An Application of HEP Track Reconstruction Methods to Gaia EDR3

CTD 2023

Mine Gokcen¹, Maurice Garcia-Sciveres², Xiangyang Ju²

1. Istanbul Technical University
 2. Lawrence Berkeley National Lab

Contents

- Introduction
 - Galactic Astronomy
 - Our Research and Connection to Tracking
- Dataset
- Seeding Method
- Results
- Closing Remarks

Introduction

Galactic Archeology

- Studies of galactic structure and objects in Milky Way (MW)
- To understand the origins of our galaxy

Galactic Structure and Stellar Streams

- Galaxies reside inside a dark matter (DM) halo
- DM halos play a major role in galaxy formation and evolution
- Different stellar populations provide insights into the DM distribution across our galaxy through their progenitors' merging histories.
- In particular, orbits of *stellar streams* show accretion patterns of new matter into our galaxy.

Stellar Streams (Cont.)

- Stellar streams form when stars from satellite star clusters get tidally disrupted
- Stream stars have different kinematics than that of background stars
- They also have distinct chemical compositions and ages

Our Research Question & Connection to Tracking

- Can we apply HEP track reconstruction methods to stars to find stellar streams and stars from other distinct stellar populations?
- To what extent can we automate our process to have as little human input/ supervision as possible?
- We can establish the following analogy:
 - \circ Detector hits \rightarrow stars
 - \circ Space points \rightarrow kinematics of stars
 - \circ Seeds \rightarrow groups of stars with similar kinematics
 - \circ Track fitting \rightarrow finding seeds within vicinity of each other

Our Research Question & Connection to Tracking (Cont.)

- Today, we show our work in progress of an application of HEP track reconstruction methods to astronomical data.
- We will talk about;
 - ML-based Seeding
 - Seed aggregation -- equivalent to duplicate removal in HEP tracking

Related Works

 Many other groups that work on statistical and computational methods to find streams!

Some references:

- <u>M. Pettee et al. (2023)</u> -- uses weakly-supervised anomaly detection
- <u>A. Bonaca et al. (2014)</u> -- uses MCMC
- <u>N. Shipp et al. (2023)</u> -- uses numerical simulations
- V. Chandra et al. (2023) -- discovery of a gaseous stream
- D. Shih et al. (2023) -- uses deep learning anomaly detection

0 ...

Dataset

Gaia Mission

- Gaia is a space observatory and a mission of the European Space Agency (ESA)
- Goal: 3D map of the MW
- Since its launch in 2013, had three major data releases.
- Gaia Collaboration et al. (2016b)

Gaia EDR3

- Catalog of astronomical objects (e.g.: stars, galaxies,...) and their properties. -- Gaia Collaboration et al. (2020a)
- Nearly 2 billion objects
- We look at their positional and kinematic properties
 - Longitude (I) Latitude (b) Ο
 - \bigcirc
 - Proper motion in right ascension (PM RA) Ο

location

- Proper motion in declination (PM Dec) Ο
- Parallax Ο \rightarrow gives distance estimate

Catalog link: <u>https://www.cosmos.esa.int/web/gaia/earlydr3</u>

angular velocity (kinematics)

Gaia Stars in Position & Proper Motion Space

Seeding Stage

Proper Motion of Stars used for seeding

as/yr]

PM Dec

- Within a small patch of sky
 [(dl, db) ~ (1, 4) deg];
- stars from star clusters and streams have different kinematics than that of the background MW stars;
- meaning, they have a different statistical distribution in proper motion space.
- To form seeds, we will need to cluster stars based on their proper motions.

PM distribution in two neighboring small patches of sky

Subsetting Gaia Data: "Chunking"

- Stream stars are locally in the same neighborhood → stars should be clustered locally for seeding
- Our *chunk* (2D patches of sky) sizes are picked based on the number of stars contained within, which is optimized for our algorithmic choices.
- We treat galactic disk (orange) separately.
- 2,500 + 30,500 ~ 33,000 chunks in total

Subsetting Gaia Data: "Chunking"

- Stream stars are locally in the same neighborhood → stars should be clustered locally for seeding
- Our *chunk* (2D patches of sky) sizes are picked based on the number of stars contained within, which is optimized for our algorithmic choices.
- We treat galactic disk separately.
- 2,500 + 30,500 ~ 33,000 chunks in total

K-means and KNN for Clustering

- For the data clustering and classification, we use k-means and kNN algorithms from FAISS library.
- FAISS: Facebook AI Similarity Search
 - An open source library to conduct data mining over user data.
 - Extremely fast and powerful especially with GPU computing.
 - Clustering demo
- k-means: Suggests *k* centroids (cluster averages) that could represent the data based on how similar the parameter values are.
- **kNN**: Determines which points go into which centroids.

Clustering Proper Motion of Stars

- We assume that stars in both the BG and the signal distributions follow a bivariate Gaussian distribution;
- and that signal-to-BG ratio is low enough so that;
- if we use a very high *k* for k-means, signal stars are clustered into very few centroids as opposed to the background stars.
- To test for seeds (explained in following slides), *k* needs to be high enough to create a statistical distribution.

Determining If a Chunk Is Seeded

- For a given chunk, we bin the number of stars in each centroid.
- Chunks with signal stars should have an outlier in the distribution of number of stars in k-means centroids.
- To test for outliers, we look for gaps between the bins and the counts within final bins. (Exact test condition is optimized for 20 bins.)
- We have tried other methods to test for outliers, but this test also works for non-Gaussian distributions.

Seed Stars

• If a chunk passes the seed test, we consider the stars within the top 3 k-means clusters with highest star counts to be seed stars.

80

70 60

50 J

40 [≦]

30

20

10

Binned Stars from a Seeded Patch of Sky (bin width = 0.01 deg)

17.0

16.8

Lat. (b) [deg] 19.4

16.2

16.0 348.0

348.5

349.0

349.5

350.0

Long. (I) [deg]

350.5

351.0

351.5 352.0

Another Example of a Seeded Chunk & Its Seed Stars

Results

k=250 Seed Results: Summary Table

Today for the sake of time we will only go over the **galactic disk** (|b| < 20 deg) region results.

	# of chunks	# of seeded chunks	# of seeded chunks/ # of total chunks	# of seed stars
b > 20 deg	2,375	618	26.0 %	354,557
b < 20 deg	30,264	972	3.21 %	1,013,408

Seed Results in Position Space

(gray: all, black: seeded) 20 15 10 5 b [deg] -5 -10-15 -20 50 100 150 200 250 300 350 l [deg]

k=250 Seeded Chunks Centers

Seed Results in Proper Motion Space

Seed Results in Proper Motion Space (Cont.)

Re-Clustering Seed Stars & Seed Aggregation

- Once we obtain seed stars from various seed-search runs with different algorithmic choices,
- such as using a different *k* for k-means or phase-shifting our chunk centers,
- we combine seed stars and remove duplicates.
- We then re-cluster the seed stars into seeds again, this time using 4D k-means over position and proper motion variables.
- This process also can help us combine multiple seeds that actually represents the same physical object.
- (This is a work in progress.)

Comparing Seeds to Known Objects

- We use <u>SIMBAD</u> database to match our seeds to known objects.
- <u>2000,A&AS,143,9</u>, "The SIMBAD astronomical database", Wenger et al.

	SIMBAD Astronomical Database - CDS (Strasbourg))
MBAD ?		
Queries	Documentation	Information
basic search	Object types	Presentation
by identifier	Nomenclature & Dictionary	
by coordinates	Recommendations for Data Publication	Image thumbnails
by criteria		
reference query	User's guide	Mobile version
scripts	Measurement description	
TAP queries		SimWatch 🔊
	List of journals	
Output options	User annotations documentation	Release:
	Query by urls	SIMBAD4 1.8 - 2023-08
	Acknowledgment	Release history

Content	Basic search	
The SIMBAD astronomical database provides basic data, cross-identifications, bibliography and measurements for astronomical objects outside the solar system.		
SIMBAD can be queried by object name, coordinates and various criteria. Lists of objects and scripts can be submitted.	identifier coordinates (radius=10 arcmin) or hibcode	
Links to some other on-line services are also provided.	SIMBAD search clear help Install the Simbad basic search in your tool bar	

(Examples of) Potential Star Clusters Identified

Sagittarius Dwarf Galaxy and Stream

Basic data :

NAME SDG -- Galaxy

Other object types:	G (2014AJ)
ICRS coord. (ep=J2000) :	18 55 03.1 -30 28 42 [] D 2004AJ127.2031K
FK4 coord. (ep=B1950 eq=1950) :	18 51 51.0 -30 32 34 []
Gal coord. (ep=J2000) :	005.6081 -14.0858 []
Proper motions <i>mas/yr</i> :	-2.650 -0.880 [0.080 0.080] D 1997AJ113634I

(Examples of) Potential Star Clusters Identified

NGC 6397 -- Globular Cluster

Basic data :

NGC 6397

Other object types:		GlC (2013A&A,GCl), Cl* (C,[KPS2012])
ICRS coord. (ep=J2000) :		17 40 42.09 -53 40 27.6 (Optical) [] D 2010AJ140.1830G
FK4 coord. (ep=B1950 eq=1950) : 17 36 37.84 -53 38 53.5 []		
Gal coord	l. <i>(ep=J2000) :</i>	338.16501 -11.95952 []
Proper mo	otions <i>mas/yr</i> :	3.30 -17.60 [0.01 0.01 90] C 2019MNRAS.482.5138B
Radial vel	ocity / Redshift / cz :	V(km/s) 18.4 [0.1] / z(spectroscopic) 0.000061 [0.000000] / cz 18.40 [0.10 (Opt) A 2018MNRAS.478.1520B
Parallaxes	s (mas):	0.416 [0.010] C 2021MNRAS.505.5978V

Summary & Future Directions

- We established an ML-based seeding method to find distinct stellar populations.
- We have identified examples of seeds belonging to known objects and continuing the process of matching seeds to known objects.
- We have begun to explore tracking methods for combining our seeds.

Backup Slides

https://sci.esa.int/web/gaia/-/galactic-crash-may-have-triggered-solar-system-formation

https://www.esa.int/ESA_Multimedia/Videos/2013/06/Gaia_scanning_the_sky

Gaia Stars in Parallax Space

(Parallax variable is not very reliable.)

K-means and KNN Example

k=3 clusters in 2 dimensions

Binned Number of Stars in k-Means Clusters:

Seed Results in Parallax Space

Window-Slided Chunk Centers

46

Window-Slided Chunk Seeds

47

Varying *k* for K-Means

Galactic Halo (|b| > 20 deg Region) Seeds

Galactic Halo (|b| > 20 deg Region) Seeds

Galactic Halo (|b| > 20 deg Region) Seeds

