

GNN-based pipeline for track finding in the Velo at LHCb

Anthony Correia, on behalf of the LHCb collaboration 10th October 2023

In collaboration with

0. LHCb Detector in Run 3

Collisions and Trigger

0. LHCb Detector in Run 3

3 Tracking detectors

0. LHCb Detector in Run 3

Tracks

Motivations

Graph Neural Network (GNN)-based track-finding pipeline based on the work of **Exa.Trkx** (*Eur. Phys.* <u>J. C 81</u>, 876 (2021))

- Demonstrated near-linear inference time w.r.t. # hits
 - *Conventional* algorithms are worse-than-quadratic
 - Increase in instaneneous luminosity in future upgrades over the next decade
 - \rightarrow need for **even more high-throughput** track-finding algorithms
- **High-parallelisation** potential → compatible with current **GPU-based Allen** trigger
- Future implementation in Allen \Rightarrow allow **like-for-like comparison** with conventional algorithms
- Representation of tracks with a graph quite *natural*

Pure graph representation

5

Graph Building

GNN: filter edges

Build tracks from graph

7

(as developed by the Exa.TrkX collaboration)

Graph Building

GNN: filter edges

Build tracks from graph

Graph Building

GNN: filter edges

Build tracks from graph

Edges are not random

- Forward
- Away from $z \leftrightarrow$ more tilted
- \Rightarrow this features could be learnt by a Neural Network

Graph Building

GNN: filter edges

Build tracks from graph

12

- Overall training strategy in back-up (*essentially* same as Exa.TrkX)
- After training, we choose maximal number of neighbours $k_{max} = 50$ (not optimised)
- To choose maximal squared distance d_{max}^2 , for various values for d_{max}^2 :
 - 1. Build the rough graph using d_{max}^2
 - 2. Remove all fake edges in the rough graph and build the tracks from this purified graph
 - 3. Compute track-finding performance \Rightarrow correspond to the **best performance given** d_{max}^2

Performance if all the fake edges are discarded(\equiv best performance)

 \Rightarrow We will try $d_{\text{max}}^2 = 0.010$ and $d_{\text{max}}^2 = 0.020$

(evaluated on 200 events)

Graph Building

GNN: filter edges

Build tracks from graph

13

Reminder of the strategy

Trained with a sigmoid focal loss

Tracks obtained by identifying connected hits

But if you do this... track efficiency on long electrons is terrible!

Metric	Allen	etx4velo	
Efficiency	98.17%	46.23%	
Clone rate	3.07%	0.47%	
Hit efficiency	95.35%	98.89%	
Hit purity	99,67%	93.89%	

(evaluated on 1000 events)

The Case of Electrons

Observations

- \sim 55 % electrons share hits with another electron
- The 2 electrons share ≥ 1 hit(s) before splitting up

Example 1: share the first hit only

Example 2: share several hits before splitting up

The connected component algorithm consider the 2 electron tracks as a single track

2. Issue of Shared Hits Other Tracks With Shared Hits

Tracks ends on a shared hit

• Track starts on a shared hit

 The last hit of a track is the first hit of another track (>141 in 1000 events)

2. Issue of Shared Hits Edge-Edge Connections

In this case, one cannot even guess that there are *possibly* 2 tracks!

Hit-hit connection is not enough ⇒ need **edge-edge connections**

2. Issue of Shared Hits Edge-Edge Connections

3 kind of **edge connections** (or *triplets*) Could be a shared hit Articulation Left elbow **Right elbow**

Build edge-edge connections

Build edge-edge connections

Classify the edge-edge connections Filter out the fake edge-edge connections

Build edge-edge connections

Classify the edge-edge connections Filter out the fake edge-edge connections

Algorithm to build tracks from edge-edge connections

26

Connect left and right elbows and remove duplicate edge-edge connections

Apply connected components, excluding splitting edge-edge connections

New Hypothesis: a track may split into 2 tracks only one time → Allow to keep *locality*

Connect left and right elbows and remove duplicate edge-edge connections

27

3. Track-Finding Performance

Before building the tracks from the graph of triplets

- Choose $s_{edge,min} = 0.4$ to optimise performance (could be increased to optimise throughput)
- Choose $s_{\text{triplet,min}}$ by evaluating track-finding performance as a function of $s_{\text{triplet,min}}$
 - High efficiency
 - Ghost rate < 1%

 \Rightarrow choose $s_{\text{triplet,min}} = 0.32$

			$s_{\text{triplet}} > 0.32$	$s_{\text{triplet}} > 0.36$
Category	Metric	Allen	Etx4velo	Etx4velo
			$a_{\rm max}^2 = 0.10$	$a_{\rm max} = 0.20$
 Long, no electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Reconstructible in the SciFi ✓ Not an electron 	Efficiency	99.26%	99.28%	99.51%
	Clone rate	2.54%	0.96%	0.89%
	Hit efficiency	96.46%	98.73%	98.90%
	Hit Purity	99.78%	99.94%	99.94%
 Long electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Reconstructible in the SciFi ✓ Electron 	Efficiency	97.11%	98.80%	99.22%
	Clone rate	4,25%	7.42%	7.31%
	Hit efficiency	95.24%	96.54%	96.79%
	Hit purity	97.11%	98.46%	98.46%
 Long, from strange ✓ In acceptance ✓ Reconstructible in the velo ✓ Decays from a strange Good proxy for displaced tracks 	Efficiency	97.69%	97.50%	98.06%
	Clone rate	2.50%	0.92%	0.81%
	Hit efficiency	97.69%	98.22%	98.77%
	Hit purity	99.34%	99.68%	99.68%
X	Ghost rate	2.18%	0.76%	0.81%

- Evaluation with 5,000 events
- 2 different GNN trainings for $d_{\text{max}}^2 = 0.10$ and $d_{\text{max}}^2 = 0.20$

			$s_{\rm triplet} > 0.32$	$s_{\text{triplet}} > 0.36$
Category	Metric	Allen	Etx4velo $d_{\text{max}}^2 = 0.10$	$Etx4velo d_{max}^2 = 0.20$
 Velo-only, no electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Not reconstructible in the SciFi ✓ Not an electron 	Efficiency	96.84%	97.03%	97.86%
	Clone rate	3.84%	1.08%	1.02%
	Hit efficiency	93.89%	97.93%	98.32%
	Hit Purity	99.50%	99.84%	99.82%
 Velo-only electrons ✓ In acceptance ✓ Reconstructible in the velo ✓ Not reconstructible in the SciFi ✓ Electron 	Efficiency	67.81%	85.10%	86.69%
	Clone rate	10.27%	5.02%	4.97%
	Hit efficiency	79.21%	93.33%	93.88%
	Hit purity	97.35%	99.07%	98.99%
 Velo-only, from strange ✓ In acceptance ✓ Not reconstructible in the velo ✓ Decays from a strange Good proxy for displaced tracks 	Efficiency	93.53%	93.07%	96.05%
	Clone rate	5.60%	1.97%	1.77%
	Hit efficiency	90.05%	93.92%	96.05%
	Hit purity	99.36%	99.67%	99.64%
X	Ghost rate	2.18%	0.76%	0.81%

- Evaluation with 5,000 events
- 2 different GNN trainings for $d_{\text{max}}^2 = 0.10$ and $d_{\text{max}}^2 = 0.20$

Velo-only categories

Worse

Velo,
no electrons
$$d_{\rm max}^2 = 0.10$$

34

Conclusion

- Overall good physics reconstruction performance, still room for improvement
- Fotis Giasemis working on C++ inference in Allen
- Next step: moving to the SciFi detector

	Git repositories
<u>xdigi2csv</u>	Convert XDIGI simulated files on the grid to CSV-like files
montetracko	Perform track matching and evaluation in Python
etx4velo (dev branch)	Perform track finding in the velo with a GNN-based approach

Backup Slides

Velo geometry

1 plane = 4 sensor planes

P. C. Tsopelas, 'A Silicon Pixel Detector for LHCb', PhD Thesis, Vrije U., Amsterdam, 2016. <u>https://inspirehep.net/literature/1645999</u>

1. GNN-based Track Finding Approach

Graph Building

GNN: filter edges

Build tracks from graph

Rough graph with $k_{\text{max}} = 50$ and $d_{\text{max}}^2 = 0.010$

Even though 1% of genuine edges are 2-plane apart, the rough graph needs to contain almost 50% of such edges

 $\Rightarrow k_{\text{max}}$ could probably be reduced to increase throughput

- Solve the ambiguity of shared hits under the following hypothesis: "All hits that precede a splitting point can be attributed to all the newly identified tracks"
- \Rightarrow Assume that this does not happen

- To perform track-finding, need to match found tracks to true particles
 - At LHCb: track matched to particle if at least 70% of its hits belong to this particle