularity

→ need for even more high-throughput track-finding algorithms

• High-parallelisation potential → compatible with current GPU-based Allen trigger

• Conventional algorithms implemented in Allen ⇒ allow like-for-like comparison between GNN-
based algorithms and conventional algorithms (on the very same device!)

• Representation of tracks with a graph quite natural

Motivations

Pure graph representation

https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas
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In the Velo

• Around ~ 2200 hits / event

• Around 150 particles to reconstruct / event
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Goal Input: Velo Hits Output: Velo tracks



1. Graph Neural Network Track Finding 11

Goal Input: Velo Hits Output: Velo tracks

1 Build a “rough” graph 

2 Classify the edges as 
genuine or fake

Embedding Network
+ Nearest-Neighbour Network

Graph Neural Network

3
Keep only the genuine edges
Identify connected hits as 
tracks

Weakly connected component algorithm

S
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Graph Building GNN: filter edges Build tracks from graph
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• Goal: maximising edge efficiency while minimise # edges 
 

• Edges
• 99% of genuine edges are 1-plane apart, 1% are 2-plane apart

⇒ allow for only 1 skipped plane (~1%)
• Only build edges from left to right

• For every hit in plane 𝑝, how to connect it to hits belonging to the 
next 2 planes 𝑝 + 1 and 𝑝 + 2?

𝑝 = 10 𝑝 = 11 𝑝 = 12

Graph Building GNN: filter edges Build tracks from graph
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1 plane = 4 sensor planes

P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’, PhD Thesis, 
Vrije U., Amsterdam, 2016. 

https://inspirehep.net/literature/1645999
https://inspirehep.net/literature/1645999


Graph Building GNN: filter edges Build tracks from graph

𝑝 = 10 𝑝 = 11 𝑝 = 12

Edges are not random
• Forward
• Away from 𝑧-axis ↔ more tilted

⇒ this features could be learnt by a Neural Network

Example of edges drawn in 
the rough graph

True edges

1. Graph Neural Network Track Finding 15



𝑟, 𝜙, 𝑧, plane
Dense Neural Network 

(DNN)
35K parameters

Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4

Embed every hit in an embedded space1

DNN trained so that in the embedding space
• If hit 𝐴 and hit 𝐵 are likely to be connected by an edge 𝒅 𝑨,𝑩 2 = 𝑒𝐴 − 𝑒𝐵

2<0.010
• Otherwise, 𝒅 𝑨, 𝑩 2 > 0.010

Parallelise over hits

Cylindrical coordinates
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Graph Building GNN: filter edges Build tracks from graph
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𝑟, 𝜙, 𝑧, plane
Dense Neural Network 

(DNN)
35K parameters

Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4

Embed every hit in an embedded space1

2 Loop over plane 𝑝 ∈ 0,… , 24
• Apply 𝒌𝐦𝐚𝐱-Nearest Neighbour (𝒌NN) algorithm between 

plane 𝑝 and planes 𝑝 + 1, 𝑝 + 2  ⇒ 𝑘max edges / hit

• Discard edges for which 𝑑2 > 𝒅𝐦𝐚𝐱
𝟐

DNN trained so that in the embedding space
• If hit 𝐴 and hit 𝐵 are likely to be connected by an edge 𝒅 𝑨,𝑩 2 = 𝑒𝐴 − 𝑒𝐵

2<0.010
• Otherwise, 𝒅 𝑨, 𝑩 2 > 0.010

Parallelise over hits

Parallelise over hits

⇒ You’ve got your rough graph

Cylindrical coordinates
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Parameters to optimise 

Graph Building GNN: filter edges Build tracks from graph
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• Overall training strategy in back-up
• After training, we choose maximal number of neighbours 𝒌𝐦𝐚𝐱 = 𝟓𝟎 (not optimised)

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 18



• Overall training strategy in back-up
• After training, we choose maximal number of neighbours 𝒌𝐦𝐚𝐱 = 𝟓𝟎 (not optimised)

• To choose maximal squared distance 𝑑max
2 , for various values for 𝑑max

2 :
1.  Build the rough graph using 𝑑max

2

2.  Remove all fake edges in the rough graph and build the tracks from this purified graph
3.  Compute track-finding performance ⇒ correspond to the best performance given 𝒅𝐦𝐚𝐱

𝟐

Performance if all the fake edges are discarded(≡ best performance) 

Graph Building GNN: filter edges Build tracks from graph

⇒ We will try 𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟏𝟎 and 𝑑max

2 = 0.020 (evaluated on 200 events)

1. Graph Neural Network Track Finding 19



Graph Building GNN: filter edges Build tracks from graph

Output of Embedding + kNN

GNN edge classifier
⇒ score 𝑠 ∈ 0, 1  for every edge 

Edge score cut
𝑠 > 𝑠edge,min

0.9
0.2

1. Graph Neural Network Track Finding 20

Change: Incoming and outgoing neighbours are aggregated separately, which increased
overall GNN performance



Graph Building GNN: filter edges Build tracks from graph

Tracks obtained by identifying connected hits

1. Graph Neural Network Track Finding 21



Graph Building GNN: filter edges Build tracks from graph

Tracks obtained by identifying connected hits

But if you do this… track efficiency on long electrons is terrible!

Metric Allen etx4velo

Efficiency 98.17% 46.23%

Clone rate 3.07% 0.47%

Hit efficiency 95.35% 98.89%

Hit purity 99,67% 93.89%

🤮
(evaluated on 1000 events)

1. Graph Neural Network Track Finding 22



The Case of Electrons

• ∼ 55 % electrons share hits with another electron
• The 2 electrons share ≥ 1 hit(s) before splitting up

Observations

⇒ the connected component algorithm consider the 2 electron tracks as a single track

Example 1: share the first hit only Example 2: share several hits before splitting up

2. Issue of Shared Hits 23
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Other Tracks With Shared Hits

• Tracks crossing (> 524 in 1000 events) • Track starts on a shared hit

• Track ends on a shared hit 
• The last hit of a track is the first hit of 

another track
(>141 in 1000 events)
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Hit-hit connection is not enough
⇒ need edge-edge connections

In this case, one cannot even guess that there are 
possibly 2 tracks!

Edge-Edge Connections
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Edge-Edge Connections

3 kind of edge-edge connections (or triplets) are possible

Articulation

Left elbow

Right elbow

Could be a shared hit
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Goal

Shared
hits
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Goal

From the purified graph of hit-hit connections

1
Build edge-edge connections
(or triplets) 
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1

2

Goal

Classify the triplets with the GNN
Filter out the fake triplets

Build edge-edge connections
(or triplets) 

From the purified graph of hit-hit connections
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2

3 Algorithm to build tracks from 
triplets

Goal

Classify the triplets with the GNN
Filter out the fake triplets

1
Build edge-edge connections
(or triplets) 

From the purified graph of hit-hit connections



Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks
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Build rough graph Filter out fake edges Filter out fake triplets



Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Don’t repeat the overall GNN inference: start from the previous GNN

• Compute triplet score from node and edge encodings of the GNN

• Train GNN with overall loss 𝓛 = 𝓛𝐞𝐝𝐠𝐞𝐬 + 𝓛𝐭𝐫𝐢𝐩𝐥𝐞𝐭𝐬

2. Issue of Shared Hits 32



Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Goal

1
Connect left and right elbows
and remove duplicate edge-edge 
connections

Apply connected components, 
excluding splitting edge-edge 
connections

2

Each remaining link 
correspond to a new track

3

2. Issue of Shared Hits 33



Before building the tracks from the graph of triplets…
• Choose 𝑠edge,min = 0.4 to optimise performance (could be increased to optimise throughput)

Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

3. Track-Finding Performance 34



Performance as a function of the triplet score cut 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Before building the tracks from the graph of triplets
• Choose 𝑠edge,min = 0.4 to optimise performance (could be increased to optimise throughput)

• Choose 𝑠triplet,min by evaluating track-finding performance as a function of 𝑠triplet,min

• High efficiency
• Ghost rate < 1%

(evaluated on 200 events)

⇒ choose 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧 = 𝟎. 𝟑𝟐

Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks
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Long categories

Category Metric

Long, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Not an electron

Efficiency

Clone rate

Hit efficiency

Hit Purity

Long electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Electron

Efficiency

Clone rate

Hit efficiency

Hit purity

Long, from strange
✓ In acceptance
✓ Reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced 
tracks

Efficiency

Clone rate

Hit efficiency

Hit purity

X Ghost rate

• Evaluation with 5,000 events

• Track matched to a 
particle if at least 70% of its 
hits belong to this particle
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Long categories

Category Metric Allen

Long, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Not an electron

Efficiency 99.26%

Clone rate 2.54%

Hit efficiency 96.46%

Hit Purity 99.78%

Long electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Electron

Efficiency 97.11%

Clone rate 4,25%

Hit efficiency 95.24%

Hit purity 97.11%

Long, from strange
✓ In acceptance
✓ Reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced 
tracks

Efficiency 97.69%

Clone rate 2.50%

Hit efficiency 97.69%

Hit purity 99.34%

X Ghost rate 2.18%

• Evaluation with 5,000 events

• Track matched to a 
particle if at least 70% of its 
hits belong to this particle

• Allen algorithm described in 
arXiv:2207.03936v2

Worse Better

https://arxiv.org/abs/2207.03936v2
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Long categories

Category Metric Allen Etx4velo 
𝑑max
2 = 0.010

Long, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Not an electron

Efficiency 99.26% 99.28%

Clone rate 2.54% 0.96%

Hit efficiency 96.46% 98.73%

Hit Purity 99.78% 99.94%

Long electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Electron

Efficiency 97.11% 98.80%

Clone rate 4,25% 7.42%

Hit efficiency 95.24% 96.54%

Hit purity 97.11% 98.46%

Long, from strange
✓ In acceptance
✓ Reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced 
tracks

Efficiency 97.69% 97.50%

Clone rate 2.50% 0.92%

Hit efficiency 97.69% 98.22%

Hit purity 99.34% 99.68%

X Ghost rate 2.18% 0.76%

𝑠triplet > 0.32

• Evaluation with 5,000 events

• Track matched to a 
particle if at least 70% of its 
hits belong to this particle

• Allen algorithm described in 
arXiv:2207.03936v2

Worse Better

https://arxiv.org/abs/2207.03936v2
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Long categories

Category Metric Allen Etx4velo 
𝑑max
2 = 0.010

Etx4velo
𝑑max
2 = 0.020

Long, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Not an electron

Efficiency 99.26% 99.28% 99.51%

Clone rate 2.54% 0.96% 0.89%

Hit efficiency 96.46% 98.73% 98.90%

Hit Purity 99.78% 99.94% 99.94%

Long electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Electron

Efficiency 97.11% 98.80% 99.22%

Clone rate 4,25% 7.42% 7.31%

Hit efficiency 95.24% 96.54% 96.79%

Hit purity 97.11% 98.46% 98.46%

Long, from strange
✓ In acceptance
✓ Reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced 
tracks

Efficiency 97.69% 97.50% 98.06%

Clone rate 2.50% 0.92% 0.81%

Hit efficiency 97.69% 98.22% 98.77%

Hit purity 99.34% 99.68% 99.68%

X Ghost rate 2.18% 0.76% 0.81%

𝑠triplet > 0.32 𝑠triplet > 0.36

• Evaluation with 5,000 events

• Track matched to a 
particle if at least 70% of its 
hits belong to this particle

• Allen algorithm described in 
arXiv:2207.03936v2

• 2 different GNN trainings for 
𝑑max
2 = 0.010 and 𝑑max

2 = 0.020

Worse Better

https://arxiv.org/abs/2207.03936v2
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Category Metric Allen Etx4velo 
𝑑max
2 = 0.010

Etx4velo
𝑑max
2 = 0.020

Velo-only, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Not reconstructible in the SciFi
✓ Not an electron

Efficiency 96.84% 97.03% 97.86%

Clone rate 3.84% 1.08% 1.02%

Hit efficiency 93.89% 97.93% 98.32%

Hit Purity 99.50% 99.84% 99.82%

Velo-only electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Not reconstructible in the SciFi
✓ Electron

Efficiency 67.81% 85.10% 86.69%

Clone rate 10.27% 5.02% 4.97%

Hit efficiency 79.21% 93.33% 93.88%

Hit purity 97.35% 99.07% 98.99%

Velo-only, from strange
✓ In acceptance
✓ Not reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced tracks

Efficiency 93.53% 93.07% 96.05%

Clone rate 5.60% 1.97% 1.77%

Hit efficiency 90.05% 93.92% 96.05%

Hit purity 99.36% 99.67% 99.64%

𝑠triplet > 0.32 𝑠triplet > 0.36

Velo-only categories

Worse Better
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Track-Finding Physics Performance of GNN-based pipeline
• Comparable or superior performance to Allen’s velo track-finding algorithm
• Excellent electron reconstruction
• Low ghost rate

Ongoing Work
• Implementation in Allen to

• properly optimise the throughput of the GNN-based pipeline
• Compare the optimal throughput to conventional algorithm

• Extension to other LHCb tracking detectors, starting from the SciFi



Thank You For Your Attention!
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Backup Slides
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Velo geometry 44

1 plane = 4 sensor planes

P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’, 
PhD Thesis, Vrije U., Amsterdam, 2016. 

=

1 plane 4 sensor planes

𝑥

𝑧

Velo

https://inspirehep.net/literature/1645999
https://inspirehep.net/literature/1645999


451. Graph Neural Network Track Finding

Use 700,000 events for training, with the following selection
• Particles are straight enough
• Particles leave ≥ 3 hits in the Velo
• Event has ≥ 500 genuine hits



1

For a random given set of hits, build a dataset of genuine edges and fake edges.
Compute the distances between their hits in the embedding space:

𝑑genuine,𝑖
2 , ∀𝑖  and 𝑑fake,𝑗

2 , ∀𝑗

2

Embed all the hits using the network DNN Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4𝑟, 𝜙, 𝑧, plane

3 Minimise hinge loss ℒtotal = 3ℒgenuine + ℒfake where

ℒgenuine =
1

𝑛genuine
෍

𝑖

𝑑genuine,𝑖
2 ℒfake =

1

𝑛fake
෍

𝑗

max 0.01 − 𝑑fake,𝑗
2 , 0

Minimise 𝑑genuine,𝑖 Maximise 𝑑fake,𝑗

hyperparameter 

hyperparameter 

T
r
a
in

in
g

 
s
te

p

• Hard Negative Mining: edges built by a kNN (→ “hard” negatives)
• True edges
• Random edges

Training 
dataset

Graph Building GNN: filter edges Build tracks from graph

1. GNN-based Track Finding Approach 46



Graph Building GNN: filter edges Build tracks from graph
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Training set of 700,000 events divided 
into sub-epochs of 7,000 events



Rough graph with 𝑘max = 50 and 𝑑max
2 = 0.010

Graph Building GNN: filter edges Build tracks from graph

Even though 𝟏% of genuine edges are 2-plane apart, 
the rough graph needs to contain almost 𝟓𝟎% of such 
edges

⇒ 𝒌𝐦𝐚𝐱 could probably be reduced to increase throughput

1. GNN-based Track Finding Approach 48



1 Encode every hit and edge 
in a high-dimensional space

Node EncoderԦ𝑟 = 𝑟, 𝜙, 𝑧 𝑛 ∈ ℝ256

Edge Encoder𝑟in, 𝜙in, 𝑧in, 𝑟out, 𝜙out, 𝑧out Ԧ𝑒 ∈ ℝ256

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 49



1 Encode every hit and edge 
in a high-dimensional space

Node EncoderԦ𝑟 = 𝑟, 𝜙, 𝑧 𝑛 ∈ ℝ256

Edge Encoder𝑟in, 𝜙in, 𝑧in, 𝑟out, 𝜙out, 𝑧out Ԧ𝑒 ∈ ℝ256

2 Message passing: repeat 6 times
hyperparameter 

a
Build “message” by aggregating 
neighbour hit encodings 𝐻

Message = [ max( 𝒏𝐢𝐧𝐩𝐮𝐭 ), sum( 𝒏𝐢𝐧𝐩𝐮𝐭 ), max( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 ), sum( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 )] 

b Update edge and node encodings

⊕Node Network 𝑛updated[𝑛, message] ⊕Edge Network 𝑒updated[e, 𝑛updated
𝑖𝑛 , 𝑛 updated

out ]

Graph Building GNN: filter edges Build tracks from graph
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1 Encode every hit and edge 
in a high-dimensional space

Node EncoderԦ𝑟 = 𝑟, 𝜙, 𝑧 𝑛 ∈ ℝ256

Edge Encoder𝑟in, 𝜙in, 𝑧in, 𝑟out, 𝜙out, 𝑧out Ԧ𝑒 ∈ ℝ256

2 Message passing: repeat 6 times
hyperparameter 

a
Build “message” by aggregating 
neighbour hit encodings 𝐻

Message = [ max( 𝒏𝐢𝐧𝐩𝐮𝐭 ), sum( 𝒏𝐢𝐧𝐩𝐮𝐭 ), max( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 ), sum( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 )] 

b Update edge and node encodings

⊕Node Network 𝑛updated[𝑛, message] ⊕Edge Network 𝑒updated[e, 𝑛updated
𝑖𝑛 , 𝑛 updated

out ]

Graph Building GNN: filter edges Build tracks from graph

3 Compute edge scores Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score 𝑠 ∈ 0, 1

Trained with a sigmoid focal loss
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1 Encode every hit and edge 
in a high-dimensional space

Node EncoderԦ𝑟 = 𝑟, 𝜙, 𝑧 𝑛 ∈ ℝ256

Edge Encoder𝑟in, 𝜙in, 𝑧in, 𝑟out, 𝜙out, 𝑧out Ԧ𝑒 ∈ ℝ256

2 Message passing: repeat 6 times
hyperparameter 

a
Build “message” by aggregating 
neighbour hit encodings 𝐻

Message = [ max( 𝒏𝐢𝐧𝐩𝐮𝐭 ), sum( 𝒏𝐢𝐧𝐩𝐮𝐭 ), max( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 ), sum( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 )] 

b Update edge and node encodings

⊕Node Network 𝑛updated[𝑛, message] ⊕Edge Network 𝑒updated[e, 𝑛updated
𝑖𝑛 , 𝑛 updated

out ]

Change w.r.t. Exa.Trkx

Incoming and outgoing
neighbours are 

aggregated separately

3 Compute edge scores Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score 𝑠 ∈ 0, 1

Trained with a sigmoid focal loss

Graph Building GNN: filter edges Build tracks from graph
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2. Issue of Shared Hits 53

Hit-hit connection is not enough
⇒ need edge-edge connections

• Solve the ambiguity of shared hits under the following hypothesis:
“All hits that precede a splitting point can be attributed to all the newly identified tracks”

• ⇒ Assume that this does not happen



Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Don’t repeat the 6-step message passing: start from the previous GNN

3 Compute edge scores

Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score sedge ∈ 0, 1

Filter out the fake edges by requiring 𝒔𝐞𝐝𝐠𝐞 > 𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧  to reduce # edge-edge connections 

5 Build triplets

4
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Embedding 
Network

kNN
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𝟐

GNN on 
edges
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edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧
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triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Don’t repeat the 6-step message passing: start from the previous GNN

3 Compute edge scores

Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score sedge ∈ 0, 1

Filter out the fake edges by requiring 𝒔𝐞𝐝𝐠𝐞 > 𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧  to reduce # edge-edge connections 

5 Build triplets

4

6 Directly compute triplet scores from the edge and node encodings of the triplet

Triplet 
Classifier

[𝑛shared, 𝑛first, 𝑛last, Ԧ𝑒in, Ԧ𝑒out] Triplet score 𝑠triplet ∈ 0, 1

Filter out the fake triplets by requiring 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭 > 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧  
GNN trained with the 
overall loss

ℒtot = ℒedge + ℒtriplet
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Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks
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Overall GNN loss = GNN loss on edges + GNN loss on triplets

GNN loss on edges GNN loss on triplets

Training set of 700,000 events divided into sub-epochs of 7,000 events



Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Goal

1
Connect left and right elbows
and remove duplicate edge-edge 
connections

Apply connected components, 
excluding splitting edge-edge 
connections

2

New Hypothesis: a track may split into 
2 tracks only one time
→ Allow to keep locality
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3. Track-Finding Performance 58

Efficiency = 
#matched particles

# particles

Clone rate = 
# candidates − #matched particles

# candidates
=

# clones

# candidates

Hit Efficiency = 
#matched hits on track

# hits on particle candidates

Hit Purity = 
#matched hits on track

# hits on track candidates

(track, particle) couple
for which 70% of the hits of track belong to the particle

Quality of 
individual tracks

Quality of overall
track-finding

Ghost rate = 
# unmatched tracks

# tracks

Proportion of matched particles

Proportion of redundant candidates

Proportion of unmatched tracks

Average proportion of matched hits on particle

Average proportion of matched hits on track

Matching candidate
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Velo,
no electrons

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟏𝟎

Lower efficiency at
• Larger 𝑣𝑧 
• Smaller # unique planes

Vertex origin position along the 𝑧-axisPseudo-rapidityTransverse momentum
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Vertex origin position along the 𝑧-axisPseudo-rapidityTransverse momentum

Velo,
no electrons

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟐𝟎

Better efficiencies everywhere
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Vertex origin position along the 𝑧-axisPseudo-rapidityTransverse momentum

Lower efficiency at
• smaller 𝜂
• Smaller # unique planes

Long,
from strange

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟏𝟎
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Long,
from strange

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟐𝟎

Vertex origin position along the 𝑧-axisPseudo-rapidityTransverse momentum

Better efficiencies everywhere
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