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Graph Neural Networks (GNNs) for Tracking

 GNN-based track pattern 
reconstruction is becoming the tool 
for “Connecting the Dots” 

 Focus: Scaling GNN training

 Training GNNs is challenging due to 
the irregular nature of graph data

 It takes a long time to train

 Scaling to large graphs that exceed 
the memory capacity of a single 
device is even more challenging 
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Memory Requirements for Training GNNs on Large Graphs
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Legion:  Automatically Pushing the Envelope of Multi-GPU System for Billion-Scale GNN Training

https://www.usenix.org/system/files/atc23_slides_sun.pdf


Training GNNs on Large Graphs
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TrackML (1B nodes, 100B edges)
10k events, 100k nodes, 10 million edges

ClueWeb (1B nodes, 42.5B edges)

The ClueWeb22 Dataset (lemurproject.org)

https://lemurproject.org/clueweb22.php/


Parallelization Schemes – Distributed Data Parallelism (DDP)
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DDP Initialization Model

GNN Model

GPU 0 GPU 1

Replica 0 Replica 1

DDP Initialization Data



Parallelization schemes – Distributed Data Parallelism (DDP)
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Forward

Backward
GPU 0 GPU 1

Replica 0 Replica 1

Data 0 Data 1

Data



TrackML Dataset Distributed Data Parallelism Training
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• Experiments were run on A100s nodes 
with 4 GPUs per node and 80 GB of 
memory per GPU

• GPU memory utilization of 88.65%

• 80 events for training, 10 for validation 
and 10 for testing

• Average number of nodes 84k ± 9k
• Average number of edges 2.6m ± 600k



Efficiency and Purity - DDP 
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Using the DDP strategy degrades the 
physics performance in terms of both 
efficiency and purity.

This talk will explore solutions to address 
this scaling problem.



Memory Requirements for Training GNNs on TrackML
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Problem: scaling to 
large event graphs that 
exceed the memory 
capacity of single GPUs

Solution: breaking the 
graphs into smaller 
subgraphs that can fit 
in the memory of single 
GPUs



Partitioning versus Mini-Batch Schemes for GNN Training
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Haiyang L., et al. (2022) A Comprehensive Survey on Distributed Training of Graph Neural Networks
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https://arxiv.org/abs/2211.05368


Graph Partitioning GNN Training
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 Samples are partitioned across batches 
because the graph doesn’t fit in the 
device’s memory

 Each node and/or edge belongs to one 
partition

 There is no overlap between partitions

 Colors indicate partition
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Partitioning versus Mini-Batch Schemes for GNN Training
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Haiyang L., et al. (2022) A Comprehensive Survey on Distributed Training of Graph Neural Networks
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https://arxiv.org/abs/2211.05368


Mini-batch GNN Training
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 Sample-based training first samples the graph 
to build mini-batches

 Sampling starts by selecting random subsets 
of nodes, edges, or subgraphs  to be included 
in the mini-batch

 In a GNN model with n layers, each mini-
batch includes the input features of the  n-
hop neighborhood of those target nodes

 There is overlap between the mini-batches

 Once the mini-batches are generated, 
distributed training can be applied



Graph Partitioning
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Subgraph Sampling
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Training and Validation Loss Results for Mini-batch GNN training
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• 80 events for training, 10 for validation, 
and 10 for testing

• Average number of nodes 84k ± 9k
• Average number of edges 150k ± 30k
• Number of nodes in subgraph: 2048

Full-batch – 80 batches
Mini-batch – 3294 batches



Efficiency and Purity - Full vs Mini-batch GNN training 
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Full-batch best efficiency: 0.957
Mini-batch best efficiency: 0.989

Full-batch best purity: 0.856
Mini-batch best purity: 0.956

Mini-batch training produces better models than full-batch training 



Efficiency and Purity - Mini-batch DDP GNN training 
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Mini-batch sizes:
• 1 GPU – 3.2k
• 2 GPUs – 1.6k
• 4 GPUs – 0.8k

Mini-batch best efficiency:
• 1 GPU – 0.989
• 2 GPUs – 0.987
• 4 GPUs – 0.988

Mini-batch best purity:
• 1 GPU – 0.956
• 2 GPUs – 0.954
• 4 GPUs – 0.956

Mini-batch training scales better to multi-GPUs than full-batch training



Conclusions and Future Work 

 Graph sampling (mini-batches) improves the performance of GNN training significantly

 Once the mini-batches are generated, distributed training can be applied

 Scaling graph sampling-based training requires:
• algorithms that can form mini-batches without losing information or generating excessive redundant work
• systems that can execute these algorithms efficiently
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 Further testing and tuning of the sampling and partitioning methods is needed

 Sampling and data loading are expensive

 GPU-based sampling has the potential to significantly reduce end-to-end training time

 How to distribute and store the graph data and how to transfer it in and out of the GPUs to minimize the data 
transfers?



Thank you!
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Volée en juillet sous le Pont-Neuf, la sculpture de l'enfant au bonnet d'âne va revenir à Toulouse | 
Actu Toulouse

https://actu.fr/occitanie/toulouse_31555/volee-juillet-pont-neuf-sculpture-enfant-bonnet-ane-revenir-toulouse_11590980.html


Memory Requirements for Training the GNN Pipeline
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 Filtering (MLP) is used to reduce the number of edges 
 To train the GNN with 10k events takes ~2 weeks
 Increasing the event graph size (the number of edges) increases the GPU’s 

memory utilization
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Learning Rate Scaling Rule

Learning Rate Scaling Rule: When the batch size is multiplied by k, multiply the learning rate by k.
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Mini-batch Stochastic Gradient Descent:

Typical practice/suggestion: 
• Keep local batch size per worker the same
• Increase the global batch size linearly with the number of devices 
• Increase the learning rate proportionally: 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑙𝑙𝑙𝑙 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑤𝑤𝑡𝑡+1 = 𝑤𝑤𝑡𝑡 − 𝜂𝜂
1
𝑛𝑛
�
𝑥𝑥∈ℬ

∇𝑙𝑙 𝑥𝑥,𝑤𝑤𝑡𝑡

𝜂𝜂 is the learning rate 
ℬ is the mini-batch

McCandlish, Sam, et al. "An empirical model of large-batch training." arXiv preprint arXiv:1812.06162 (2018).

https://arxiv.org/pdf/1812.06162.pdf


The Relationship between Batch Size and Learning Rate

 Batch size is a hyperparameter

 A larger batch size allows computational 
speedups from the parallelism of GPUs 

 Too large of a batch size leads to poor 
generalization

 A batch equal to the entire dataset 
guarantees convergence to the global 
optima

 A smaller batch size has been shown to 
have faster convergence

 The downside of using a smaller batch 
size is that the model is not guaranteed to 
converge to the global optima

23ImageNet DatasetCTD23



Training and Validation Loss Results
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Overview of Data Parallelism

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency 
Analysis.
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https://arxiv.org/pdf/2205.09702.pdf


Graph vs Mini-batch Parallelism

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency 
Analysis.
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https://arxiv.org/pdf/2205.09702.pdf


Neighborhood Explosion

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency 
Analysis.
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https://arxiv.org/pdf/2205.09702.pdf


Graph Partition vs Neighbor Sampling
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Training and Validation Loss for Mini-batch DDP GNN training
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Efficiency - Full vs Mini-batch GNN training 
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Full-Batch Mini-Batch
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