
GNN-based pipeline for track 
finding in the Velo at LHCb

Anthony Correia, Fotis Giasemis, Nabil Garroum, Vava Gligorov

On behalf of the LHCb real-time analysis project 

10th October 2023

1

In collaboration with



LHCb Detector in Run 3 2

J. Phys.: Conf. Ser., vol. 878, p. 012012, 2017

Collisions (Run 3)

Collisions and Trigger

• 20 MHz non-empty bunch crossing rate
• ~ 5 collisions / bunch crossing
• 𝑝-𝑝 collision at 𝑠 = 13.6 TeV

10.1088/1742-6596/878/1/012012


LHCb Detector in Run 3 3

J. Phys.: Conf. Ser., vol. 878, p. 012012, 2017

Collisions (Run 3)

LHCb Subdetectors
Acceptance
2 < 𝜂 < 5

Collisions and Trigger

• 20 MHz non-empty bunch crossing rate
• ~ 5 collisions / bunch crossing
• 𝑝-𝑝 collision at 𝑠 = 13.6 TeV

10.1088/1742-6596/878/1/012012


LHCb Detector in Run 3 4

J. Phys.: Conf. Ser., vol. 878, p. 012012, 2017Allen (High-Level Trigger 1)
fully GPU-based online partial 
reconstruction and selection

• 20 MHz non-empty bunch crossing rate
• ~ 5 collisions / bunch crossing
• 𝑝-𝑝 collision at 𝑠 = 13.6 TeV

Collisions (Run 3)

LHCb Subdetectors
Acceptance
2 < 𝜂 < 5

5 TB/s

High-Level Trigger 2
CPU-based full reconstruction and 

selection

70-200 GB/s

Storage buffer 10 GB/s

Better trigger efficiency than previous L0 FPGA-based 
trigger

Numbers taken from LHCB-FIGURE-2020-016

Collisions and Trigger

10.1088/1742-6596/878/1/012012
https://cds.cern.ch/record/2730181


LHCb Detector in Run 3 5

Velo
Vertex Locator
With silicon pixels
No magnetic field

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥

Magnet 
stations

3 Tracking detectors

J. Phys.: Conf. Ser., vol. 878, p. 012012, 2017

10.1088/1742-6596/878/1/012012


LHCb Detector in Run 3 6

Velo
Vertex Locator
With silicon pixels

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥
Magnet stations

Magnetic field 𝑩

Tracks

26 planes



LHCb Detector in Run 3 7

Velo
Vertex Locator
With silicon pixels

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥
Magnet stations

Magnetic field 𝑩

Velo track
Reconstructible in the Velo
(≡ at least 3 pixels activated)

No momentum measurement

Long track
Reconstructible in the Velo and SciFi

Tracks

26 planes



1. Graph Neural Network Track Finding 8

Graph Neural Network (GNN)-based track-finding pipeline based on the work of Exa.Trkx (Eur. Phys. 
J. C 81, 876 (2021))

• Demonstrated near-linear inference time w.r.t. # hits
• Conventional algorithms are worse-than-quadratic
• In future LHCb upgrades: increase in instaneous luminosity and detector granularity

→ need for even more high-throughput track-finding algorithms

• High-parallelisation potential → compatible with current GPU-based Allen trigger

• Conventional algorithms implemented in Allen ⇒ allow like-for-like comparison between GNN-
based algorithms and conventional algorithms (on the very same device!)

• Representation of tracks with a graph quite natural

Motivations

Pure graph representation

https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas


1. Graph Neural Network Track Finding 9

In the Velo

• Around ~ 2200 hits / event

• Around 150 particles to reconstruct / event



1. Graph Neural Network Track Finding 10

Goal Input: Velo Hits Output: Velo tracks



1. Graph Neural Network Track Finding 11

Goal Input: Velo Hits Output: Velo tracks

1 Build a “rough” graph 

2 Classify the edges as 
genuine or fake

Embedding Network
+ Nearest-Neighbour Network

Graph Neural Network

3
Keep only the genuine edges
Identify connected hits as 
tracks

Weakly connected component algorithm

S
tr

a
te

g
y



Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 12



• Goal: maximising edge efficiency while minimise # edges 
 

• Edges
• 99% of genuine edges are 1-plane apart, 1% are 2-plane apart

⇒ allow for only 1 skipped plane (~1%)
• Only build edges from left to right

• For every hit in plane 𝑝, how to connect it to hits belonging to the 
next 2 planes 𝑝 + 1 and 𝑝 + 2?

𝑝 = 10 𝑝 = 11 𝑝 = 12

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 13



• Goal: maximising edge efficiency while minimise # edges 
 

• Edges
• 99% of genuine edges are 1-plane apart, 1% are 2-plane apart

⇒ allow for only 1 skipped plane (~1%)
• Only build edges from left to right

𝑝 = 10 𝑝 = 11 𝑝 = 12

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 14

1 plane = 4 sensor planes

P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’, PhD Thesis, 
Vrije U., Amsterdam, 2016. 

https://inspirehep.net/literature/1645999
https://inspirehep.net/literature/1645999


Graph Building GNN: filter edges Build tracks from graph

𝑝 = 10 𝑝 = 11 𝑝 = 12

Edges are not random
• Forward
• Away from 𝑧-axis ↔ more tilted

⇒ this features could be learnt by a Neural Network

Example of edges drawn in 
the rough graph

True edges

1. Graph Neural Network Track Finding 15



𝑟, 𝜙, 𝑧, plane
Dense Neural Network 

(DNN)
35K parameters

Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4

Embed every hit in an embedded space1

DNN trained so that in the embedding space
• If hit 𝐴 and hit 𝐵 are likely to be connected by an edge 𝒅 𝑨,𝑩 2 = 𝑒𝐴 − 𝑒𝐵

2<0.010
• Otherwise, 𝒅 𝑨, 𝑩 2 > 0.010

Parallelise over hits

Cylindrical coordinates

3
2

1

3
2

2 3
1

1
1

32

1

2

3

2

3

1

1

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 16



𝑟, 𝜙, 𝑧, plane
Dense Neural Network 

(DNN)
35K parameters

Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4

Embed every hit in an embedded space1

2 Loop over plane 𝑝 ∈ 0,… , 24
• Apply 𝒌𝐦𝐚𝐱-Nearest Neighbour (𝒌NN) algorithm between 

plane 𝑝 and planes 𝑝 + 1, 𝑝 + 2  ⇒ 𝑘max edges / hit

• Discard edges for which 𝑑2 > 𝒅𝐦𝐚𝐱
𝟐

DNN trained so that in the embedding space
• If hit 𝐴 and hit 𝐵 are likely to be connected by an edge 𝒅 𝑨,𝑩 2 = 𝑒𝐴 − 𝑒𝐵

2<0.010
• Otherwise, 𝒅 𝑨, 𝑩 2 > 0.010

Parallelise over hits

Parallelise over hits

⇒ You’ve got your rough graph

Cylindrical coordinates

3
2

1

3
2

2 3
1

1
1 2

3
2

1

3
2

2 3
1

1

32

1

2

3

2

3

1

1

32

1

2

3

2

3

1

1

Parameters to optimise 

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 17



• Overall training strategy in back-up
• After training, we choose maximal number of neighbours 𝒌𝐦𝐚𝐱 = 𝟓𝟎 (not optimised)

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 18



• Overall training strategy in back-up
• After training, we choose maximal number of neighbours 𝒌𝐦𝐚𝐱 = 𝟓𝟎 (not optimised)

• To choose maximal squared distance 𝑑max
2 , for various values for 𝑑max

2 :
1.  Build the rough graph using 𝑑max

2

2.  Remove all fake edges in the rough graph and build the tracks from this purified graph
3.  Compute track-finding performance ⇒ correspond to the best performance given 𝒅𝐦𝐚𝐱

𝟐

Performance if all the fake edges are discarded(≡ best performance) 

Graph Building GNN: filter edges Build tracks from graph

⇒ We will try 𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟏𝟎 and 𝑑max

2 = 0.020 (evaluated on 200 events)

1. Graph Neural Network Track Finding 19



Graph Building GNN: filter edges Build tracks from graph

Output of Embedding + kNN

GNN edge classifier
⇒ score 𝑠 ∈ 0, 1  for every edge 

Edge score cut
𝑠 > 𝑠edge,min

0.9
0.2

1. Graph Neural Network Track Finding 20

Change: Incoming and outgoing neighbours are aggregated separately, which increased
overall GNN performance



Graph Building GNN: filter edges Build tracks from graph

Tracks obtained by identifying connected hits

1. Graph Neural Network Track Finding 21



Graph Building GNN: filter edges Build tracks from graph

Tracks obtained by identifying connected hits

But if you do this… track efficiency on long electrons is terrible!

Metric Allen etx4velo

Efficiency 98.17% 46.23%

Clone rate 3.07% 0.47%

Hit efficiency 95.35% 98.89%

Hit purity 99,67% 93.89%

🤮
(evaluated on 1000 events)

1. Graph Neural Network Track Finding 22



The Case of Electrons

• ∼ 55 % electrons share hits with another electron
• The 2 electrons share ≥ 1 hit(s) before splitting up

Observations

⇒ the connected component algorithm consider the 2 electron tracks as a single track

Example 1: share the first hit only Example 2: share several hits before splitting up

2. Issue of Shared Hits 23



2. Issue of Shared Hits 24

Other Tracks With Shared Hits

• Tracks crossing (> 524 in 1000 events) • Track starts on a shared hit

• Track ends on a shared hit 
• The last hit of a track is the first hit of 

another track
(>141 in 1000 events)



2. Issue of Shared Hits 25

Hit-hit connection is not enough
⇒ need edge-edge connections

In this case, one cannot even guess that there are 
possibly 2 tracks!

Edge-Edge Connections



2. Issue of Shared Hits 26

Edge-Edge Connections

3 kind of edge-edge connections (or triplets) are possible

Articulation

Left elbow

Right elbow

Could be a shared hit



2. Issue of Shared Hits 27

Goal

Shared
hits



2. Issue of Shared Hits 28

Goal

From the purified graph of hit-hit connections

1
Build edge-edge connections
(or triplets) 



2. Issue of Shared Hits 29

1

2

Goal

Classify the triplets with the GNN
Filter out the fake triplets

Build edge-edge connections
(or triplets) 

From the purified graph of hit-hit connections



2. Issue of Shared Hits 30

2

3 Algorithm to build tracks from 
triplets

Goal

Classify the triplets with the GNN
Filter out the fake triplets

1
Build edge-edge connections
(or triplets) 

From the purified graph of hit-hit connections



Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

2. Issue of Shared Hits 31

Build rough graph Filter out fake edges Filter out fake triplets



Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Don’t repeat the overall GNN inference: start from the previous GNN

• Compute triplet score from node and edge encodings of the GNN

• Train GNN with overall loss 𝓛 = 𝓛𝐞𝐝𝐠𝐞𝐬 + 𝓛𝐭𝐫𝐢𝐩𝐥𝐞𝐭𝐬

2. Issue of Shared Hits 32



Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Goal

1
Connect left and right elbows
and remove duplicate edge-edge 
connections

Apply connected components, 
excluding splitting edge-edge 
connections

2

Each remaining link 
correspond to a new track

3

2. Issue of Shared Hits 33



Before building the tracks from the graph of triplets…
• Choose 𝑠edge,min = 0.4 to optimise performance (could be increased to optimise throughput)

Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

3. Track-Finding Performance 34



Performance as a function of the triplet score cut 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Before building the tracks from the graph of triplets
• Choose 𝑠edge,min = 0.4 to optimise performance (could be increased to optimise throughput)

• Choose 𝑠triplet,min by evaluating track-finding performance as a function of 𝑠triplet,min

• High efficiency
• Ghost rate < 1%

(evaluated on 200 events)

⇒ choose 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧 = 𝟎. 𝟑𝟐

Embedding 
Network

kNNs

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

3. Track-Finding Performance 35



3. Track-Finding Performance 36

Long categories

Category Metric

Long, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Not an electron

Efficiency

Clone rate

Hit efficiency

Hit Purity

Long electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Electron

Efficiency

Clone rate

Hit efficiency

Hit purity

Long, from strange
✓ In acceptance
✓ Reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced 
tracks

Efficiency

Clone rate

Hit efficiency

Hit purity

X Ghost rate

• Evaluation with 5,000 events

• Track matched to a 
particle if at least 70% of its 
hits belong to this particle



3. Track-Finding Performance 37

Long categories

Category Metric Allen

Long, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Not an electron

Efficiency 99.26%

Clone rate 2.54%

Hit efficiency 96.46%

Hit Purity 99.78%

Long electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Electron

Efficiency 97.11%

Clone rate 4,25%

Hit efficiency 95.24%

Hit purity 97.11%

Long, from strange
✓ In acceptance
✓ Reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced 
tracks

Efficiency 97.69%

Clone rate 2.50%

Hit efficiency 97.69%

Hit purity 99.34%

X Ghost rate 2.18%

• Evaluation with 5,000 events

• Track matched to a 
particle if at least 70% of its 
hits belong to this particle

• Allen algorithm described in 
arXiv:2207.03936v2

Worse Better

https://arxiv.org/abs/2207.03936v2


3. Track-Finding Performance 38

Long categories

Category Metric Allen Etx4velo 
𝑑max
2 = 0.010

Long, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Not an electron

Efficiency 99.26% 99.28%

Clone rate 2.54% 0.96%

Hit efficiency 96.46% 98.73%

Hit Purity 99.78% 99.94%

Long electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Electron

Efficiency 97.11% 98.80%

Clone rate 4,25% 7.42%

Hit efficiency 95.24% 96.54%

Hit purity 97.11% 98.46%

Long, from strange
✓ In acceptance
✓ Reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced 
tracks

Efficiency 97.69% 97.50%

Clone rate 2.50% 0.92%

Hit efficiency 97.69% 98.22%

Hit purity 99.34% 99.68%

X Ghost rate 2.18% 0.76%

𝑠triplet > 0.32

• Evaluation with 5,000 events

• Track matched to a 
particle if at least 70% of its 
hits belong to this particle

• Allen algorithm described in 
arXiv:2207.03936v2

Worse Better

https://arxiv.org/abs/2207.03936v2


3. Track-Finding Performance 39

Long categories

Category Metric Allen Etx4velo 
𝑑max
2 = 0.010

Etx4velo
𝑑max
2 = 0.020

Long, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Not an electron

Efficiency 99.26% 99.28% 99.51%

Clone rate 2.54% 0.96% 0.89%

Hit efficiency 96.46% 98.73% 98.90%

Hit Purity 99.78% 99.94% 99.94%

Long electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Electron

Efficiency 97.11% 98.80% 99.22%

Clone rate 4,25% 7.42% 7.31%

Hit efficiency 95.24% 96.54% 96.79%

Hit purity 97.11% 98.46% 98.46%

Long, from strange
✓ In acceptance
✓ Reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced 
tracks

Efficiency 97.69% 97.50% 98.06%

Clone rate 2.50% 0.92% 0.81%

Hit efficiency 97.69% 98.22% 98.77%

Hit purity 99.34% 99.68% 99.68%

X Ghost rate 2.18% 0.76% 0.81%

𝑠triplet > 0.32 𝑠triplet > 0.36

• Evaluation with 5,000 events

• Track matched to a 
particle if at least 70% of its 
hits belong to this particle

• Allen algorithm described in 
arXiv:2207.03936v2

• 2 different GNN trainings for 
𝑑max
2 = 0.010 and 𝑑max

2 = 0.020

Worse Better

https://arxiv.org/abs/2207.03936v2


3. Track-Finding Performance 40

Category Metric Allen Etx4velo 
𝑑max
2 = 0.010

Etx4velo
𝑑max
2 = 0.020

Velo-only, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Not reconstructible in the SciFi
✓ Not an electron

Efficiency 96.84% 97.03% 97.86%

Clone rate 3.84% 1.08% 1.02%

Hit efficiency 93.89% 97.93% 98.32%

Hit Purity 99.50% 99.84% 99.82%

Velo-only electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Not reconstructible in the SciFi
✓ Electron

Efficiency 67.81% 85.10% 86.69%

Clone rate 10.27% 5.02% 4.97%

Hit efficiency 79.21% 93.33% 93.88%

Hit purity 97.35% 99.07% 98.99%

Velo-only, from strange
✓ In acceptance
✓ Not reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced tracks

Efficiency 93.53% 93.07% 96.05%

Clone rate 5.60% 1.97% 1.77%

Hit efficiency 90.05% 93.92% 96.05%

Hit purity 99.36% 99.67% 99.64%

𝑠triplet > 0.32 𝑠triplet > 0.36

Velo-only categories

Worse Better



Conclusion 41

Track-Finding Physics Performance of GNN-based pipeline
• Comparable or superior performance to Allen’s velo track-finding algorithm
• Excellent electron reconstruction
• Low ghost rate

Ongoing Work
• Implementation in Allen to

• properly optimise the throughput of the GNN-based pipeline
• Compare the optimal throughput to conventional algorithm

• Extension to other LHCb tracking detectors, starting from the SciFi



Thank You For Your Attention!

42



Backup Slides

43



Velo geometry 44

1 plane = 4 sensor planes

P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’, 
PhD Thesis, Vrije U., Amsterdam, 2016. 

=

1 plane 4 sensor planes

𝑥

𝑧

Velo

https://inspirehep.net/literature/1645999
https://inspirehep.net/literature/1645999


451. Graph Neural Network Track Finding

Use 700,000 events for training, with the following selection
• Particles are straight enough
• Particles leave ≥ 3 hits in the Velo
• Event has ≥ 500 genuine hits



1

For a random given set of hits, build a dataset of genuine edges and fake edges.
Compute the distances between their hits in the embedding space:

𝑑genuine,𝑖
2 , ∀𝑖  and 𝑑fake,𝑗

2 , ∀𝑗

2

Embed all the hits using the network DNN Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4𝑟, 𝜙, 𝑧, plane

3 Minimise hinge loss ℒtotal = 3ℒgenuine + ℒfake where

ℒgenuine =
1

𝑛genuine
෍

𝑖

𝑑genuine,𝑖
2 ℒfake =

1

𝑛fake
෍

𝑗

max 0.01 − 𝑑fake,𝑗
2 , 0

Minimise 𝑑genuine,𝑖 Maximise 𝑑fake,𝑗

hyperparameter 

hyperparameter 

T
r
a
in

in
g

 
s
te

p

• Hard Negative Mining: edges built by a kNN (→ “hard” negatives)
• True edges
• Random edges

Training 
dataset

Graph Building GNN: filter edges Build tracks from graph

1. GNN-based Track Finding Approach 46



Graph Building GNN: filter edges Build tracks from graph

1. GNN-based Track Finding Approach 47

Training set of 700,000 events divided 
into sub-epochs of 7,000 events



Rough graph with 𝑘max = 50 and 𝑑max
2 = 0.010

Graph Building GNN: filter edges Build tracks from graph

Even though 𝟏% of genuine edges are 2-plane apart, 
the rough graph needs to contain almost 𝟓𝟎% of such 
edges

⇒ 𝒌𝐦𝐚𝐱 could probably be reduced to increase throughput

1. GNN-based Track Finding Approach 48



1 Encode every hit and edge 
in a high-dimensional space

Node EncoderԦ𝑟 = 𝑟, 𝜙, 𝑧 𝑛 ∈ ℝ256

Edge Encoder𝑟in, 𝜙in, 𝑧in, 𝑟out, 𝜙out, 𝑧out Ԧ𝑒 ∈ ℝ256

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 49



1 Encode every hit and edge 
in a high-dimensional space

Node EncoderԦ𝑟 = 𝑟, 𝜙, 𝑧 𝑛 ∈ ℝ256

Edge Encoder𝑟in, 𝜙in, 𝑧in, 𝑟out, 𝜙out, 𝑧out Ԧ𝑒 ∈ ℝ256

2 Message passing: repeat 6 times
hyperparameter 

a
Build “message” by aggregating 
neighbour hit encodings 𝐻

Message = [ max( 𝒏𝐢𝐧𝐩𝐮𝐭 ), sum( 𝒏𝐢𝐧𝐩𝐮𝐭 ), max( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 ), sum( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 )] 

b Update edge and node encodings

⊕Node Network 𝑛updated[𝑛, message] ⊕Edge Network 𝑒updated[e, 𝑛updated
𝑖𝑛 , 𝑛 updated

out ]

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 50



1 Encode every hit and edge 
in a high-dimensional space

Node EncoderԦ𝑟 = 𝑟, 𝜙, 𝑧 𝑛 ∈ ℝ256

Edge Encoder𝑟in, 𝜙in, 𝑧in, 𝑟out, 𝜙out, 𝑧out Ԧ𝑒 ∈ ℝ256

2 Message passing: repeat 6 times
hyperparameter 

a
Build “message” by aggregating 
neighbour hit encodings 𝐻

Message = [ max( 𝒏𝐢𝐧𝐩𝐮𝐭 ), sum( 𝒏𝐢𝐧𝐩𝐮𝐭 ), max( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 ), sum( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 )] 

b Update edge and node encodings

⊕Node Network 𝑛updated[𝑛, message] ⊕Edge Network 𝑒updated[e, 𝑛updated
𝑖𝑛 , 𝑛 updated

out ]

Graph Building GNN: filter edges Build tracks from graph

3 Compute edge scores Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score 𝑠 ∈ 0, 1

Trained with a sigmoid focal loss

1. Graph Neural Network Track Finding 51

https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid_focal_loss.html


1 Encode every hit and edge 
in a high-dimensional space

Node EncoderԦ𝑟 = 𝑟, 𝜙, 𝑧 𝑛 ∈ ℝ256

Edge Encoder𝑟in, 𝜙in, 𝑧in, 𝑟out, 𝜙out, 𝑧out Ԧ𝑒 ∈ ℝ256

2 Message passing: repeat 6 times
hyperparameter 

a
Build “message” by aggregating 
neighbour hit encodings 𝐻

Message = [ max( 𝒏𝐢𝐧𝐩𝐮𝐭 ), sum( 𝒏𝐢𝐧𝐩𝐮𝐭 ), max( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 ), sum( 𝒏𝐨𝐮𝐭𝐩𝐮𝐭 )] 

b Update edge and node encodings

⊕Node Network 𝑛updated[𝑛, message] ⊕Edge Network 𝑒updated[e, 𝑛updated
𝑖𝑛 , 𝑛 updated

out ]

Change w.r.t. Exa.Trkx

Incoming and outgoing
neighbours are 

aggregated separately

3 Compute edge scores Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score 𝑠 ∈ 0, 1

Trained with a sigmoid focal loss

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 52

https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid_focal_loss.html


2. Issue of Shared Hits 53

Hit-hit connection is not enough
⇒ need edge-edge connections

• Solve the ambiguity of shared hits under the following hypothesis:
“All hits that precede a splitting point can be attributed to all the newly identified tracks”

• ⇒ Assume that this does not happen



Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Don’t repeat the 6-step message passing: start from the previous GNN

3 Compute edge scores

Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score sedge ∈ 0, 1

Filter out the fake edges by requiring 𝒔𝐞𝐝𝐠𝐞 > 𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧  to reduce # edge-edge connections 

5 Build triplets

4

2. Issue of Shared Hits 54



Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Don’t repeat the 6-step message passing: start from the previous GNN

3 Compute edge scores

Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score sedge ∈ 0, 1

Filter out the fake edges by requiring 𝒔𝐞𝐝𝐠𝐞 > 𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧  to reduce # edge-edge connections 

5 Build triplets

4

6 Directly compute triplet scores from the edge and node encodings of the triplet

Triplet 
Classifier

[𝑛shared, 𝑛first, 𝑛last, Ԧ𝑒in, Ԧ𝑒out] Triplet score 𝑠triplet ∈ 0, 1

Filter out the fake triplets by requiring 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭 > 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧  
GNN trained with the 
overall loss

ℒtot = ℒedge + ℒtriplet

2. Issue of Shared Hits 55



Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

2. Issue of Shared Hits 56

Overall GNN loss = GNN loss on edges + GNN loss on triplets

GNN loss on edges GNN loss on triplets

Training set of 700,000 events divided into sub-epochs of 7,000 events



Embedding 
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on 
edges

Filter 
edges 
𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build 
triplets

GNN on 
triplets

Filter 
triplets 
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build 
tracks

Goal

1
Connect left and right elbows
and remove duplicate edge-edge 
connections

Apply connected components, 
excluding splitting edge-edge 
connections

2

New Hypothesis: a track may split into 
2 tracks only one time
→ Allow to keep locality

2. Issue of Shared Hits 57



3. Track-Finding Performance 58

Efficiency = 
#matched particles

# particles

Clone rate = 
# candidates − #matched particles

# candidates
=

# clones

# candidates

Hit Efficiency = 
#matched hits on track

# hits on particle candidates

Hit Purity = 
#matched hits on track

# hits on track candidates

(track, particle) couple
for which 70% of the hits of track belong to the particle

Quality of 
individual tracks

Quality of overall
track-finding

Ghost rate = 
# unmatched tracks

# tracks

Proportion of matched particles

Proportion of redundant candidates

Proportion of unmatched tracks

Average proportion of matched hits on particle

Average proportion of matched hits on track

Matching candidate



3. Track-Finding Performance 59

Velo,
no electrons

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟏𝟎

Lower efficiency at
• Larger 𝑣𝑧 
• Smaller # unique planes

Vertex origin position along the 𝑧-axisPseudo-rapidityTransverse momentum



3. Track-Finding Performance 60

Vertex origin position along the 𝑧-axisPseudo-rapidityTransverse momentum

Velo,
no electrons

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟐𝟎

Better efficiencies everywhere



3. Track-Finding Performance 61

Vertex origin position along the 𝑧-axisPseudo-rapidityTransverse momentum

Lower efficiency at
• smaller 𝜂
• Smaller # unique planes

Long,
from strange

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟏𝟎



3. Track-Finding Performance 62

Long,
from strange

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟐𝟎

Vertex origin position along the 𝑧-axisPseudo-rapidityTransverse momentum

Better efficiencies everywhere


	Slide 1: GNN-based pipeline for track finding in the Velo at LHCb
	Slide 2: LHCb Detector in Run 3
	Slide 3: LHCb Detector in Run 3
	Slide 4: LHCb Detector in Run 3
	Slide 5: LHCb Detector in Run 3
	Slide 6: LHCb Detector in Run 3
	Slide 7: LHCb Detector in Run 3
	Slide 8: 1. Graph Neural Network Track Finding
	Slide 9: 1. Graph Neural Network Track Finding
	Slide 10: 1. Graph Neural Network Track Finding
	Slide 11: 1. Graph Neural Network Track Finding
	Slide 12: 1. Graph Neural Network Track Finding
	Slide 13: 1. Graph Neural Network Track Finding
	Slide 14: 1. Graph Neural Network Track Finding
	Slide 15: 1. Graph Neural Network Track Finding
	Slide 16: 1. Graph Neural Network Track Finding
	Slide 17: 1. Graph Neural Network Track Finding
	Slide 18: 1. Graph Neural Network Track Finding
	Slide 19: 1. Graph Neural Network Track Finding
	Slide 20: 1. Graph Neural Network Track Finding
	Slide 21: 1. Graph Neural Network Track Finding
	Slide 22: 1. Graph Neural Network Track Finding
	Slide 23: 2. Issue of Shared Hits
	Slide 24: 2. Issue of Shared Hits
	Slide 25: 2. Issue of Shared Hits
	Slide 26: 2. Issue of Shared Hits
	Slide 27: 2. Issue of Shared Hits
	Slide 28: 2. Issue of Shared Hits
	Slide 29: 2. Issue of Shared Hits
	Slide 30: 2. Issue of Shared Hits
	Slide 31: 2. Issue of Shared Hits
	Slide 32: 2. Issue of Shared Hits
	Slide 33: 2. Issue of Shared Hits
	Slide 34: 3. Track-Finding Performance
	Slide 35: 3. Track-Finding Performance
	Slide 36: 3. Track-Finding Performance
	Slide 37: 3. Track-Finding Performance
	Slide 38: 3. Track-Finding Performance
	Slide 39: 3. Track-Finding Performance
	Slide 40: 3. Track-Finding Performance
	Slide 41: Conclusion
	Slide 42: Thank You For Your Attention!
	Slide 43: Backup Slides
	Slide 44: Velo geometry
	Slide 45: 1. Graph Neural Network Track Finding
	Slide 46: 1. GNN-based Track Finding Approach
	Slide 47: 1. GNN-based Track Finding Approach
	Slide 48: 1. GNN-based Track Finding Approach
	Slide 49: 1. Graph Neural Network Track Finding
	Slide 50: 1. Graph Neural Network Track Finding
	Slide 51: 1. Graph Neural Network Track Finding
	Slide 52: 1. Graph Neural Network Track Finding
	Slide 53: 2. Issue of Shared Hits
	Slide 54: 2. Issue of Shared Hits
	Slide 55: 2. Issue of Shared Hits
	Slide 56: 2. Issue of Shared Hits
	Slide 57: 2. Issue of Shared Hits
	Slide 58: 3. Track-Finding Performance
	Slide 59: 3. Track-Finding Performance
	Slide 60: 3. Track-Finding Performance
	Slide 61: 3. Track-Finding Performance
	Slide 62: 3. Track-Finding Performance

