An Application of HEP Track Reconstruction Methods to Gaia EDR3

CTD 2023

Mine Gokcen¹, Maurice Garcia-Sciveres², Xiangyang Ju²

1. Istanbul Technical University
2. Lawrence Berkeley National Lab
Contents

● Introduction
 ○ Galactic Astronomy
 ○ Our Research and Connection to Tracking

● Dataset

● Seeding Method

● Results

● Closing Remarks
Introduction
Galactic Archeology

● Studies of galactic structure and objects in Milky Way (MW)
● To understand the origins of our galaxy
Galactic Structure and Stellar Streams

- Galaxies reside inside a dark matter (DM) halo
- DM halos play a major role in galaxy formation and evolution
- Different stellar populations provide insights into the DM distribution across our galaxy through their progenitors’ merging histories.
- In particular, orbits of \textit{stellar streams} show accretion patterns of new matter into our galaxy.
Stellar Streams (Cont.)

- Stellar streams form when stars from satellite star clusters get tidally disrupted
- Stream stars have different kinematics than that of background stars
- They also have distinct chemical compositions and ages
Our Research Question & Connection to Tracking

- Can we apply HEP track reconstruction methods to stars to find stellar streams and stars from other distinct stellar populations?
- To what extent can we automate our process to have as little human input/supervision as possible?
- We can establish the following analogy:
 - Detector hits → stars
 - Space points → kinematics of stars
 - Seeds → groups of stars with similar kinematics
 - Track fitting → finding seeds within vicinity of each other
Today, we show our work in progress of an application of HEP track reconstruction methods to astronomical data.

We will talk about:
- ML-based Seeding
- Seed aggregation -- equivalent to duplicate removal in HEP tracking
Related Works

- Many other groups that work on statistical and computational methods to find streams!

Some references:

- M. Pettee et al. (2023) -- uses weakly-supervised anomaly detection
- A. Bonaca et al. (2014) -- uses MCMC
- N. Shipp et al. (2023) -- uses numerical simulations
- V. Chandra et al. (2023) -- discovery of a gaseous stream
- D. Shih et al. (2023) -- uses deep learning anomaly detection
- ...
Dataset
Gaia Mission

- Gaia is a space observatory and a mission of the European Space Agency (ESA)
- Goal: 3D map of the MW
- Since its launch in 2013, had three major data releases.
- Gaia Collaboration et al. (2016b)
Gaia EDR3

- Catalog of astronomical objects (e.g.: stars, galaxies,...) and their properties. -- Gaia Collaboration et al. (2020a)
- Nearly 2 billion objects
- We look at their positional and kinematic properties
 - Longitude (l)
 - Latitude (b)
 - Proper motion in right ascension (PM RA)
 - Proper motion in declination (PM Dec)
 - Parallax

\{ location \} \\rightarrow \text{angular velocity (kinematics)} \rightarrow \text{gives distance estimate}

Catalog link: https://www.cosmos.esa.int/web/gaia/earlydr3
Gaia Stars in Position & Proper Motion Space
Seeding Stage
Proper Motion of Stars used for seeding

- Within a small patch of sky \([(dl, db) \sim (1, 4) \text{ deg}] \);
- stars from star clusters and streams have different kinematics than that of the background MW stars;
- meaning, they have a different statistical distribution in proper motion space.
- To form seeds, we will need to cluster stars based on their proper motions.

PM distribution in two neighboring small patches of sky
Subsetting Gaia Data: “Chunking”

- Stream stars are locally in the same neighborhood → stars should be clustered locally for seeding.
- Our chunk (2D patches of sky) sizes are picked based on the number of stars contained within, which is optimized for our algorithmic choices.
- We treat galactic disk (orange) separately.
- 2,500 + 30,500 ~ 33,000 chunks in total.
Subsetting Gaia Data: “Chunking”

- Stream stars are locally in the same neighborhood → stars should be clustered locally for seeding.
- Our chunk (2D patches of sky) sizes are picked based on the number of stars contained within, which is optimized for our algorithmic choices.
- We treat galactic disk separately.
- $2,500 + 30,500 \sim 33,000$ chunks in total.
K-means and KNN for Clustering

- For the data clustering and classification, we use k-means and kNN algorithms from FAISS library.
- **FAISS**: Facebook AI Similarity Search
 - An open source library to conduct data mining over user data.
 - Extremely fast and powerful especially with GPU computing.
 - [Clustering demo](#)
- **k-means**: Suggests k centroids (cluster averages) that could represent the data based on how similar the parameter values are.
- **kNN**: Determines which points go into which centroids.
Clustering Proper Motion of Stars

- We assume that stars in both the BG and the signal distributions follow a bivariate Gaussian distribution;
- and that signal-to-BG ratio is low enough so that;
- if we use a very high k for k-means, signal stars are clustered into very few centroids as opposed to the background stars.
- To test for seeds (explained in following slides), k needs to be high enough to create a statistical distribution.
Determining If a Chunk Is Seeded

- For a given chunk, we bin the number of stars in each centroid.
- Chunks with signal stars should have an outlier in the distribution of number of stars in k-means centroids.
- To test for outliers, we look for gaps between the bins and the counts within final bins. (Exact test condition is optimized for 20 bins.)
- We have tried other methods to test for outliers, but this test also works for non-Gaussian distributions.
Seed Stars

- If a chunk passes the seed test, we consider the stars within the top 3 k-means clusters with highest star counts to be seed stars.
Another Example of a Seeded Chunk & Its Seed Stars
Results
k=250 Seed Results: Summary Table

Today for the sake of time we will only go over the **galactic disk** ($|b| < 20$ deg) region results.

<table>
<thead>
<tr>
<th></th>
<th># of chunks</th>
<th># of seeded chunks</th>
<th># of seeded chunks/ # of total chunks</th>
<th># of seed stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>b</td>
<td>> 20$ deg</td>
<td>2,375</td>
<td>618</td>
</tr>
<tr>
<td>$</td>
<td>b</td>
<td>< 20$ deg</td>
<td>30,264</td>
<td>972</td>
</tr>
</tbody>
</table>
Seed Results in Position Space

$k=250$ Seeded Chunks Centers
(gray: all, black: seeded)
Seed Results in Proper Motion Space
Seed Results in Proper Motion Space (Cont.)
Re-Clustering Seed Stars & Seed Aggregation

- Once we obtain seed stars from various seed-search runs with different algorithmic choices,
- such as using a different k for k-means or phase-shifting our chunk centers,
- we combine seed stars and remove duplicates.
- We then re-cluster the seed stars into seeds again, this time using 4D k-means over position and proper motion variables.
- This process also can help us combine multiple seeds that actually represents the same physical object.
- (This is a work in progress.)
Comparing Seeds to Known Objects

- We use SIMBAD database to match our seeds to known objects.
(Examples of) Potential Star Clusters Identified

Sagittarius Dwarf Galaxy and Stream

Basic data:

NAME SDG -- Galaxy

Other object types: G (2014AJ)

ICRS coord. (ep=J2000): 18 55 03.1 -30 28 42 [] D 2004AJ....127..2031K

FK4 coord. (ep=B1950 eq=1950): 18 51 51.0 -30 32 34 []

Gal coord. (ep=J2000): 005.6081 -14.0858 []

Proper motions mas/yr:

-2.650 -0.880 [0.080 0.080] D 1997AJ....113..6341
(Examples of) Potential Star Clusters Identified

NGC 6397

Basic data:

NGC 6397 -- Globular Cluster

Other object types: G1C (2013A&A,GC1), Cl* (C,(KPS2012))

ICRS coord. (ep=J2000) : 17 40 42.09 -53 40 27.6 (Optical) [] D 2010AJ....140.1830G

FK4 coord. (ep=B1950 eq=1950) : 17 36 37.84 -53 38 53.5 []

Gal coord. (ep=J2000) : 338.16501 -11.95952 []

Proper motions mas/yr : 3.30 -17.60 [0.01 0.01 90] C 2019MNRAS.482.5138B

Radial velocity / Redshift / cz : V(km/s) 18.4 [0.1] / z(spectroscopic) 0.000061 [0.000000] / cz 18.40 [0.10]

(Opt) A 2018MNRAS.478.1520B

Parallaxes (mas) : 0.416 [0.010] C 2021MNRAS.505.5978V
Summary & Future Directions

- We established an ML-based seeding method to find distinct stellar populations.
- We have identified examples of seeds belonging to known objects and continuing the process of matching seeds to known objects.
- We have begun to explore tracking methods for combining our seeds.
Backup Slides
Sagittarius dwarf galaxy

8 billion years ago

5.7 billion years ago
First Sagittarius passage

3 billion years ago

1.9 billion years ago
Second Sagittarius passage

1 billion years ago
Third Sagittarius passage

Current situation
https://sci.esa.int/web/gaia/-/galactic-crash-may-have-triggered-solar-system-formation
https://www.esa.int/ESA_Multimedia/Videos/2013/06/Gaia_scanning_the_sky
2D Binned Gaia Stars
(bin width = 0.1 mas/yr)
Gaia Stars in Parallax Space

(Parallax variable is not very reliable.)
K-means and KNN Example

$k=3$ clusters in 2 dimensions
Binned Number of Stars in k-Means Clusters:
For a Seeded Chunk

Num. of Centroids (tot. = k = 250)

Num. of Stars

0 500 1000 1500 2000

40 30 20 10 0
Seed Results in Parallax Space
Window-Slided Chunk Centers
Window-Slided Chunk Seeds
Varying k for K-Means

Chunk Centers
(gray: all tested, black: $k=600$ seeds, red: $k=250$ seeds)
Galactic Halo ($|b| > 20$ deg Region) Seeds
Galactic Halo ($|b| > 20$ deg Region) Seeds
Galactic Halo ($|b| > 20$ deg Region) Seeds