
GNN-based pipeline for track
finding in the Velo at LHCb

Anthony Correia, on behalf of the LHCb collaboration

10th October 2023

1

In collaboration with

0. LHCb Detector in Run 3 2

J. Phys.: Conf. Ser., vol. 878, p. 012012, 2017Allen (High-Level Trigger 1)
fully GPU-based online partial
reconstruction and selection

• 20 MHz non-empty bunch crossing rate
• 𝑝-𝑝 collision at 𝑠 = 13,6 TeV
• ~ 5 collisions / bunch crossing

Collisions (Run 3)

LHCb Subdetectors
Acceptance
2 < 𝜂 < 5

5 TB / s

High-Level Trigger 2
CPU-based full reconstruction and

selection

70-200 GB / s

Storage buffer 10 GB/s

Better trigger efficiency than previous HLT1 FPGA-based
trigger

Numbers taken from LHCB-FIGURE-2020-016

Collisions and Trigger

10.1088/1742-6596/878/1/012012
https://cds.cern.ch/record/2730181

0. LHCb Detector in Run 3 3

Velo
Vertex Locator
With silicon pixels
No magnetic field

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥

Magnet
stations

3 Tracking detectors

J. Phys.: Conf. Ser., vol. 878, p. 012012, 2017

10.1088/1742-6596/878/1/012012

0. LHCb Detector in Run 3 4

Velo
Vertex Locator
With silicon pixels

UT
Upstream Tracker
With silicon strips

SciFi
With Scintillating Fibres

𝑧

𝑥
Magnet stations

Magnetic field 𝑩

Velo track
Reconstructible in the Velo
No momentum measurement

Long track
Reconstructible in the Velo and SciFi

Tracks

1. Graph Neural Network Track Finding 5

Graph Neural Network (GNN)-based track-finding pipeline based on the work of Exa.Trkx (Eur. Phys.
J. C 81, 876 (2021))

• Demonstrated near-linear inference time w.r.t. # hits
• Conventional algorithms are worse-than-quadratic
• Increase in instaneneous luminosity in future upgrades over the next decade

→ need for even more high-throughput track-finding algorithms

• High-parallelisation potential → compatible with current GPU-based Allen trigger

• Future implementation in Allen ⇒ allow like-for-like comparison with conventional algorithms

• Representation of tracks with a graph quite natural

Motivations

Pure graph representation

https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas
https://link.springer.com/article/10.1140/epjc/s10052-021-09675-8#citeas

1. Graph Neural Network Track Finding 6

Goal Input: Velo Hits Output: Velo tracks

1 Build a “rough” graph

2 Classify the edges as
genuine or fake

Embedding Network
+ Nearest-Neighbour Network

Graph Neural Network

3 Identify connected hits

Weakly Connected
Component Algorithm

S
tr

a
te

g
y

Graph Building GNN: filter edges Build tracks from graph

(as developed by the Exa.TrkX collaboration)

1. Graph Neural Network Track Finding 7

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 8

• Goal: minimise # edges while maximising edge efficiency

• Hypothesis
• 99% of edges are 1-plane apart, 1% are 2-plane apart

⇒ allow for only 1 skipped plane (~1%)
• Only build edges from left to right

• For every hit in plane 𝑝, how to connect it to hits belonging to the
next 2 planes 𝑝 + 1 and 𝑝 + 2?

𝑝 = 11 𝑝 = 12 𝑝 = 13

Change w.r.t. Exa.Trkx

Graph Building GNN: filter edges Build tracks from graph

1. Graph Neural Network Track Finding 9

Graph Building GNN: filter edges Build tracks from graph

𝑝 = 10 𝑝 = 11 𝑝 = 12

Edges are not random
• Forward
• Away from 𝑧 more tilted

⇒ this features could be learnt by a Neural Network

Example of edges drawn in
the rough graph

True edges

1. Graph Neural Network Track Finding 10

𝑟, 𝜙, 𝑧, plane
Dense Neural Network

(DNN)
35K parameters

Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4

Embed every point in an embedded space1

2 Loop over plane 𝑝 ∈ 0, … , 24
• Apply 𝒌-Nearest Neighbour (𝒌NN) algorithm between plane

𝑝 and planes 𝑝 + 1, 𝑝 + 2 ⇒ 𝑘 edges / hit

• Discard edges for which 𝑑2 > 𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟏

DNN trained so that in the embedding space
• If hit 𝐴 and hit 𝐵 are likely to be connected by an edge 𝒅 𝑨, 𝑩 2 = 𝑒𝐴 − 𝑒𝐵

2 < 0.01
• Otherwise, 𝒅 𝑨, 𝑩 2 > 0.01

Parallelise over hits

Parallelise over hits

⇒ You’ve got your rough graph

Cylindrical coordinates

3
2

1

3
2

2 3
1

1
1 2

3
2

1

3
2

2 3
1

1

32

1

2

3

2

3

1

1

32

1

2

3

2

3

1

1

hyperparameter

Graph Building GNN: filter edges Build tracks from graph

Change w.r.t. Exa.Trkx

1. Graph Neural Network Track Finding 11

• Overall training strategy in back-up (essentially same as Exa.TrkX)
• After training, we choose maximal number of neighbours 𝒌𝐦𝐚𝐱 = 𝟓𝟎 (not optimised)

• To choose maximal squared distance 𝑑max
2 , for various values for 𝑑max

2 :
1. Build the rough graph using 𝑑max

2

2. Remove all fake edges in the rough graph and build the tracks from this purified graph
3. Compute track-finding performance ⇒ correspond to the best performance given 𝒅𝐦𝐚𝐱

𝟐

Performance if all the fake edges are discarded(≡ best performance)

Graph Building GNN: filter edges Build tracks from graph

⇒ We will try 𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟎𝟏𝟎 and 𝒅𝐦𝐚𝐱

𝟐 = 𝟎. 𝟎𝟐𝟎 (evaluated on 200 events)

1. Graph Neural Network Track Finding 12

Graph Building GNN: filter edges Build tracks from graph

Output of Embedding + kNN

GNN edge classifier
⇒ score 𝑠 ∈ 0, 1 for every edge

Edge score cut
𝑠 > 𝑠min

0.9
0.2

Reminder of the strategy

1. Graph Neural Network Track Finding 13

1 Encode every hit and edge
in a high-dimensional space

Node EncoderԦ𝑟 = 𝑟, 𝜙, 𝑧 𝑛 ∈ ℝ256

Edge Encoder𝑟in, 𝜙in, 𝑧in, 𝑟out, 𝜙out, 𝑧out Ԧ𝑒 ∈ ℝ256

2 Message passing: repeat 6 times
hyperparameter

a
Build “message” by aggregating
neighbour edge encodings 𝐻

Message = [max(𝒆𝐢𝐧𝐩𝐮𝐭), sum(𝒆𝐢𝐧𝐩𝐮𝐭), max(𝒆𝐨𝐮𝐭𝐩𝐮𝐭), sum(𝒆𝐨𝐮𝐭𝐩𝐮𝐭)]

b Update edge and node encodings

⊕Node Network 𝑛updated[𝑛, message] ⊕Edge Network 𝑒updated[e, 𝑛updated
𝑖𝑛 , 𝑛 updated

out]

Change w.r.t. Exa.Trkx

Incoming and outgoing
neighbours are

aggregated separately

Graph Building GNN: filter edges Build tracks from graph

3 Compute edge scores Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score 𝑠 ∈ 0, 1

Trained with a sigmoid focal loss

1. Graph Neural Network Track Finding 14

https://pytorch.org/vision/main/generated/torchvision.ops.sigmoid_focal_loss.html

Graph Building GNN: filter edges Build tracks from graph

Tracks obtained by identifying connected hits

But if you do this… track efficiency on long electrons is terrible!

Metric Allen etx4velo

Efficiency 98.17% 46.23%

Clone rate 3.07% 0.47%

Hit efficiency 95.35% 98.89%

Hit purity 99,67% 93.89%

(evaluated on 1000 events)

1. Graph Neural Network Track Finding 15

The Case of Electrons

• ∼ 55 % electrons share hits with another electron
• The 2 electrons share ≥ 1 hit(s) before splitting up

Observations

The connected component algorithm consider the 2 electron tracks as a single track

Example 1: share the first hit only Example 2: share several hits before splitting up

2. Issue of Shared Hits 16

2. Issue of Shared Hits 17

Other Tracks With Shared Hits

• Tracks crossing (> 524 in 1000 events) • Track starts on a shared hit

• Tracks ends on a shared hit
• The last hit of a track is the first hit of

another track
(>141 in 1000 events)

2. Issue of Shared Hits 18

Hit-hit connection is not enough
⇒ need edge-edge connections

In this case, one cannot even guess that there are
possibly 2 tracks!

Edge-Edge Connections

2. Issue of Shared Hits 19

Edge-Edge Connections

3 kind of edge connections (or triplets)

Articulation

Left elbow

Right elbow

Could be a shared hit

2. Issue of Shared Hits 20

Goal

2. Issue of Shared Hits 21

1 Build edge-edge connections

Goal

2. Issue of Shared Hits 22

1 Build edge-edge connections

2
Classify the edge-edge connections
Filter out the fake edge-edge
connections

Goal

2. Issue of Shared Hits 23

1 Build edge-edge connections

2
Classify the edge-edge connections
Filter out the fake edge-edge
connections

3 Algorithm to build tracks from
edge-edge connections

Goal

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on
edges

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

GNN on
triplets

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

2. Issue of Shared Hits 24

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on
edges

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

GNN on
triplets

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

Don’t repeat the 6-step message passing: start from the previous GNN

3 Compute edge scores

Edge Classifier[𝑛in, 𝑛out, Ԧ𝑒] Edge score sedge ∈ 0, 1

Filter out the fake edges by requiring 𝒔𝐞𝐝𝐠𝐞 > 𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧 to reduce # edge-edge connections

5 Build edge-edge connections (≡ triplets)

4

6 Directly compute triplet scores from the edge and nodes encoding of the triplet

Triplet
Classifier

[𝑛shared, 𝑛first, 𝑛last, Ԧ𝑒in, Ԧ𝑒out] Triplet score 𝑠triplet ∈ 0, 1

Filter out the fake edge-edge connections by requiring 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭 > 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

GNN trained with the
overall loss

ℒtot = ℒedge + ℒtriplet

2. Issue of Shared Hits 25

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on
edges

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

GNN on
triplets

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

Goal

1
Connect left and right elbows
and remove duplicate edge-edge
connections

Apply connected components,
excluding splitting edge-edge
connections

2

New Hypothesis: a track may split into
2 tracks only one time
→ Allow to keep locality

2. Issue of Shared Hits 26

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on
edges

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

GNN on
triplets

Filter
triplets

𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

Goal

1
Connect left and right elbows
and remove duplicate edge-edge
connections

Apply connected components,
excluding splitting edge-edge
connections

2

Each remaining link
correspond to a new track

3

2. Issue of Shared Hits 27

Performance as a function of the triplet score cut 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Before building the tracks from the graph of triplets
• Choose 𝑠edge,min = 0.4 to optimise performance (could be increased to optimise throughput)

• Choose 𝑠triplet,min by evaluating track-finding performance as a function of 𝑠triplet,min

• High efficiency
• Ghost rate < 1%

(evaluated on 200 events)

⇒ choose 𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧 = 𝟎. 𝟑𝟐

Embedding
Network

kNN

𝒌𝐦𝐚𝐱, 𝒅𝐦𝐚𝐱
𝟐

GNN on
edges

Filter
edges

𝒔𝐞𝐝𝐠𝐞,𝐦𝐢𝐧

Build
triplets

GNN on
triplets

Filter
triplets
𝒔𝐭𝐫𝐢𝐩𝐥𝐞𝐭,𝐦𝐢𝐧

Build
tracks

3. Track-Finding Performance 28

3. Performance of ETX4VELO 29

Long categories

Category Metric Allen Etx4velo
𝑑max

2 = 0.10
Etx4velo

𝑑max
2 = 0.20

Long, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Not an electron

Efficiency 99.26% 99.28% 99.51%

Clone rate 2.54% 0.96% 0.89%

Hit efficiency 96.46% 98.73% 98.90%

Hit Purity 99.78% 99.94% 99.94%

Long electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Reconstructible in the SciFi
✓ Electron

Efficiency 97.11% 98.80% 99.22%

Clone rate 4,25% 7.42% 7.31%

Hit efficiency 95.24% 96.54% 96.79%

Hit purity 97.11% 98.46% 98.46%

Long, from strange
✓ In acceptance
✓ Reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced
tracks

Efficiency 97.69% 97.50% 98.06%

Clone rate 2.50% 0.92% 0.81%

Hit efficiency 97.69% 98.22% 98.77%

Hit purity 99.34% 99.68% 99.68%

X Ghost rate 2.18% 0.76% 0.81%

𝑠triplet > 0.32 𝑠triplet > 0.36

• Evaluation with 5,000 events

• 2 different GNN trainings for
𝑑max

2 = 0.10 and 𝑑max
2 = 0.20

Worse Better

3. Performance of ETX4VELO 30

Category Metric Allen Etx4velo
𝑑max

2 = 0.10
Etx4velo

𝑑max
2 = 0.20

Velo-only, no electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Not reconstructible in the SciFi
✓ Not an electron

Efficiency 96.84% 97.03% 97.86%

Clone rate 3.84% 1.08% 1.02%

Hit efficiency 93.89% 97.93% 98.32%

Hit Purity 99.50% 99.84% 99.82%

Velo-only electrons
✓ In acceptance
✓ Reconstructible in the velo
✓ Not reconstructible in the SciFi
✓ Electron

Efficiency 67.81% 85.10% 86.69%

Clone rate 10.27% 5.02% 4.97%

Hit efficiency 79.21% 93.33% 93.88%

Hit purity 97.35% 99.07% 98.99%

Velo-only, from strange
✓ In acceptance
✓ Not reconstructible in the velo
✓ Decays from a strange
Good proxy for displaced tracks

Efficiency 93.53% 93.07% 96.05%

Clone rate 5.60% 1.97% 1.77%

Hit efficiency 90.05% 93.92% 96.05%

Hit purity 99.36% 99.67% 99.64%

X Ghost rate 2.18% 0.76% 0.81%

𝑠triplet > 0.32 𝑠triplet > 0.36

Velo-only categories

• Evaluation with 5,000 events

• 2 different GNN trainings for
𝑑max

2 = 0.10 and 𝑑max
2 = 0.20

Worse Better

3. Performance of ETX4VELO 31

Velo,
no electrons

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟏𝟎

3. Performance of ETX4VELO 32

Velo,
no electrons

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟐𝟎

3. Performance of ETX4VELO 33

Plane

Long,
from strange

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟏𝟎

3. Performance of ETX4VELO 34

Long,
from strange

𝒅𝐦𝐚𝐱
𝟐 = 𝟎. 𝟐𝟎

Conclusion 35

• Overall good physics reconstruction performance, still room for improvement

• Fotis Giasemis working on C++ inference in Allen

• Next step: moving to the SciFi detector

xdigi2csv Convert XDIGI simulated files on the grid to CSV-like files

montetracko Perform track matching and evaluation in Python

etx4velo (dev branch) Perform track finding in the velo with a GNN-based
approach

Git repositories

https://gitlab.cern.ch/gdl4hep/xdigi2csv
https://gitlab.cern.ch/gdl4hep/montetracko
https://gitlab.cern.ch/gdl4hep/etx4velo/-/tree/dev

Backup Slides

36

Velo geometry 37

1 plane = 4 sensor planes

P. C. Tsopelas, ‘A Silicon Pixel Detector for LHCb’,
PhD Thesis, Vrije U., Amsterdam, 2016.
https://inspirehep.net/literature/1645999

=

1 plane 4 sensor planes

𝑥

𝑧

Velo

https://inspirehep.net/literature/1645999

1. GNN-based Track Finding Approach 38

1

For a random given set of hits, build a dataset of genuine edges and fake edges.
Compute the distances between their hits in the embedding space:

𝑑genuine,𝑖
2 , ∀𝑖 and 𝑑fake,𝑗

2 , ∀𝑗

2

Embed all the hits using the network DNN Ԧ𝑒 = 𝑒1, 𝑒2, 𝑒3, e4𝑟, 𝜙, 𝑧, plane

3 Minimise hinge loss ℒtotal = 3ℒgenuine + ℒfake where

ℒgenuine =
1

𝑛genuine

𝑖

𝑑genuine,𝑖
2 ℒfake =

1

𝑛fake

𝑗

max 0.01 − 𝑑fake,𝑗
2 , 0

Minimise 𝑑genuine,𝑖 Maximise 𝑑fake,𝑗

hyperparameter

hyperparameter

T
r
a
in

in
g

s
te

p

• Hard Negative Mining: edges built by a kNN (→ “hard” negatives)
• True edges
• Random edges

Training
dataset

Graph Building GNN: filter edges Build tracks from graph

1. GNN-based Track Finding Approach 39

Rough graph with 𝑘max = 50 and 𝑑max
2 = 0.010

Graph Building GNN: filter edges Build tracks from graph

Even though 𝟏% of genuine edges are 2-plane apart,
the rough graph needs to contain almost 𝟓𝟎% of such
edges

⇒ 𝒌𝐦𝐚𝐱 could probably be reduced to increase throughput

2. Issue of Shared Hits 40

Hit-hit connection is not enough
⇒ need edge-edge connections

• Solve the ambiguity of shared hits under the following hypothesis:
“All hits that precede a splitting point can be attributed to all the newly identified tracks”

• ⇒ Assume that this does not happen

0. LHCb Detector in Run 3 41

Track-Finding Evaluation

• To perform track-finding, need to match found tracks to true particles
• At LHCb: track matched to particle if at least 𝟕𝟎% of its hits belong to this particle

Tracks found by the track-finding algorithmTrue particles

	Slide 1: GNN-based pipeline for track finding in the Velo at LHCb
	Slide 2: 0. LHCb Detector in Run 3
	Slide 3: 0. LHCb Detector in Run 3
	Slide 4: 0. LHCb Detector in Run 3
	Slide 5: 1. Graph Neural Network Track Finding
	Slide 6: 1. Graph Neural Network Track Finding
	Slide 7: 1. Graph Neural Network Track Finding
	Slide 8: 1. Graph Neural Network Track Finding
	Slide 9: 1. Graph Neural Network Track Finding
	Slide 10: 1. Graph Neural Network Track Finding
	Slide 11: 1. Graph Neural Network Track Finding
	Slide 12: 1. Graph Neural Network Track Finding
	Slide 13: 1. Graph Neural Network Track Finding
	Slide 14: 1. Graph Neural Network Track Finding
	Slide 15: 1. Graph Neural Network Track Finding
	Slide 16: 2. Issue of Shared Hits
	Slide 17: 2. Issue of Shared Hits
	Slide 18: 2. Issue of Shared Hits
	Slide 19: 2. Issue of Shared Hits
	Slide 20: 2. Issue of Shared Hits
	Slide 21: 2. Issue of Shared Hits
	Slide 22: 2. Issue of Shared Hits
	Slide 23: 2. Issue of Shared Hits
	Slide 24: 2. Issue of Shared Hits
	Slide 25: 2. Issue of Shared Hits
	Slide 26: 2. Issue of Shared Hits
	Slide 27: 2. Issue of Shared Hits
	Slide 28: 3. Track-Finding Performance
	Slide 29: 3. Performance of ETX4VELO
	Slide 30: 3. Performance of ETX4VELO
	Slide 31: 3. Performance of ETX4VELO
	Slide 32: 3. Performance of ETX4VELO
	Slide 33: 3. Performance of ETX4VELO
	Slide 34: 3. Performance of ETX4VELO
	Slide 35: Conclusion
	Slide 36: Backup Slides
	Slide 37: Velo geometry
	Slide 38: 1. GNN-based Track Finding Approach
	Slide 39: 1. GNN-based Track Finding Approach
	Slide 40: 2. Issue of Shared Hits
	Slide 41: 0. LHCb Detector in Run 3

