
Track reconstruction with mkFit
and developments towards HL-LHC

mkFit team for CMS Collaboration
A.R. Hall2, A. Yagil1, D.S. Riley5, E. Vourliotis1, G. Cerati3, L. Giannini1,

M. Kortelainen3, M. Masciovecchio1, M. Tadel1, P. Gartung3, P. Elmer4, P. Wittich5,

 S. Krutelyov1, S.R. Lantz5, T. Reid5

1. UCSD, 2. USNA Annapolis, 3. Fermilab, 4. Princeton, 5. Cornell

Connecting the Dots 2023
https://indico.cern.ch/event/1252748

Toulouse, 10th Oct 2023

https://indico.cern.ch/event/1252748

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Outline

2

● Introduction to CMS tracking and mkFit
● mkFit in CMS: usage & performance in Phase-1/Run 3
● Work towards HL-LHC

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

CMS tracking: detector

3

TOB

TIB TID TEC
FPixBPix

● Micro-strip sensors
● Stereo modules (two

components with a
0.1 rad stereo angle)

● Analog readout

● Pixel sensors
● ~124M channels
● Digital readout

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

CMS tracking: iterative tracking

4

● Iterative steps

● Seeding:
○ provides track candidates, with an initial estimate of the

trajectory parameters and their uncertainties (use
combination of pixel, strip or mixed hits)

● Pattern recognition:
○ hits compatible with the predicted track position are

added (Kalman update) to the trajectory and track
parameters are updated

○ using Combinatorial Kalman Filter (CKF) or mkFit
● Final fit:

○ take into account non-uniform B-field and material details
○ get the best estimate of (5) parameters of the smoothed

trajectory combining all hits (outlier hits are rejected)
● Selection:

○ sets quality flags using ML/MVA (more than 20 inputs)
○ aims to reject fake tracks; tracks sharing too many hits

are also cleaned as duplicates
○ hits on high quality tracks are removed for next iterations

Iter N Iter N+1Clean

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Introduction to mkFit ⇒ Matriplex Kalman trajectory Fitter
● Parallelized and vectorized track finding and fitting

○ Parallelization through Intel TBB
○ Vectorization via SIMD pragmas (mostly in propagation) and Matriplex (Kalman

operations)
■ Made possible by generalizing detector geometry and its traversal so that sets

of track candidates undergo the same operations
● Matriplex: classes for vectorized operations on a set of matrices / vectors

○ Includes code generator for optimized matrix multiplication code:
■ fixed element 0 or 1 values – can reduce number of operations by 50%
■ inline transpose
■ generates regular matrix calculation C++ code or intrinsics (FMA supported)

● A three line history
○ 2014 – explore vectorized fitting (Xeon Phi) → success → track finding for high-PU

environments
■ Goal: Attempt to keep mkFit core experiment-independent

○ 2018 – decent CMS prototype → improve precision, low-pT performance →
configurability
■ accompanying paper JINST 15 (2020) 09, P09030

○ 2022 – inclusion into CMSSW (CMS software) → start preparing for HL-LHC /
Phase-2
■ stand-alone mode of operation is still supported

5

https://doi.org/10.1088/1748-0221/15/09/P09030

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

● CMS tracking has 11 general tracking iterations (+3 regional for jets and
muons), starting from prompt, pixel-based seeds, then swiping up the rest

● mkFit is introduced since Run 3 and currently used for 5 general
iterations (≈90% of all reconstructed tracks with pT > 0.5 GeV)

mkFit in CMS iterative tracking
Fr

om
 C

M
S

-D
P

-2
02

2-
01

8

* In CMS-DP-2022-018, mkFit is also used
in PixelLess iteration

6

https://cds.cern.ch/record/2814000
https://cds.cern.ch/record/2814000

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

mkFit in CMS - the tracking workflow
In iterations using mkFit, the tracking workflow consists of the following
tasks:

● pre-mkFit: seed finding
● mkFit: track building

○ Seed cleaning (if needed):
■ mkFit processes seeds in parallel

- can not rely on claimed hits to discard seeds
○ Seed partitioning and sorting:

■ 5 partitions in η:
● barrel /|η|~0.8/ transition± /|η|~1.6/ endcap±

■ sorting in { η, φ } with Binnor<>
○ Forward search with quality filtering (optional)
○ Backward fit / search with quality filtering
○ Duplicate removal

● post-mkFit: final-fit, and track quality flagging/selection

Seeds

Tr
ac

k
bu

ild
in

g
7

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Sorting with Binnor<>

● Fast 2D nearest neighbor search on a grid
○ Generalization of algorithm initially developed for pre-selecting hits.
○ Now also used for seed cleaning, seed partitioning, and duplicate

removal.
● Specify two axes (like histogram: Nbins, min, max)

○ U(1) type (cyclic) supported → used for ordering in φ
○ Uses bit packing to minimize memory usage (and cache misses)

● Lookup structures created by sorting of registered entries
○ { start, size } pairs are stored for each bin
○ Uses Radix sort

8

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Geometry description and traversal
● Detectors split into mkFit layers (72 layers in phase-1/Run 3 CMS)

○ Potentially finer granularity than readout / construction
■ E.g., mono/stereo treated as separate layers

● Layer as an mkFit tracking concept:
○ Track search proceeds through a sequence of layers → called a LayerPlan

■ Plans differ for barrel / transition / endcap
○ This allows parallel processing of

multiple tracks as we do not deal
with individual modules

● Recent updates in mkFit
○ On-the-fly extraction of layer envelopes/gaps
○ Add module-id information to hits to allow for

overlap hit collection

9

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Single block memory allocation

● Memory for all track candidates, including hit-on-track information is
acquired in a single allocation and distributed sequentially (dealloc is a
no-op).
○ Reduce allocation and deallocation overhead while still using

std::vectors.
○ Vector-gather (vgather) instruction is used to fill Matriplex’s with input

data

10

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

mkFit Configuration system & classes
● Each tracking iteration needs to be separately configurable.

○ class IterationConfig → top-level configuration → which tasks to perform
■ parameters for seed & duplicate cleaning
■ includes LayerPlan and the following classes

○ class IterationParams → tracking parameters, e.g., max # of holes, χ2 cuts;
quality filter params
■ can be different for forward / backward search

○ class IterationLayerConfig → parameters specific to layers, hit search
windows; one per layer (72 layers in phase-1/Run 3)!

● In CMSSW (or any other multi-threaded framework) configuration is required to be
completely separable → instantiated and managed independently
○ Tracking iterations are configured via Python.
○ This works well for relatively small number of parameters. mkFit full configuration

as described above is more complex.
● As a compromise, all mkFit configuration can be loaded (and saved) into JSON

○ Reading of partial JSON overrides is fully supported – patch mode:
■ read full configuration from CMSSW release
■ override desired parameters with a simple additional JSON file

○ Frequently used parameters can also be set via Python (in particular, for heavy-ion
operations)

○ Plugin-style configuration is still supported in stand-alone mode

11

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

"Standard" functions
● To support multiple iterations and Phase-2 geometry it became obvious we

would need to introduce a more flexible configuration mechanism for the
following tasks:

■ seed cleaning & partitioning – per iteration
■ candidate filters: pre- and post-backward fit – per iteration
■ duplicate cleaning – per iteration
■ candidate scoring – per iteration with possible per region override

○ Stuffing extra parameters into IterationConfig & friends can not scale
● Solution: use std::function<task_func_type> catalogs with string keys

○ Populate the catalogs via static object initializers in source files that contain
the task code
■ can all be hidden in anonymous namespaces
■ function templates can be used to inject compile-time parameters
■ can even be lambdas for simple cases

○ JSON files specify the names / strings for the functions to be picked
○ After configuration loading / setup is complete the names get resolved into

std::functions<> and become available through IterationConfig

12

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

mkFit in CMS - physics performance
From CMS-DP-2022-018 (*where mkFit is also used in PixelLess iteration)

● Tracking efficiency comparable: Small gains in endcap (2.4 < |η| < 2.8)
● Tracking fake rate better overall: Fake rate reduction with increasing |η|
● Tracking duplicate rate slightly increased: Can be mitigated by

dedicated duplicate removal.

● (*) pixelLess iteration was switched back to CKF in 2022 after
inefficiencies were found for low-pT very displaced tracks as in Λ and Ξ
decays

13

https://cds.cern.ch/record/2814000

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

mkFit in CMS - computational performance
From CMS-DP-2022-018 (*where mkFit is also used in

PixelLess iteration)
● Vectorization and threading scaling tests for initial

iteration show (according to Amdahl’s Law)
○ ~70% of operations effectively vectorized.
○ >95% of code effectively parallelized.

● Computational speedups when using mkFit:
○ Individual mkFit iterations: 2.7x to 6.7x building

time reduction

Single-threaded measurements on
1 Intel® Xeon® Gold 6130 CPU @ 2.10GHz,

local access to inputs

14

■ varies depending on quality of seeds/candidates
■ seed cleaning and duplicate merging are not vectorized and some

iterations need more seed/duplicate cleaning
■ CKF sequential processing of seeds can skip building a seed if its

hits were already used. mkFit needs to process all seeds (after
cleaning) independently for effective vectorization

 ☝ Hidden cost of vectorization

https://cds.cern.ch/record/2814000

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

mkFit in CMS - computational performance
From CMS-DP-2022-018 (*where mkFit is also used in

PixelLess iteration)
● Vectorization and threading scaling tests for initial

iteration show (according to Amdahl’s Law)
○ ~70% of operations effectively vectorized.
○ >95% of code effectively parallelized.

● Computational speedups when using mkFit:
○ Individual mkFit iterations: Up to 6.7x building

time reduction
○ Sum of mkFit iterations: ~3.5x building time

reduction
■ Track building with mkFit costs less than

seeding, ≈ fitting
○ Sum of all iterations: ~1.7x building time

reduction
⇒ 25% reduction of total tracking time
⇒ Event throughput increase by 10-15% in Run-3 Single-threaded measurements on

1 Intel® Xeon® Gold 6130 CPU @ 2.10GHz,
local access to inputs

15

https://cds.cern.ch/record/2814000

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Ongoing & Future work: Phase-1/Run 3

● Use the described changes to further tune Phase-1 CMS iterations
○ Especially track scoring ⇒ use mkFit for more than 5 current iterations

● Final-fit now the most time-consuming tracking task in iterations using
mkFit
○ ⇒ Explore how mkFit could be used effectively in this area

■ In parallel, this can also improve backward-fit and backward-search
in mkFit

16

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Towards HL-LHC

More data and higher pileup

New tracker
● Inner Tracker:

○ 4 barrel layers, 12 endcap disks
○ Extended coverage up to η = 4.0

● Outer Tracker:
○ 6 barrel layers, 5 endcap disks
○ Each module consists of two

closely spaced sensors allowing
for an L1 track trigger (“pT
modules”)

17

PU 140
PU 200

Run 3
level

http://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

http://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Geometry Phase-2 support
● CMS Phase-2 geometry has tilted modules

○ Tilted module extent in η also drives the mkFit barrel/transition/endcap
partitioning
■ implemented in phase-2 specific layer plan support

○ Propagation and Kalman operations requires module position, normal
and strip direction to be known to mkFit
■ module info was recently added with Phase-2 in mind

○ Propagation to tilted modules requires proper propagation to plane
■ implementation is a work in progress

18

0

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Ongoing & Future work: Phase-2
● For Phase-2 we have a proof-of-life minimal configuration

○ Geometry, LayerPlan’s and seed-partitioning are correct
■ Phase-1 functions still used for others

○ ⇒ Continue Phase-2 developments, focus on the first (Initial) iteration
● Explore synergy of mkFit with Line Segment Tracking (LST)

○ LST is a highly parallelizable algorithm that runs efficiently on GPUs
■ Uses Alpaka portability library to run on GPUs and CPUs
■ Can run in CMSSW
■ more details on LST in a talk on Thursday

○ LST track candidates can be extended/refined by mkFit to leverage
more complete knowledge of hits/uncertainties/material using Kalman
technique

19

https://indico.cern.ch/event/1252748/timetable/?view=standard#24-improving-tracking-algorith

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Conclusion
● mkFit is in production mode in CMS since start of Run-3 (2021)

○ As drop-in replacement for CKF (*), used in 5 out of 11 general (+3
regional/special) iterations with equivalent physics
■ With time reduction for overall tracking of ~25% → for full

reconstruction of >10%
■ With event throughput increase by ~10-15%

(*) CKF = Combinatorial Kalman Filter, default/legacy for track building when mkFit is
not used

● Work has started to support Phase-2 tracking
○ Done: generalizations of geometry description, configuration, and

standard functions
○ In progress: further modularization to support final fit.
○ This will also help us in tuning mkFit for additional CMS iterations

(already for Run-3) …
○ … and makes mkFit easier to tune for potential other uses.

Related presentation in CTD2023:
● J. Guiang : Improving tracking algorithms with machine learning (Thu

9.30AM)

20

https://indico.cern.ch/event/1252748/timetable/?view=standard#24-improving-tracking-algorith
https://indico.cern.ch/event/1252748/timetable/?view=standard#24-improving-tracking-algorith

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

Backup slides

21

10.10.2023 S. Krutelyov - CTD 2023: tracking with mkFit

CMS data-MC comparison in 2022
From CMS-DP-2022-064 to highlight simulation quality compared to data

● tracks in ZeroBias (inclusive collision events) and Z→µµ
○ represent broad range of kinematics and production modes

● fairly good agreement
○ residual discrepancies are not attributed to mkFit specifics

22

https://cds.cern.ch/record/2843180

