Evaluation of Graph Sampling and Partitioning for Edge **Classification and** Tracking

Alina Lazar, on behalf of ExaTrkX

Paolo Calafiura, Xiangyang Ju, Ivan Ladutska, Daniel Murnane, Tuan Minh Pham

Graph Neural Networks (GNNs) for Tracking

- GNN-based track pattern reconstruction is becoming the tool for "Connecting the Dots"
- Focus: Scaling GNN training
- Training GNNs is challenging due to the irregular nature of graph data
- It takes a long time to train
- Scaling to large graphs that exceed the memory capacity of a single device is even more challenging

Memory Requirements for Training GNNs on Large Graphs

Legion: Automatically Pushing the Envelope of Multi-GPU System for Billion-Scale GNN Training

Training GNNs on Large Graphs

ClueWeb (1B nodes, 42.5B edges)

TrackML (1B nodes, 100B edges) 10k events, 100k nodes, 10 million edges

<u>The ClueWeb22 Dataset (lemurproject.org)</u>

Parallelization Schemes – Distributed Data Parallelism (DDP)

Parallelization schemes – Distributed Data Parallelism (DDP)

TrackML Dataset Distributed Data Parallelism Training

- Experiments were run on A100s nodes with 4 GPUs per node and 80 GB of memory per GPU
- GPU memory utilization of 88.65%

- 80 events for training, 10 for validation and 10 for testing
- Average number of nodes 84k ± 9k
- Average number of edges 2.6m ± 600k

Efficiency and Purity - DDP

Using the DDP strategy degrades the physics performance in terms of both efficiency and purity.

Epoch

60

40

80

100

1 GPU

4 GPUs

8 GPUs

20

0.5

0.4 -

0.2

0.1

0

Purity 0.3

TrkX

Memory Requirements for Training GNNs on TrackML

Problem: scaling to large event graphs that exceed the memory capacity of single GPUs

Solution: breaking the graphs into smaller subgraphs that can fit in the memory of single GPUs

Partitioning versus Mini-Batch Schemes for GNN Training

Haiyang L., et al. (2022) A Comprehensive Survey on Distributed Training of Graph Neural Networks

Graph Partitioning GNN Training

- Samples are partitioned across batches because the graph doesn't fit in the device's memory
- Each node and/or edge belongs to one partition
- There is no overlap between partitions
- Colors indicate partition

Partitioning versus Mini-Batch Schemes for GNN Training

Mini-batch GNN Training

- Sample-based training first samples the graph to build mini-batches
- Sampling starts by selecting random subsets of nodes, edges, or subgraphs to be included in the mini-batch
- In a GNN model with *n* layers, each minibatch includes the input features of the n-hop neighborhood of those target nodes
- There is overlap between the mini-batches
- Once the mini-batches are generated, distributed training can be applied

Graph Partitioning

Subgraph Sampling

Training and Validation Loss Results for Mini-batch GNN training

- 80 events for training, 10 for validation, and 10 for testing
- Average number of nodes 84k ± 9k
- Average number of edges 150k ± 30k
- Number of nodes in subgraph: 2048

Full-batch – 80 batches Mini-batch – 3294 batches

Trk

Efficiency and Purity - Full vs Mini-batch GNN training

Mini-batch training produces better models than full-batch training

Full-batch best purity: 0.856 Mini-batch best purity: 0.956

TrkX

Full-batch best efficiency: 0.957 Mini-batch best efficiency: 0.989

Efficiency and Purity - Mini-batch DDP GNN training

Mini-batch best efficiency:

- 1 GPU 0.989
- 2 GPUs 0.987
- 4 GPUs 0.988

Mini-batch sizes:

- 1 GPU 3.2k
- 2 GPUs 1.6k
- 4 GPUs 0.8k

Mini-batch best purity:

- 1 GPU 0.956
- 2 GPUs 0.954
- 4 GPUs 0.956

Mini-batch training scales better to multi-GPUs than full-batch training

Conclusions and Future Work

- Graph sampling (mini-batches) improves the performance of GNN training significantly
- Once the mini-batches are generated, distributed training can be applied
- Scaling graph sampling-based training requires:
 - algorithms that can form mini-batches without losing information or generating excessive redundant work
 - systems that can execute these algorithms efficiently

- Further testing and tuning of the sampling and partitioning methods is needed
- Sampling and data loading are expensive
- GPU-based sampling has the potential to significantly reduce end-to-end training time
- How to distribute and store the graph data and how to transfer it in and out of the GPUs to minimize the data transfers?

Thank you!

Volée en juillet sous le Pont-Neuf, la sculpture de l'enfant au bonnet d'âne va revenir à Toulouse | <u>Actu Toulouse</u>

Memory Requirements for Training the GNN Pipeline

- Filtering (MLP) is used to reduce the number of edges
- To train the GNN with 10k events takes ~2 weeks
- Increasing the event graph size (the number of edges) increases the GPU's memory utilization

Learning Rate Scaling Rule

Learning Rate Scaling Rule: When the batch size is multiplied by k, multiply the learning rate by k.

Mini-batch Stochastic Gradient Descent:

$$w_{t+1} = w_t - \eta \frac{1}{n} \sum_{x \in \mathcal{B}} \nabla l(x, w_t)$$

 η is the learning rate \mathcal{B} is the mini-batch

Batch GD - Slowest - Perfect gradient Stochastic GD - Fastest - Rough-estimate grad Mini-batch GD - Compromise

Typical practice/suggestion:

- Keep local batch size per worker the same
- Increase the global batch size linearly with the number of devices
- Increase the learning rate proportionally: $lr_{scale} = lr * num_devices$

McCandlish, Sam, et al. "An empirical model of large-batch training." arXiv preprint arXiv:1812.06162 (2018).

The Relationship between Batch Size and Learning Rate

- Batch size is a hyperparameter
- A larger batch size allows computational speedups from the parallelism of GPUs
- Too large of a batch size leads to poor generalization
- A batch equal to the entire dataset guarantees convergence to the global optima
- A smaller batch size has been shown to have faster convergence
- The downside of using a smaller batch size is that the model is not guaranteed to converge to the global optima

TrkX

Overview of Data Parallelism

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis. CTD23

Fig. 8: (§ 3.1, § 3.2) Graph partition parallelism vs. dependent and independent mini-batch parallelism in GNNs. Different colors (red, green, blue) indicate different graph partitions or mini-batches, and the associated different workers. Black vertices do not belong to any mini-batch.

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis.

Neighborhood Explosion

Besta, M., and Hoefler, T. (2022). Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency Analysis.

Graph Partition vs Neighbor Sampling

TrkX

Training and Validation Loss for Mini-batch DDP GNN training

Efficiency - Full vs Mini-batch GNN training

Full-Batch

Mini-Batch

TrkX

CTD23