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● Introduction to CMS tracking and mkFit
● mkFit in CMS: usage & performance in Phase-1/Run 3
● Work towards HL-LHC
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CMS tracking: detector
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● Micro-strip sensors
● Stereo modules (two 

components with a 
0.1 rad stereo angle)

● Analog readout

● Pixel sensors
● ~124M channels
● Digital readout
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CMS tracking: iterative tracking
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● Iterative steps

● Seeding:
○ provides track candidates, with an initial estimate of the 

trajectory parameters and their uncertainties (use 
combination of pixel, strip or mixed hits)

● Pattern recognition:
○ hits compatible with the predicted track position are 

added (Kalman update) to the trajectory and track 
parameters are updated

○ using Combinatorial Kalman Filter (CKF) or mkFit
● Final fit:

○ take into account non-uniform B-field and material details 
○ get the best estimate of (5) parameters of the smoothed 

trajectory combining all hits (outlier hits are rejected)
● Selection:

○ sets quality flags using ML/MVA (more than 20 inputs)
○ aims to reject fake tracks; tracks sharing too many hits 

are also cleaned as duplicates
○ hits on high quality tracks are removed for next iterations

Iter N Iter N+1Clean
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Introduction to mkFit ⇒ Matriplex Kalman trajectory Fitter
● Parallelized and vectorized track finding and fitting

○ Parallelization through Intel TBB
○ Vectorization via SIMD pragmas (mostly in propagation) and Matriplex (Kalman 

operations)
■ Made possible by generalizing detector geometry and its traversal so that sets 

of track candidates undergo the same operations
● Matriplex: classes for vectorized operations on a set of matrices / vectors

○ Includes code generator for optimized matrix multiplication code:
■ fixed element 0 or 1 values – can reduce number of operations by 50%
■ inline transpose
■ generates regular matrix calculation C++ code or intrinsics (FMA supported)

● A three line history
○ 2014 – explore vectorized fitting (Xeon Phi) → success → track finding for high-PU 

environments
■ Goal: Attempt to keep mkFit core experiment-independent

○ 2018 – decent CMS prototype → improve precision, low-pT performance → 
configurability
■ accompanying paper JINST 15 (2020) 09, P09030

○ 2022 – inclusion into CMSSW (CMS software) → start preparing for HL-LHC / 
Phase-2
■ stand-alone mode of operation is still supported
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https://doi.org/10.1088/1748-0221/15/09/P09030
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● CMS tracking has 11 general tracking iterations (+3 regional for jets and 
muons), starting from prompt, pixel-based seeds, then swiping up the rest

● mkFit is introduced since Run 3 and currently used for 5 general 
iterations (≈90% of all reconstructed tracks with pT > 0.5 GeV)

mkFit in CMS iterative tracking
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* In CMS-DP-2022-018, mkFit is also used 
in PixelLess iteration
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https://cds.cern.ch/record/2814000
https://cds.cern.ch/record/2814000
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mkFit in CMS - the tracking workflow
In iterations using mkFit, the tracking workflow consists of the following 
tasks: 

● pre-mkFit: seed finding
● mkFit: track building

○ Seed cleaning (if needed):
■ mkFit processes seeds in parallel 

- can not rely on claimed hits to discard seeds
○ Seed partitioning and sorting: 

■ 5 partitions in η: 
● barrel /|η|~0.8/ transition± /|η|~1.6/ endcap±

■ sorting in { η, φ } with Binnor<>
○ Forward search with quality filtering (optional)
○ Backward fit / search with quality filtering
○ Duplicate removal

● post-mkFit: final-fit, and track quality flagging/selection
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Sorting with Binnor<>

● Fast 2D nearest neighbor search on a grid
○ Generalization of algorithm initially developed for pre-selecting hits.
○ Now also used for seed cleaning, seed partitioning, and duplicate 

removal.
● Specify two axes (like histogram: Nbins, min, max)

○ U(1) type (cyclic) supported → used for ordering in φ
○ Uses bit packing to minimize memory usage (and cache misses)

● Lookup structures created by sorting of registered entries
○ { start, size } pairs are stored for each bin
○ Uses Radix sort
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Geometry description and traversal
● Detectors split into mkFit layers (72 layers in phase-1/Run 3 CMS)

○ Potentially finer granularity than readout / construction 
■ E.g., mono/stereo treated as separate layers

● Layer as an mkFit tracking concept:
○ Track search proceeds through a sequence of layers → called a LayerPlan

■ Plans differ for barrel / transition / endcap
○ This allows parallel processing of                                                                                      

multiple tracks as we do not deal                                                                                           
with individual modules

● Recent updates in mkFit
○ On-the-fly extraction of layer envelopes/gaps
○ Add module-id information to hits to allow for

overlap hit collection
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Single block memory allocation

● Memory for all track candidates, including hit-on-track information is 
acquired in a single allocation and distributed sequentially (dealloc is a 
no-op).
○ Reduce allocation and deallocation overhead while still using 

std::vectors.
○ Vector-gather (vgather) instruction is used to fill Matriplex’s with input 

data
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mkFit Configuration system & classes
● Each tracking iteration needs to be separately configurable.

○ class IterationConfig → top-level configuration → which tasks to perform
■ parameters for seed & duplicate cleaning 
■ includes LayerPlan and the following classes

○ class IterationParams → tracking parameters, e.g., max # of holes, χ2 cuts; 
quality filter params
■ can be different for forward / backward search

○ class IterationLayerConfig → parameters specific to layers, hit search 
windows; one per layer (72 layers in phase-1/Run 3)!

● In CMSSW (or any other multi-threaded framework) configuration is required to be 
completely separable → instantiated and managed independently
○ Tracking iterations are configured via Python. 
○ This works well for relatively small number of parameters. mkFit full configuration 

as described above is more complex.
● As a compromise, all mkFit configuration can be loaded (and saved) into JSON

○ Reading of partial JSON overrides is fully supported – patch mode:
■ read full configuration from CMSSW release
■ override desired parameters with a simple additional JSON file

○ Frequently used parameters can also be set via Python (in particular, for heavy-ion 
operations)

○ Plugin-style configuration is still supported in stand-alone mode
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"Standard" functions
● To support multiple iterations and Phase-2 geometry it became obvious we 

would need to introduce a more flexible configuration mechanism for the 
following tasks:

■ seed cleaning & partitioning – per iteration
■ candidate filters: pre- and post-backward fit – per iteration
■ duplicate cleaning – per iteration
■ candidate scoring – per iteration with possible per region override

○ Stuffing extra parameters into IterationConfig & friends can not scale
● Solution: use std::function<task_func_type> catalogs with string keys

○ Populate the catalogs via static object initializers in source files that contain 
the task code
■ can all be hidden in anonymous namespaces
■ function templates can be used to inject compile-time parameters
■ can even be lambdas for simple cases

○ JSON files specify the names / strings for the functions to be picked
○ After configuration loading / setup is complete the names get resolved into 

std::functions<> and become available through IterationConfig
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mkFit in CMS - physics performance
From CMS-DP-2022-018 (*where mkFit is also used in PixelLess iteration)

● Tracking efficiency comparable: Small gains in endcap (2.4 < |η| < 2.8)
● Tracking fake rate better overall: Fake rate reduction with increasing |η|
● Tracking duplicate rate slightly increased: Can be mitigated by 

dedicated duplicate removal.

● (*) pixelLess iteration was switched back to CKF in 2022 after 
inefficiencies were found for low-pT very displaced tracks as in Λ and Ξ 
decays 
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https://cds.cern.ch/record/2814000
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mkFit in CMS - computational performance
From CMS-DP-2022-018 (*where mkFit is also used in 

PixelLess iteration)
● Vectorization and threading scaling tests for initial 

iteration show (according to Amdahl’s Law)
○ ~70% of operations effectively vectorized.
○ >95% of code effectively parallelized.

● Computational speedups when using mkFit:
○ Individual mkFit iterations:     2.7x to 6.7x building 

time reduction

Single-threaded measurements on 
1 Intel® Xeon® Gold 6130 CPU @ 2.10GHz,

local access to inputs
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■ varies depending on quality of seeds/candidates
■ seed cleaning and duplicate merging are not vectorized and some 

iterations need more seed/duplicate cleaning
■ CKF sequential processing of seeds can skip building a seed if its 

hits were already used. mkFit needs to process all seeds (after 
cleaning) independently for effective vectorization

                   ☝   Hidden cost of vectorization

https://cds.cern.ch/record/2814000
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mkFit in CMS - computational performance
From CMS-DP-2022-018 (*where mkFit is also used in 

PixelLess iteration)
● Vectorization and threading scaling tests for initial 

iteration show (according to Amdahl’s Law)
○ ~70% of operations effectively vectorized.
○ >95% of code effectively parallelized.

● Computational speedups when using mkFit:
○ Individual mkFit iterations:     Up to 6.7x building 

time reduction
○ Sum of mkFit iterations:         ~3.5x building time 

reduction
■ Track building with mkFit costs less than 

seeding, ≈ fitting
○ Sum of all iterations:              ~1.7x building time 

reduction
⇒ 25% reduction of total tracking time
⇒ Event throughput increase by 10-15% in Run-3 Single-threaded measurements on 

1 Intel® Xeon® Gold 6130 CPU @ 2.10GHz,
local access to inputs

15

https://cds.cern.ch/record/2814000
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Ongoing & Future work: Phase-1/Run 3

● Use the described changes to further tune Phase-1 CMS iterations
○ Especially track scoring ⇒ use mkFit for more than 5 current iterations

● Final-fit now the most time-consuming tracking task in iterations using 
mkFit
○ ⇒ Explore how mkFit could be used effectively in this area

■ In parallel, this can also improve backward-fit and backward-search 
in mkFit
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Towards HL-LHC

More data and higher pileup

New tracker
● Inner Tracker: 

○ 4 barrel layers, 12 endcap disks
○ Extended coverage up to η = 4.0

● Outer Tracker: 
○ 6 barrel layers, 5 endcap disks
○ Each module consists of two 

closely spaced sensors allowing 
for an L1 track trigger (“pT 
modules”)
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PU 140
PU 200

Run 3 
level

http://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm 

http://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm


10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit 

Geometry Phase-2 support
● CMS Phase-2 geometry has tilted modules

○ Tilted module extent in η also drives the mkFit barrel/transition/endcap 
partitioning
■ implemented in phase-2 specific layer plan support

○ Propagation and Kalman operations requires module position, normal 
and strip direction to be known to mkFit 
■ module info was recently added with Phase-2 in mind

○ Propagation to tilted modules requires proper propagation to plane
■ implementation is a work in progress

18
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Ongoing & Future work: Phase-2
● For Phase-2 we have a proof-of-life minimal configuration

○ Geometry, LayerPlan’s and seed-partitioning are correct
■ Phase-1 functions still used for others

○ ⇒ Continue Phase-2 developments, focus on the first (Initial) iteration
● Explore synergy of mkFit with Line Segment Tracking (LST)

○ LST is a highly parallelizable algorithm that runs efficiently on GPUs
■ Uses Alpaka portability library to run on GPUs and CPUs
■ Can run in CMSSW
■ more details on  LST in a talk on Thursday 

○ LST track candidates can be extended/refined by mkFit to leverage 
more complete knowledge of hits/uncertainties/material using Kalman 
technique
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https://indico.cern.ch/event/1252748/timetable/?view=standard#24-improving-tracking-algorith
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Conclusion
● mkFit is in production mode in CMS since start of Run-3 (2021)

○ As drop-in replacement for CKF (*), used in 5 out of 11 general (+3 
regional/special) iterations with equivalent physics
■ With time reduction for overall tracking of ~25% → for full 

reconstruction of >10%
■ With event throughput increase by ~10-15%

(*) CKF = Combinatorial Kalman Filter, default/legacy for track building when mkFit is 
not used

● Work has started to support Phase-2 tracking
○ Done: generalizations of geometry description, configuration, and 

standard functions
○ In progress: further modularization to support final fit.
○ This will also help us in tuning mkFit for additional CMS iterations 

(already for Run-3) …
○ … and makes mkFit easier to tune for potential other uses.

Related presentation in CTD2023:
● J. Guiang : Improving tracking algorithms with machine learning (Thu 

9.30AM)
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https://indico.cern.ch/event/1252748/timetable/?view=standard#24-improving-tracking-algorith
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Backup slides
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CMS data-MC comparison in 2022
From CMS-DP-2022-064 to highlight simulation quality compared to data

● tracks in ZeroBias (inclusive collision events) and Z→µµ
○ represent broad range of kinematics and production modes

● fairly good agreement
○ residual discrepancies are not attributed to mkFit specifics
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https://cds.cern.ch/record/2843180

