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LHCDb Detector in Run 3 :

Collisions and Trigger

Side View

— Collisions (Run 3) Mg e RIcHD

Tracker

« 20 MHz non-empty bunch crossing rate
« ~ 5 collisions / bunch crossing
k. p-p collision at /s = 13.6 TeV
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LHCDb Detector in Run 3 .

Collisions and Trigger

Side View gcar HCAL

— Collisions (Run 3) Mg e RIcHD

Tracker

« 20 MHz non-empty bunch crossing rate

« ~ 5 collisions / bunch crossing Yavd's
.y W P =

k. p-p collision at /s = 13.6 TeV -

Acceptance /7 /.
LHCD Subdetectors Epsps

e

upgrade
Allen (High-Level Trigger 1) J. Phys.: Conf. Ser., vol. 878, p. 012012, 2017

fully GPU-based online partial Better trigger efficiency than previous LO FPGA-based
reconstruction and selection trigger

70-200 GB/s

High-Level Trigger 2
Storage buffer CPU-based full reconstruction and 10 GB/s

selection
Numbers taken from LHCB-FIGURE-2020-016
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LHCDb Detector in Run 3 -

3 Tracking detectors
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LHCDb Detector in Run 3 -

Tracks
Velo uT SciFi
Vertex Locator Upstream Tracker With Scintillating Fibres
With silicon pixels With silicon strips
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26 planes
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LHCDb Detector in Run 3 ‘

Tracks
Velo uT SciFi
Vertex Locator Upstream Tracker With Scintillating Fibres
With silicon pixels With silicon strips
Magnet stations
X
T Long track

Reconstructible in the Velo and SciFi

26 planes

— Z

@ Magnetic field B

I~

Velo track
Reconstructible in the Velo

(= at least 3 pixels activated)
No momentum measurement




1. Graph Neural Network Track Finding

Motivations

Graph Neural Network (GNN)-based track-finding pipeline based on the work of Exa.Trkx (Eur. Phys.

J. C 81, 876 (2021))

Demonstrated near-linear inference time w.r.t. # hits
« Conventional algorithms are worse-than-quadratic
« In future LHCb upgrades: increase in instaneous luminosity and detector granularity
— need for even more high-throughput track-finding algorithms

- High-parallelisation potential - compatible with current GPU-based Allen trigger

« Conventional algorithms implemented in Allen = allow like-for-like comparison between GNN-
based algorithms and conventional algorithms (on the very same device!)

. Representation of tracks with a graph quite natural Pure graph representation

[P - e


https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas

1. Graph Neural Network Track Finding

In the Velo

Around ~ 2200 hits / event

Around 150 particles to reconstruct / event

200+

150+

Density

o0+

0

100

LHCbH Run 3 Simulation

0 100 200 300 400
# reconstructible particles in acceptance
per event
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1. Graph Neural Network Track Finding

Input: Velo Hits Output: Velo tracks

= HHT



Input: Velo Hits Output: Velo tracks

Build a “rough” graph
Embedding Network

+ Nearest-Neighbour Network

Classify the edges as
genuine or fake

Strategy

Graph Neural Network

Keep only the genuine edges
Identify connected hits as
tracks

Weakly connected component algorithm



1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph



1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph

1001

LHCbH Run 3 Simulation

« Goal: maximising edge efficiency while minimise # edges

—
f
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- Edges
« 99% of genuine edges are 1-plane apart, 1% are 2-plane apart
= allow for only 1 skipped plane (~1%)
« Only build edges from left to right

Proportion of edges

—
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Plane difference
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LHCbH Run 3 Simulation

40

20+

« For every hit in plane p, how to connect it to hits belonging to the 2 o g
next 2 planes p+1 and p + 2? . T
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1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph

107 un 3 Simulation
- Goal: maximising edge efficiency while minimise # edges i
%m—l
kS
* Edges .510*2—
* 99% of genuine edges are 1-plane apart, 1% are 2-plane apart %
= allow for only 1 skipped plane (~1%) S
« Only build edges from left to right
1 2 3 4
1 pla he =4 Plane difference
Microchannel
it ac RF foil — — —
silicon substrate ':ilel.: [ p 1 0 p 1 1 p 1 2
%
10l LIHCb Run 3 Simulation
CO; in ' '
—> 20F
<_ : o E: i !I
CO; out : :
—20f
Hybrid _aol o l
P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’, PhD Thesis, A 30 100 50

Vrije U., Amsterdam, 2016. z [mm)]
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1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph

Edges are not random

« Forward

« Away from z-axis « more tilted

= this features could be learnt by a Neural Network

p=10 p=11 p=12

i LHCb Run 3 Simulation 40+ . L:HCb Fn 3 Simulati.on
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True edges Example of edges drawn in

the rough graph



1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph

e Embed every hit in an embedded space | Parallelise over hits |

Cylindrical coordinates Dense Neural Network

(1, ¢, z, plane) (DNN) > &= (ey, ey e3,€4)

35K parameters

DNN trained so that in the embedding space
- If hit 4 and hit B are likely to be connected by an edge d(A4,B)? = |le; — ez||? < 0.010
« Otherwise, d(4,B)? > 0.010




1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph

e Embed every hit in an embedded space | Parallelise over hits |

Cylindrical coordinates Dense Neural Network

(1, ¢, z, plane) (DNN) > &= (ey, ey e3,€4)

35K parameters

DNN trained so that in the embedding space
- If hit 4 and hit B are likely to be connected by an edge d(A4,B)? = |le; — ez||? < 0.010
« Otherwise, d(4,B)? > 0.010

a Loop over plane p € {0, ..., 24}
« Apply k..-Nearest Neighbour (kKNN) algorithm between | Parallelise over hits |
plane p and planes {p + 1,p + 2} = k., €dges / hit
- Discard edges for which d? > d? <« Parameters to optimise

(1)
2 ¢
[3) I s

(TN
3] % = You’'ve got your rough graph




1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph

* Overall training strategy in back-up
« After training, we choose maximal number of neighbours k.., = 50 (not optimised)



1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph

* Overall training strategy in back-up
« After training, we choose maximal number of neighbours k.., = 50 (not optimised)

« To choose maximal squared distance dz2,.,, for various values for d2 ..:

1. Build the rough graph using dZ,.,
2. Remove all fake edges in the rough graph and build the tracks from this purified graph

3. Compute track-finding performance = correspond to the best performance given d2 .
—| Performance if all the fake edges are discarded(= best performance)

1.00}F L.HCb Ryn 3 Sim‘ula,tion‘ | | | 1.00+ LHCbH Run 3 Simulation | | | | 140000+ LHCh Run 3 Simulation
) T T 1 | } }
VI o . 120000}
= 0.99} 1
) ///’/«’—a = e 8 100000 -
> o= =
O
= < 0.98} = 80000} — |
= 0.96} = 2
1= = = 60000
% ~—+— Velo only, no electrons 0.07} h 60000+ 1
0.04| —— Velo only, only electrons g F= 400001 |
—+— Long. no electrons - I
= 0.96 20000¢
—}— Long. only electrons
0.92} —+— Long, from strange 0.5} s i ‘ . ‘
| | I I ’ w . . . . . . . 0.01 0.02 0.03 0.04
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.005 0.010  0.015 0.020 0.025 0.030 0.035 0.040 2
2 max
dlgnax dmax

= We will try d%,,, = 0.010 and d2,,, = 0.020 (evaluated on 200 events)
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1. Graph Neural Network Track Finding

Graph Building y GNN: filter edges Build tracks from graph

Output of Embedding + kNN

[ : . ‘

GNN edge classifier
= score s € [0,1] for every edge

=

Edge score cut
s > Sedge,min

Change: Incoming and outgoing neighbours are aggregated separately, which increased
overall GNN performance



1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph

HHH =

Tracks obtained by identifying connected hits



22

1. Graph Neural Network Track Finding

Graph Building GNN: filter edges Build tracks from graph

=

Tracks obtained by identifying connected hits

But if you do this... track efficiency on long electrons is terrible!

Metric Allen etx4velo

Efficiency
Clone rate

Hit efficiency

Hit purity

(evaluated on 1000 events)



2. Issue of Shared Hits

The Case of Electrons

Observations

« ~ 55 9% electrons share hits with another electron
« The 2 electrons share > 1 hit(s) before splitting up

Example 1: share the first hit only Example 2: share several hits before splitting up

—10¢

— 12}

LHCb Run 3 Simulation

| LHCb Run 3 Simulation

60 80 100 120 140 160 180 100 200 300 400
z [mm] z [mm]

= the connected component algorithm consider the 2 electron tracks as a single track



2. Issue of Shared Hits

Other Tracks With Shared Hits

- Tracks crossing (> 524 in 1000 events) « Track starts on a shared hit

22.5 AT LHCH Run 3 Simulation
20.0
17.5¢

EIE).O

i12.5

Hl[).()
7.5
5-0[ LHCb Run 3 Simulation . ‘ ‘ 25 50 75 100 125 150 175 200
—300  —250 —zooz [mr;l]lso —100 —50 2 [mm]

« The last hit of a track is the first hit of
 Track ends on a shared hit another track

(>141 in 1000 events)

351 LHCh Run 3 Simulation

35 LHCb Run 3 Simulation

100 200 300 100 500
2z [mm]

=50 0 50 100 150 200
z [mm]



2. Issue of Shared Hits

Edge-Edge Connections

351 LHCh Run 3 Simulation 35+ LHCh Run 3 Simulation

30+ 30

In this case, one cannot even guess that there are
possibly 2 tracks!

251 25t

[mm]
[mum]

= 200 & 20}

15+ 15t

10+ 10}

55 00 25 50 75 100 125 50 0 50 100 50 200
y [mm] z [mm]

Hit-hit connection is not enough ’
= need edge-edge connections



2. Issue of Shared Hits

Edge-Edge Connections

3 kind of edge-edge connections (or triplets) are possible
Could be a shared hit

Articulation ‘ ._‘___),'\‘
Left elbow :>‘ > ::z

Right elbow O<:: > :::



2. Issue of Shared Hits

Goal

Shared 0—-‘—‘“7
%‘%4%7' -»\._._.\.



2. Issue of Shared Hits

From the purified graph of hit-hit connections \

Build edge-edge connections
(or triplets)




2. Issue of Shared Hits

-»\._._.\....._.427

From the purified graph of hit-hit connections
Build edge-edge connections \ A= 000
(or triplets) @@ 2> @@ xﬁ./‘
\ : -
Classify the triplets with the GNN \ H»-—‘%O—O
Filter out the fake triplets Colg




2. Issue of Shared Hits

-»\._._.\..._._.427

From the purified graph of hit-hit connections \

Build edge-edge connections
(or triplets)

Classify the triplets with the GNN
Filter out the fake triplets

e Algorithm to build tracks from
triplets




2. Issue of Shared Hits =

Embedding GNN on gc'j';ee; Build GNN on tr':i'[')tlggs Build
Network edges triplets triplets tracks

Build rough graph Filter out fake edges Filter out fake triplets




2. Issue of Shared Hits -

Embedding GNN on g('j';‘z; Build GNN on tr':i'[')tlggs Build
Network edges triplets triplets tracks

Don’t repeat the overall GNN inference: start from the previous GNN

« Compute triplet score from node and edge encodings of the GNN

- Train GNN with overall loss £ = L gges + Liriplets



2. Issue of Shared Hits

Embedding GNN on eF(legtJee; Build GNN on trFll;IDEEs Build
Network edges triplets triplets tracks

and remove duplicate edge-edge

e Connect left and right elbows
connections

Apply connected components,
excluding splitting edge-edge
connections

a Each remaining link
correspond to a new track
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3. Track-Finding Performance

Embedding GNN on :&';2'; Build GNN on tr':i'[')tlggs Build
Network edges / triplets triplets tracks

Before building the tracks from the graph of triplets...
» Choose seggemin = 0.4 to optimise performance (could be increased to optimise throughput)




3. Track-Finding Performance

Embedding
Network

Filter

edges Build

triplets

Before building the tracks from the graph of triplets
» Choose seggemin = 0.4 to optimise performance (could be increased to optimise throughput)

* Choose s iplermin DY €valuating track-finding performance as a function of s.ipiet min

« High efficiency
« Ghost rate < 1%

-| Performance as a function of the triplet score cut syt min

Filter

triplets Build

tracks

GNN on
triplets

(evaluated on 200 events)

1.00

I LHCb Run_ 3 Simulation

0.95¢

0.901

0.851

Efficiency

0.80F

0.75r—

0.70F—

1.00

= 0.90r

Average hit efliciency

o
oo
&

0.80F

o
=
[ ]

......

|

—+— Velo only, no electrons
—— Velo only, only electrons
—— Long, no electrons
—— Long, only clectrons
—— Long. from strange

0.08 LHCh Run 3 Simulation

0.06F

0.04F—

p

(GGhost rate

0.02F

0.00—

0.1 0.2 0.3 0.1 0.5 0.6 0.7

0.0 02 03 04 05 06 07 0. 02 03 04 05 06 07 Score cut
Score cut Score cut




3. Track-Finding Performance

Category Metric
Long, no electrons Efficiency
v' In acceptance

Reconstructible in the velo | Clone rate

v
v" Reconstructible in the SciFi
v" Not an electron

Hit efficiency

Hit Purity

Long electrons Efficiency
v' In acceptance

Reconstructible in the velo | Clone rate

v
v Reconstructible in the SciFi
v Electron

Hit efficiency

Hit purity
Long, from strange Efficiency
v' In acceptance
v Reconstructible in the velo | Clone rate

v' Decays from a strange
Good proxy for displaced
tracks

Hit efficiency

Hit purity

X

Ghost rate

Evaluation with 5,000 events

Track matched to a
particle if at least 70% of its
hits belong to this particle

Long categories




3. Track-Finding Performance

Category

Long, no electrons

v' In acceptance

v Reconstructible in the velo
v Reconstructible in the SciFi
v Not an electron

Metric Allen . Evaluation with 5,000 events
Efficiency « Track matched to a
Clone rate particle if at least 70% of its

hits belong to this particle
Hit efficiency

« Allen algorithm described in

Hit Purit
It Furty arXiv:2207.03936v2

Long electrons

v' In acceptance

v" Reconstructible in the velo
v" Reconstructible in the SciFi
v' Electron

Efficiency

Clone rate

Hit efficiency

Hit purity

Long, from strange

v' In acceptance

v' Reconstructible in the velo
v' Decays from a strange
Good proxy for displaced
tracks

Long categories

Worse Better

Efficiency

Clone rate

Hit efficiency

Hit purity

X

Ghost rate



https://arxiv.org/abs/2207.03936v2

Category Metric
Long, no electrons Efficiency
v' In acceptance

Reconstructible in the velo | Clone rate

v
v" Reconstructible in the SciFi
v" Not an electron

Hit efficiency

Hit Purity

Long electrons Efficiency
v' In acceptance

Reconstructible in the velo | Clone rate

v
v Reconstructible in the SciFi
v Electron

Hit efficiency

Hit purity
Long, from strange Efficiency
v' In acceptance
v Reconstructible in the velo | Clone rate

v' Decays from a strange
Good proxy for displaced
tracks

Hit efficiency

Hit purity

X

Ghost rate

Allen

Striplet > 032

Etx4velo
d2,., = 0.010

Evaluation with 5,000 events

Track matched to a
particle if at least 70% of its
hits belong to this particle

Allen algorithm described in
arXiv:2207.03936v2

Long categories

Worse Better
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Category Metric
Long, no electrons Efficiency
v' In acceptance

Reconstructible in the velo | Clone rate

v
v" Reconstructible in the SciFi
v" Not an electron

Hit efficiency

Hit Purity

Long electrons Efficiency
v' In acceptance

Reconstructible in the velo | Clone rate

v
v Reconstructible in the SciFi
v Electron

Hit efficiency

Hit purity
Long, from strange Efficiency
v' In acceptance
v Reconstructible in the velo | Clone rate

v' Decays from a strange
Good proxy for displaced
tracks

Hit efficiency

Hit purity

X

Ghost rate

Allen

¢ S U
-
Striplet > 0.32 Striplet > 0.36
Etx4velo Etx4velo
d2.. = 0.010 | d2,, =0.020

Evaluation with 5,000 events

Track matched to a
particle if at least 70% of its
hits belong to this particle

Allen algorithm described in
arXiv:2207.03936v2

2 different GNN trainings for
d2.. = 0.010 and d2, = 0.020

Long categories

Worse Better
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| aal
A )

L_J
Striplet > 032 Striplet > 036
Category Metric Allen Etx4velo Etx4velo
d2., = 0.010 | d2.. = 0.020

Velo-only, no electrons Efficiency
v' In acceptance
v' Reconstructible in the velo Clone rate
v" Not reconstructible in the SciFi _ -
v Not an electron Hit efficiency

Hit Purity
Velo-only electrons Efficiency
v' In acceptance
v Reconstructible in the velo Clone rate
v" Not reconstructible in the SciFi
v" Electron Hit efﬁCienCY

Hit purity ‘ Velo-only categories
Velo-only, from strange Efficiency
v' In acceptance
v Not reconstructible in the velo | Clone rate
Good proxy for displaced tracks Hit efficiency

_ _ Worse Better
Hit purity




Conclusion

Track-Finding Physics Performance of GNN-based pipeline

- Comparable or superior performance to Allen’s velo track-finding algorithm
 Excellent electron reconstruction

- Low ghost rate

Ongoing Work
« Implementation in Allen to
« properly optimise the throughput of the GNN-based pipeline
- Compare the optimal throughput to conventional algorithm

« Extension to other LHCDb tracking detectors, starting from the SciFi



Thank You For Your Attention!
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Velo geometry

Velo =

\%

1 plane = 4 sensor planes
1 plane 4 sensor planes

Microchannel

RF foil

&

silicon substrate

P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’,
PhD Thesis, Vrije U., Amsterdam, 2016.
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1. Graph Neural Network Track Finding

Use 700,000 events for training, with the following selection

« Particles are straight enough
- Particles leave > 3 hits in the Velo
« Event has > 500 genuine hits



1. GNN-based Track Finding Approach

Graph Building GNN: filter edges Build tracks from graph
G Embed all the hits using the network (r,¢,z, plane) —*m——* € = (eq,€ €3,€4)

For a random given set of hits, build a dataset of genuine edges and fake edges.
a Compute the distances between their hits in the embedding space:

{déenuine,i' Vi} and {dfzake,j' Vj}

Iy hyperparameter

Training
step

Iy hyperparameter
_t 2 Leake = ! 0.01 — df e 1,0
— Lgenuine = z dgenuine,i — “fake T maX( v+ 7 Yfake, ) )
ngenuine : fake 7
Minimise dgenuine,i — Maximise dg,e

« Hard Negative Mining: edges built by a kNN (- “"hard” negatives)
True edges
« Random edges

Training
dataset



1. GNN-based Track Finding Approach

Graph Building GNN: filter edges Build tracks from graph

0.00700 . | | | - —— Training
Validation

0.00675

0.00650 LHCD Run 3 Simulation

Training set of 700,000 events divided

o
5 0.00625— into sub-epochs of 7,000 events

—
0.00600F
0.00575F

0.00550

0 20 40 60 80 100 120 140 160 180
Sub-epoch



1. GNN-based Track Finding Approach

Graph Building GNN: filter edges Build tracks from graph

Rough graph with k., = 50 and d2., = 0.010

LHCh Run 3 Simulation
0.5}¢
g‘ﬂw Even though 1% of genuine edges are 2-plane apart,
5 the rough graph needs to contain almost 50% of such
éog edges
2.0.2
£
0.1
0.0 1 5)
Plane difference
0.06+ LHCb Run 3 Simulation
4‘30'05
£
%5 0.04} ]
5. = k,.x could probably be reduced to increase throughput
é -
2 0.02¢
(el
0.01r

0.00

10 20 30 40
Number of neighbours per hit



1. Graph Neural Network Track Finding

Graph Building ) GNN: filter edges Build tracks from graph

e Encode every hit and edge r=(r¢,2) Node Encoder 1 € R?56

in a high-dimensional space
("in» Pins Zins Tout» Pout Zoutr) —=ele[=H=glelols(=]5 é € R256




1. Graph Neural Network Track Finding *°

e Encode every hit and edge r=(r¢,2) Node Encoder 1 € R?56
in a high-dimensional space
(Tin» Dins Zins Tout» Pouts Zout) Edge Encoder é € R*°°

v— hyperparameter

a Message passing: repeat 6 times

Build "“message” by aggregating
neighbour hit encodings

Message = [ m—a)«{ﬁinput})r Sum({ﬁinput})l max({ﬁoutput})l Sum({ﬁoutput})]

e Update edge and node encodings

[Ti, message] Node Network g?*nupdated [_T, ﬁfﬁ)dated, ﬁ%‘f,tdated] Edge Network E‘

—_—

€updated

-




1. Graph Neural Network Track Finding

EEEE / GNN: filter edges Build tracks from graph
e Encode every hit and edge #=(r o, 2) = R256

in a high-dimensional space
(Tin» Pins Zins Tout Pouts Zout) —P=sls[SN=lelols(]s é € R256

v— hyperparameter

a Message passing: repeat 6 times

Build "message” by aggregating
neighbour hit encodings

Message = [ max({ﬁinput})l Sum({ﬁinput})l max({ﬁoutput})l Sum({ﬁoutput})]

G Update edge and node encodings

[1|7, message] Node Network paSyagmmemme [T, Ao dated: T updated] Edge Network pa§
e Compute edge scores [Min, Mout, €] Edge Classifier Edge score s € [0, 1]

Trained with a sigmoid focal loss

—_—

€updated

D>



https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid_focal_loss.html
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1. Graph Neural Network Track Finding

Graph Building y GNN: filter edges Build tracks from graph

e Encode every hit and edge #=(r, ¢, 2) Node Encoder =  R256

in a high-dimensional space
(Tin» Pins Zins Tout Pouts Zout) —P=sls[SN=lelols(]s é € R256
v— hyperparameter
Change w.r.t. Exa.Trkx

Message passing: repeat 6 times
Incoming and outgoing

neighbours are
aggregated separately

Build "message” by aggregating
neighbour hit encodings

Message = [ max({ﬁinput})l Sum({ﬁinput})l max({ﬁoutput})l Sum({ﬁoutput})]

G Update edge and node encodings

[1|_1’, message] Node Network g?*nupdated [€, ﬁfﬁ)dated, ﬁ%‘f)tdated] Edge Network E‘

e Compute edge scores [Min, Mout, €] Edge Classifier Edge score s € [0, 1]

Trained with a sigmoid focal loss

—_—

€updated

D>



https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid_focal_loss.html

351

301

2r

201

15¢
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2. Issue of Shared Hits

351
301
257

——o--0—=0--

—35 00 25 50 75 100 125 =50 0 50 100 150 200 -
y 2 “C\.
Hit-hit connection is not enough
= need edge-edge connections

Solve the ambiguity of shared hits under the following hypothesis:
“All hits that precede a splitting point can be attributed to all the newly identified tracks”

= Assume that this does not happen

S N



2. Issue of Shared Hits o

Embedding GNN on gc'j';ee; Build GNN on tr':i'[')tlggs Build
Network edges triplets triplets tracks

Don’t repeat the 6-step message passing: start from the previous GNN

Q Compute edge scores
[Min, Mout, €] —{ }-—» Edge score sggge € [0, 1]

Q Filter out the fake edges by requiring seqge > Sedgemin t0 reduce # edge-edge connections

Q Build triplets




2. Issue of Shared Hits =

Embedding GNN on gé';‘z; Build GNN on tr':i'[')tlggs Build
Network edges triplets triplets tracks

Don’t repeat the 6-step message passing: start from the previous GNN

Compute edge scores

[Min, Mout, €] —{ }—» Edge score sggge € [0, 1]

Filter out the fake edges by requiring seqge > Sedgemin t0 reduce # edge-edge connections

Build triplets

Directly compute triplet scores from the edge and node encodings of the triplet

Triplet

[Mshared, Mirst: Mast,€ins €outl Triplet score Striplet € [O; 1]

Classifier

GNN trained with the
Filter out the fake triplets by requiring syipiet > Striplet min overall loss

Lot = Ledge + Ltriplet




2. Issue of Shared Hits

Filter . Filter
edges Build GNN on triplets

triplets triplets

Build
tracks

Embedding
Network

Overall GNN loss = GNN loss on edges + GNN loss on triplets

GNN loss on edges GNN loss on triplets
0.0175] Training 0.0025} —— Training
0.0150} | | | | Validation Validation
0.0020} | | | | ! !
0.0125} - - - LHCH Run 3 Simulation LHCH Run 3 Simulation
2 0.0100} | | | | | | | %z 0.0015¢
- -]
] —
).00751
0.0075 0.0010}
0.0050F | . . . . _ _ |
0.0005} L
0.0025F | | | | | |
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Sub-epoch Sub-epoch

Training set of 700,000 events divided into sub-epochs of 7,000 events



Connect left and right elbows
and remove duplicate edge-edge

connections

2. Issue of Shared Hits

Embedding GNN on eF(legtJee; Build GNN on trFll;IDEEs Build
Network edges triplets triplets tracks

Apply connected components,
excluding splitting edge-edge

connections

New Hypothesis: a track may split into
2 tracks only one time
— Allow to keep locality




3. Track-Finding Performance

Matching candidate

for which 70% of the hits of track belong to the particle

(track, particle) couple

Quality of overall
track-finding

Quality of
individual tracks

—=

=

—

Efficiency = # matched particles Proportion of matched particles
# particles
Clone rate = # candidates — # rflatched particles _ H clo.nes Proportion Of redundant candidates
# candidates # candidates
Ghost rate = ~ unmatched tracks Proportion of unmatched tracks
# tracks

# matched hits on track

Average proportion of matched hits on particle
# hits on particle candidates

Hit Efficiency = (

# matched hits on track

- > Average proportion of matched hits on track
# hits on track candidates

Hit Purity = <
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Efficiency

3. Track-Finding Performance
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