Evaluation of
Graph Sampling
and Partitioning

for Edge
Classification and
Tracking

Alina Lazar, on behalf of ExaTrkX

Paolo Calafiura, Xiangyang Ju, Ivan Ladutska,
Daniel Murnane, Tuan Minh Pham

.........

— YOUNGSTOWN
e L5 X TrkX STATE
UNIVERSITY

Graph Neural Networks (GNNs) for Tracking

==

= GNN-based track pattern
reconstruction is becoming the tool
for “Connecting the Dots”

= Focus: Scaling GNN training

= Training GNNs is challenging due to
the irregular nature of graph data

= |t takes along time to train

= Scaling to large graphs that exceed
the memory capacity of a single
device is even more challenging

S W ¥ Trix CTD23 2

Memory Requirements for Training GNNs on Large Graphs

S ———

1000 -

—— V100
—— A100 - 40GB
------ A100 - 80GB
--= H100

(0]
©
bt
D
o
)
O 100 4
(]
N
»n 804
40 A
16 A
TrackML OBG-Paper Uk-Union Alibaba-Taobao Clueweb
(1B,100B) (111M,1.6B) (133B,5.5B) (1B,10B) (1B,42.5B)

Dataset (Number of Nodes, Number of Edges)

Legion: Automatically Pushing the Envelope of Multi-GPU System for Billion-Scale GNN Training
CTD23 3

https://www.usenix.org/system/files/atc23_slides_sun.pdf

Training GNNs on Large Graphs

TrackML (1B nodes, 100B edges)
10k events, 100k nodes, 10 million edges

ClueWeb (1B nodes, 42.5B edges)

The ClueWeb22 Dataset (lemurproject.org)

CTD23 4

https://lemurproject.org/clueweb22.php/

Parallelization Schemes - Distributed Data Parallelism (DDP)

S ————

GNN Model Event 0O Event 1 Event 2 Event 3

/

Replica0 Replica 1

S e

1 1

GPUO GPU 1

GPUO GPU 1 GPU 2 GPU 3

DDP Initialization Model

DDP Initialization Data
CTD23

Parallelization schemes - Distributed Data Parallelism (DDP)

— = = —

Model
Replicas

Backward

CTD23

TrackML Dataset Distributed Data Parallelism Training

==

« 80 events for training, 10 for validation
and 10 for testing

* Average number of nodes 84k + 9k

» Average number of edges 2.6m = 600k

* Experiments were run on A100s nodes
with 4 GPUs per node and 80 GB of
memory per GPU

 GPU memory utilization of 88.65%

6- 1.25 - -— 1 GPU
— 4 GPUs
«n 1.00 — 8 GPUs
24" :
—
s — 0.75-
S ©
n - = 0.50-
0.25
0 I I I I I I I
1 GPU 4 GPUs 8 GPUs 0 20 40 60 80 100
Number of GPUs Epoch

L CTD23

Efficiency and Purity - DDP

1.0 1

o
o¢)
|

o
o
|

Efficiency

0.4

— 1 GPU
— 4 GPUs
— 8 GPUs

| I |
0 20 40 60 80 100

Epoch

Using the DDP strategy degrades the
physics performance in terms of both
efficiency and purity.

054 —— 1GPU
—— 4 GPUs
0.49 —— 8 GPUs
Py
= 0.3- !
>
(el
0.2 - \
0.1-
b=
| | | | | |
0 20 40 60 80 100

Epoch

This talk will explore solutions to address
this scaling problem.

Memory Requirements for Training GNNs on TrackML

==

Cco

@)

N

N

2 A
> 100 o®
S o/
= 0/‘ el
- 60-
- 0/ o/
o /
& 40+ A
o ®
=) /
204 .

2 ‘,a
O | |

0 1 2

AVG # of Edges 1le6

e B W TrkX

CTD23

GNN Train Time (hours)

Problem: scaling to
large event graphs that
exceed the memory
capacity of single GPUs

Solution: breaking the
graphs into smaller
subgraphs that can fit
in the memory of single
GPUs

Partitioning versus Mini-Batch Schemes for GNN Training

Training of

Graph Neural Network
P

"~ u‘f L Graph
- \. .r"- Input | Neura
(L Pt Network
Graph)

|. -_ ""‘H.

f

S ————

/Full-batch Training "\

Distributed
P i :!_. "J{“ -~
. .\;W ; '[“,,J. B Gr:iph
B \4{ e Newral
[; () Inpput Network
Whult Graph for
Gﬂth Round Tnumﬁ
Mini-batch Training
Distributed
"\.._'H --\) P "|
; A-'J\ _"'"r Graph
"‘E.
\,y { '=I"']npul Neural
Network
Mini-batch for
Each Round Training

Distributed Full-batch Training

R Computing
} “"1 ; | Nlﬂ —
..‘r . ;{ ,.-k J. Partition Network
f '\.J m\y Wurklﬂud Topology
()) s | Computing l+—s
- - 1" Node
Distributed Mini-batch Training
—) Computing
e HT""" I 'I ."“'A.j Node -~
A “ Multiple . Network
_,{ \ f m" SH I _ Mini-batches Topology
II“" Computing +—
- Node

Haivang L., et al. (2022) A Comprehensive Survey on Distributed Training of Graph Neural Networks

CTD23

10

https://arxiv.org/abs/2211.05368

Graph Partitioning GNN Training

= Samples are partitioned across batches
because the graph doesn’t fit in the
device’'s memory

= Each node and/or edge belongs to one
partition

= There is no overlap between partitions
= Colors indicate partition

CTD23

11

Partitioning versus Mini-Batch Schemes for GNN Training

S ————

Full-batch Training

Distributed
Rl :!_. "J{“ -
..x__‘-;wf_ﬁ f'J'“"J- Graph
. ' ; =———> Neural
Training of (; J\l) / Input |\ tvork
Graph Neural Network Whult Graph for
o g I Each Round Training
"~ u‘f L Graph
; \ ;"‘a ﬁ Neural
C Network Mini-batch Training |
Graph Distributed
_..-x “) _ \ —
; A-'J\ _"'" Graph
.r \.y.r"k '=f' lnput "| Neural
Network
Mini-batch for
Each Round Training

o

Distributed Full-batch Training

R Computing
} “"1 ; | Nlﬂ —
..‘r . ;{ ,.-k J. Partition Network
f '\.J m\y Wurklﬂud Topology
()) s | Computing l+—s
- - 1" Node
Distributed Mini-batch Training
—) Computing
e HT""" I 'I ."“'A.j Node -~
A “ Multiple . Network
_,{ \ f m" SH I _ Mini-batches Topology
II“" Computing +—
- Node

Haivang L., et al. (2022) A Comprehensive Survey on Distributed Training of Graph Neural Networks

CTD23

12

https://arxiv.org/abs/2211.05368

Mini-batch GNN Training

S ———

= Sample-based training first samples the graph
to build mini-batches

= Sampling starts by selecting random subsets
of nodes, edges, or subgraphs to be included
in the mini-batch

= [n a GNN model with nlayers, each mini-
batch includes the input features of the n-
hop neighborhood of those target nodes

= There is overlap between the mini-batches

= Once the mini-batches are generated,
distributed training can be applied

FR A A e CTD23

Graph Partitioning

CTD23

14

Subgraph Sampling

CTD23

15

Train Loss

Training and Validation Lo

ss Results for Mini-batch GNN training

==

80 events for training, 10 for validation,
and 10 for testing

Average number of nodes 84k + 9k
Average number of edges 150k + 30k
Number of nodes in subgraph: 2048

1.25 1

1.00

©c o O
N U ~
O
l | l

= 1 GPU mini
— 1 GPU full

| |
0 20

| | |
40 60 80 100

Epoch

P 4"'-:;" ‘"4 ,’\I/TVL(X

Full-batch — 80 batches
Mini-batch — 3294 batches

1.25
= 1 GPU mini

¢ 1.00 - —— 1 GPU full

@)

|

c 0.75- “ “

O

)

S 0.50

©

> 0.25- :" ‘j“j

| | |
40 60 80 100

Epoch

CTD23 16

Efficiency and Purity - Full vs Mini-batch GNN training

Mini-batch training produces better models than full-batch training

Full-batch best efficiency: 0.957
Mini-batch best efficiency: 0.989

Efficiency

= 1 GPU mini
— 1 GPU full

| | | | | |
0 20 40 60 80 100

Epoch

Full-batch best purity: 0.856
Mini-batch best purity: 0.956

0.9
>\0.8—
=
& 0.7 -
0.6 - = 1 GPU mini
— 1 GPU full
0'5 | | |

| | |
0 20 40 60 80 100
Epoch

CTD23

17

Efficiency and Purity - Mini-batch DDP GNN training

Efficiency

==

Mini-batch best efficiency: Mini-batch sizes: Mini-batch best purity:
« 1GPU-0.989 e 1GPU-3.2k * 1GPU-0.956
e 2GPUs-0.987 e 2GPUs-1.6k e 2GPUs-0.954
« 4 GPUs-0.988 4 GPUs-0.8k « 4 GPUs-0.956
1.00 -
0.95
0.90 >
+
0.85 cE()6—
0.80 - — 1 GPU mini ' — 1 GPU mini
' —— 2 GPUs mini —— 2 GPUs mini
0.75 - | = 4 GPUs mini # — 4 GPUs mini
0.4

I | |
0 20 40 60 80 100

.

e ‘ ¥ TrkX

Epoch

| | | | [|
0 20 40 60 80 100

Epoch

Mini-batch training scales better to multi-GPUs than full-batch training

CTD23

18

Conclusions and Future Work

i

= Graph sampling (mini-batches) improves the performance of GNN training significantly
= Once the mini-batches are generated, distributed training can be applied

= Scaling graph sampling-based training requires:
 algorithms that can form mini-batches without losing information or generating excessive redundant work
« systems that can execute these algorithms efficiently

Further testing and tuning of the sampling and partitioning methods is needed

Sampling and data loading are expensive
GPU-based sampling has the potential to significantly reduce end-to-end training time

How to distribute and store the graph data and how to transfer it in and out of the GPUs to minimize the data
transfers?

e B W TrkX

Volée enjuillet sous le Pont-Neuf, la sculpture de I'enfant au bonnet d'ane va revenir a Toulouse |

Actu Toulouse

CTD23

20

https://actu.fr/occitanie/toulouse_31555/volee-juillet-pont-neuf-sculpture-enfant-bonnet-ane-revenir-toulouse_11590980.html

Memory Requirements for Training the GNN Pipeline

==

)

o @@“@ x:?(ﬁv -
DATA LOADING EMBEDDING BUILD EDGES FILTERING GNNs LABELING

= Filtering (MLP) is used to reduce the number of edges

= Totrainthe GNN with 10k events takes ~2 weeks

* |ncreasing the event graph size (the number of edges) increases the GPU'’s
memory utilization

he ¥ Trkx CTD23

Learning Rate Scaling Rule

l Learning Rate Scaling Rule: When the batch size is multiplied by k, multiply the learning rate by k.

Mini-batch Stochastic Gradient Descent: .. Batch GD
/ — :;‘,_u__ H K\\ - Perfect gradient
1 : : \ ::; T \\\ SEnchastic GD
— S k: ~ -Fastest
Wt+1 = Wt —_—]7 — Vl(x, Wt) \ ‘/ﬂ(_:?“l ‘ \\.\. - Rough-estimate grad
n \ H\.{!g }\\J\ M‘?,L:;m.?' “‘“x_ Nlcini-l::-at-::h GD
X€B \ NN ii{iﬁya i
S, X e
B S N
n is the learning rate e
B is the mini-batch \\a,ﬂx T

Typical practice/suggestion:

» Keep local batch size per worker the same

* Increase the global batch size linearly with the number of devices

* Increase the learning rate proportionally: lry.4. = Ir * num_devices

McCandlish, Sam, et al. "An empirical model of large-batch training." arXiv preprint arXiv:1812.06162 (2018).
Pk CTD23 22

https://arxiv.org/pdf/1812.06162.pdf

The Relationship between Batch Size and Learning Rate

S S = = —

= Batch size is a hyperparameter

= A larger batch size allows computational
speedups from the parallelism of GPUs

= Too large of a batch size leads to poor
generalization

= A batch equal to the entire dataset
guarantees convergence to the global
optima

= A smaller batch size has been shown to
have faster convergence

= The downside of using a smaller batch :
size is that the model is not guaranteed to &
converge to the global optima -

CTD

Training and Validation Loss Results

==

1.25-

Train Loss

c o o -
N U N O
u o wu O
l | l |

= 1 GPU mini
— 2 GPUSs mini
— 4 GPUSs mini

Validation Loss

CTD23

0.75 -

0.50 -

0.25

= 1 GPU mini
— 2 GPUSs mini
— 4 GPUSs mini

24

Overview of Data Parallelism

S ——— = = = — — N

Data parallelism

Graph [partition] parallelism Mini-batch parallelism

- i Dependent mini-batch parallelism Independent mini-batch parallelism
—%ﬁgmu;iu':egr :El;.:aetgr ﬁrﬂg:seﬁﬂae"t‘;aitﬂgfgren;ﬂe Parallgfpmcessing of a rnir':i—batch, with (similar to the traditional ANN parallelism)
potential intra-mini-batch dependencies Parallel ErGCEﬁST ng of a mini-batch, with
. no intra-mini-batch dependencies

Wpzvin- 2 (@REDD-3 (@3- 2
@) 2triv-- % L @F)p=rir- 2 L @D 00 =
- 2 e i “ 2 O’ Heop 3y s
(@ 2orin ﬁ AT %Eé L&hﬁhghméi

Processing whole batch ' weighs Processing mini-batch a1 Processing mini-batch —

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
Analysis.

CTD23 25

https://arxiv.org/pdf/2205.09702.pdf

Graph vs Mini-batch Parallelism

Samples: dependent vertices

- - Each vertex and/or
Graph Earhhnn] pa+ra'||e||sm edge falls into some
cf. full-batch training) partition

Samples are
partitioned
across workers
because the
whaole graph
does not fit
into the memory
of ane worker

S ———

Dependent mini-batch parallelism

Samples are
partitioned
across workers
to accelerate
convergance

Mot all samples
necessarily
belongto a
mini-batch

b\
A sample ===="

Samples may fall
inlupn'-urtal.ffnan

(
v

mini-batch

Samples may

5 les: ind dent hs
amples: independent grap o s ey

Independent mini-batch parallelism more than one

(cf. stochastic mini-batch training) /™"

Samples are . .
partitioned
across workers
to accelerate
convergance ﬂ
—

Mot all samples
necessarily ’ v
belong to a
mini-batch k

"\ - . .
Ll LT
o Graph samples may be of different sizes
A sample (they still have same-size feature vectors)

Fig. 8: (§ 3.1, § 3.2) Graph partition parallelism vs. dependent and independent mini-batch parallelism in GNNs. Different

colors (red,
do not belong to any mini-batch.

, blue) indicate different graph partitions or mini-batches, and the associated different workers. Black vertices

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency

Analysis.

CTD23

26

https://arxiv.org/pdf/2205.09702.pdf

Neighborhood Explosion

Red vertices:
.- an example

mini-batch g

Vertex A, whose
loss we compute

A's 1-hop neighbors N\
A's 2-hop neighbors

Hei;hh-nrhn-nd explosion:
#A's dependent vertices
and their embeddings
can grow exponentially,
and It can easily extend
beyond A’s mini-batch

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
Analysis.

A's dependency Ground
structure when

. (L] Meighborhood explosion: #A's dependent vertices
i label @ ta h A and their embeddings can grow exponentially,
computing loss - and it can easily extend beyond A's mini-batc

loss()
Ii'wﬂ- \)
- g '%%o
L]
4 Bty
necis :F’&b jb 4 by
{L—1}
hA.

20% of (L-1) dependencies
(E=1) (L—1) {L—1} (L=1) >
hy h, hy, hy

o fo fo fo [l |
w
V. V.V, V.

Layer -

36% of (L-2) dependencies
(L-3) .

are outside A's mini-batch
-

-

-

>50% of (L-3) dependencies
are outside A's mini-batch

CTD23

27

https://arxiv.org/pdf/2205.09702.pdf

28

i & & & ° § § & 3§ i & & & ° & § & 3

1000
750
00
0

o

250
500
150
-1000
1000
50
00
0

o
250
s00
750
-1000

™
N
(@]
[
@)

Graph Partition vs Neighbor Sampling

Training and Validation Loss for Mini-batch DDP GNN training

==

1.25- —— 1 GPU mini 1.25- ﬁ —— 1 GPU mini
= 2 GPUs mini 0 = 2 GPUs mini
" 1.007 —— 4 GPUs mini § 1.007 —— 4 GPUs mini
3 0.75- S 0.75- \
gors| |
£ 0.50 § 0.50 - ”
=
0.25 - 0.25 . l!

| | | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100

Epoch Epoch

CTD23

Efficiency - Full vs Mini-batch GNN training

0.90

=
o
=

0.75

0.70

Interaction GNN Edge-wise Efficiency

0.65

0.60

085 |

s N (Trkx

CTD23

— S— =
Full-Batch Mini-Batch
L L L L
- _)) _)) >‘\ B _)) _))
[Vs =14TeV, tt, (u) = 200, primaries tt and soft interactions) 2 - Vs =14TeV, tt, (u) = 200, primaries tt and soft interactions)
r pr>1GeV, [n<4 .% 10F pr>1GeV, [n<4
' L
- [b]
0
+ lg -
—— © 09
- o
L= I
— wL
=
_ z | —
—_— O I
5 08 Py —
— E= -
N S _ D
[I
= | T
L 07 F
| | | |
(4]
10 10 10 10
priGeV] priGeV]

30

	Evaluation of Graph Sampling and Partitioning for Edge Classification and Tracking
	Graph Neural Networks (GNNs) for Tracking
	Memory Requirements for Training GNNs on Large Graphs
	Training GNNs on Large Graphs
	Parallelization Schemes – Distributed Data Parallelism (DDP)
	Parallelization schemes – Distributed Data Parallelism (DDP)
	TrackML Dataset Distributed Data Parallelism Training
	Efficiency and Purity - DDP
	Memory Requirements for Training GNNs on TrackML
	Partitioning versus Mini-Batch Schemes for GNN Training
	Graph Partitioning GNN Training
	Partitioning versus Mini-Batch Schemes for GNN Training
	Mini-batch GNN Training
	Graph Partitioning
	Subgraph Sampling
	Training and Validation Loss Results for Mini-batch GNN training
	Efficiency and Purity - Full vs Mini-batch GNN training
	Efficiency and Purity - Mini-batch DDP GNN training
	Conclusions and Future Work
	Thank you!
	Memory Requirements for Training the GNN Pipeline
	Learning Rate Scaling Rule
	The Relationship between Batch Size and Learning Rate
	Training and Validation Loss Results
	Overview of Data Parallelism
	Graph vs Mini-batch Parallelism
	Neighborhood Explosion
	Graph Partition vs Neighbor Sampling
	Training and Validation Loss for Mini-batch DDP GNN training
	Efficiency - Full vs Mini-batch GNN training

