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Graph Neural Networks (GNNs) for Tracking

==

= GNN-based track pattern
reconstruction is becoming the tool
for “Connecting the Dots”

= Focus: Scaling GNN training

= Training GNNs is challenging due to
the irregular nature of graph data

= |t takes along time to train

= Scaling to large graphs that exceed
the memory capacity of a single
device is even more challenging
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Memory Requirements for Training GNNs on Large Graphs
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Legion: Automatically Pushing the Envelope of Multi-GPU System for Billion-Scale GNN Training
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https://www.usenix.org/system/files/atc23_slides_sun.pdf

Training GNNs on Large Graphs

TrackML (1B nodes, 100B edges)
10k events, 100k nodes, 10 million edges

ClueWeb (1B nodes, 42.5B edges)

The ClueWeb22 Dataset (lemurproject.org)
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https://lemurproject.org/clueweb22.php/

Parallelization Schemes - Distributed Data Parallelism (DDP)
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Parallelization schemes - Distributed Data Parallelism (DDP)
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TrackML Dataset Distributed Data Parallelism Training

==

« 80 events for training, 10 for validation
and 10 for testing

* Average number of nodes 84k + 9k

» Average number of edges 2.6m = 600k

* Experiments were run on A100s nodes
with 4 GPUs per node and 80 GB of
memory per GPU

 GPU memory utilization of 88.65%
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Efficiency and Purity - DDP

1.0 1

o
o¢)
|

o
o
|

Efficiency

0.4

— 1 GPU
— 4 GPUs
— 8 GPUs

| I |
0 20 40 60 80 100

Epoch

Using the DDP strategy degrades the
physics performance in terms of both
efficiency and purity.
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This talk will explore solutions to address
this scaling problem.



Memory Requirements for Training GNNs on TrackML

==
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Problem: scaling to
large event graphs that
exceed the memory
capacity of single GPUs

Solution: breaking the
graphs into smaller
subgraphs that can fit
in the memory of single
GPUs



Partitioning versus Mini-Batch Schemes for GNN Training
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Haivang L., et al. (2022) A Comprehensive Survey on Distributed Training of Graph Neural Networks
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https://arxiv.org/abs/2211.05368

Graph Partitioning GNN Training

= Samples are partitioned across batches
because the graph doesn’t fit in the
device’'s memory

= Each node and/or edge belongs to one
partition

= There is no overlap between partitions
= Colors indicate partition

CTD23
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Partitioning versus Mini-Batch Schemes for GNN Training
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https://arxiv.org/abs/2211.05368

Mini-batch GNN Training

S ———

= Sample-based training first samples the graph
to build mini-batches

= Sampling starts by selecting random subsets
of nodes, edges, or subgraphs to be included
in the mini-batch

= [n a GNN model with nlayers, each mini-
batch includes the input features of the n-
hop neighborhood of those target nodes

= There is overlap between the mini-batches

= Once the mini-batches are generated,
distributed training can be applied

FR A A e CTD23



Graph Partitioning
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Subgraph Sampling
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Train Loss

Training and Validation Lo

ss Results for Mini-batch GNN training

==

80 events for training, 10 for validation,
and 10 for testing

Average number of nodes 84k + 9k
Average number of edges 150k + 30k
Number of nodes in subgraph: 2048
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Efficiency and Purity - Full vs Mini-batch GNN training

Mini-batch training produces better models than full-batch training

Full-batch best efficiency: 0.957
Mini-batch best efficiency: 0.989

Efficiency
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Full-batch best purity: 0.856
Mini-batch best purity: 0.956
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Efficiency and Purity - Mini-batch DDP GNN training

Efficiency

==
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Mini-batch training scales better to multi-GPUs than full-batch training
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Conclusions and Future Work

i

= Graph sampling (mini-batches) improves the performance of GNN training significantly
= Once the mini-batches are generated, distributed training can be applied

= Scaling graph sampling-based training requires:
 algorithms that can form mini-batches without losing information or generating excessive redundant work
« systems that can execute these algorithms efficiently

Further testing and tuning of the sampling and partitioning methods is needed

Sampling and data loading are expensive
GPU-based sampling has the potential to significantly reduce end-to-end training time

How to distribute and store the graph data and how to transfer it in and out of the GPUs to minimize the data
transfers?
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Volée enjuillet sous le Pont-Neuf, la sculpture de I'enfant au bonnet d'ane va revenir a Toulouse |

Actu Toulouse
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https://actu.fr/occitanie/toulouse_31555/volee-juillet-pont-neuf-sculpture-enfant-bonnet-ane-revenir-toulouse_11590980.html

Memory Requirements for Training the GNN Pipeline

==
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= Filtering (MLP) is used to reduce the number of edges

= Totrainthe GNN with 10k events takes ~2 weeks

* |ncreasing the event graph size (the number of edges) increases the GPU'’s
memory utilization
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Learning Rate Scaling Rule

l Learning Rate Scaling Rule: When the batch size is multiplied by k, multiply the learning rate by k.

Mini-batch Stochastic Gradient Descent: .. Batch GD
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Typical practice/suggestion:

» Keep local batch size per worker the same

* Increase the global batch size linearly with the number of devices

* Increase the learning rate proportionally: lry.4. = Ir * num_devices

McCandlish, Sam, et al. "An empirical model of large-batch training." arXiv preprint arXiv:1812.06162 (2018).
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https://arxiv.org/pdf/1812.06162.pdf

The Relationship between Batch Size and Learning Rate

S S = = —

= Batch size is a hyperparameter

= A larger batch size allows computational
speedups from the parallelism of GPUs

= Too large of a batch size leads to poor
generalization

= A batch equal to the entire dataset
guarantees convergence to the global
optima

= A smaller batch size has been shown to
have faster convergence

= The downside of using a smaller batch :
size is that the model is not guaranteed to &
converge to the global optima -
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Training and Validation Loss Results

==
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Overview of Data Parallelism
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Data parallelism

Graph [partition] parallelism Mini-batch parallelism

- i Dependent mini-batch parallelism Independent mini-batch parallelism
—%ﬁgmu;iu':egr :El;.:aetgr ﬁrﬂg:seﬁﬂae"t‘;aitﬂgfgren;ﬂe Parallgfpmcessing of a rnir':i—batch, with (similar to the traditional ANN parallelism)
potential intra-mini-batch dependencies Parallel ErGCEﬁST ng of a mini-batch, with
. no intra-mini-batch dependencies
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Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
Analysis.
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https://arxiv.org/pdf/2205.09702.pdf

Graph vs Mini-batch Parallelism

Samples: dependent vertices
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Graph Earhhnn] pa+ra'||e||sm edge falls into some
cf. full-batch training) partition

Samples are
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S ———

Dependent mini-batch parallelism

Samples are
partitioned
across workers
to accelerate
convergance

Mot all samples
necessarily
belongto a
mini-batch

b\
A sample ===="

Samples may fall
inlupn'-urtal.ffnan

(
v

mini-batch

Samples may

5 les: ind dent hs
amples: independent grap o s ey

Independent mini-batch parallelism more than one

(cf. stochastic mini-batch training) /™"

Samples are . .
partitioned
across workers
to accelerate
convergance ﬂ
—

Mot all samples
necessarily ’ v
belong to a
mini-batch k

# "\ - . .
Ll LT
o Graph samples may be of different sizes
A sample (they still have same-size feature vectors)

Fig. 8: (§ 3.1, § 3.2) Graph partition parallelism vs. dependent and independent mini-batch parallelism in GNNs. Different

colors (red,
do not belong to any mini-batch.

, blue) indicate different graph partitions or mini-batches, and the associated different workers. Black vertices

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency

Analysis.
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Neighborhood Explosion
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mini-batch g
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loss we compute

A's 1-hop neighbors N\
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Hei;hh-nrhn-nd explosion:
#A's dependent vertices
and their embeddings
can grow exponentially,
and It can easily extend
beyond A’s mini-batch

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
Analysis.
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Training and Validation Loss for Mini-batch DDP GNN training

==
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Efficiency - Full vs Mini-batch GNN training
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