

END-TO-END RECONSTRUCTION ALGORITHM FOR HIGHLY GRANULAR CALORIMETERS

Philipp Zehetner¹², Jan Kieseler¹³, Shah Rukh Qasim⁴, Dolores Garcia¹

¹CERN, ²University of Munich, ³Karlsruhe Institute of Technology, ⁴University of Zurich

- CMS will observe 200 pile-up (PU) events
- Upgrade for end-cap calorimeter **H**igh **G**ranularity **CAL**orimeter (HGCAL)
- HGCAL: 2x ~3M readout channels 52 sampling layers each side
- Silicon sensors and scintillators

MOTIVATION

HIGH-LUMINOSITY-LHC

- Combine calorimeter hits with tracks
- **Cluster** hits to build showers
- **Regress** energy of showers
- **Classify** particle ID
- All of this using one **differentiable** network **CMS HGCAL**

RECONSTRUCTION GOALS

- [Object Condensation](https://arxiv.org/abs/2002.03605)
- [GravNet](https://arxiv.org/abs/1902.07987)
- [End-to-End Reconstruction](https://arxiv.org/abs/2204.01681v2)
- [ACAT 2021](https://indico.cern.ch/event/855454/contributions/4596495/)
- [ACAT 2022](https://indico.cern.ch/event/1106990/contributions/4998017/)

METHODS

- Graph-based neural network implemented in TensorFlow
- Object Condensation Loss allowing points to represent objects
- GravNet Architecture A dynamic GNN that operates on point clouds

REFERENCES

- 56 Sampling layers with 200 µm silicon sensors as active material
- Sensors square in η and φ
- ~3 Million readout channels per end-cap
- Standalone simulation using Geant

TOY DETECTOR

- 52 Sampling layers with 120 µm, 200 µm, 300 µm silicon and scintillators • Heaxgonal silicon sensors
-
- ~3 Million readout channels per end-cap
- Simulation within CMS Software [\(CMSSW\)](http://cms-sw.github.io/index.html)

TRAINING EVENTS

Training Event with ~90 Showers **DATA SETS**

■ Multiple showers + Gaussian noise Single shower + Gaussian noise + 200 PU in full detector

- **Particle Showers**
	-
	- 0.1 GeV < E < 200 GeV
	- \blacksquare 1.5 < η < 3.0
- **Minimum bias**
	-
	- **Simulated with PYTHIA8**
	- **Used for pile-up**
- **Tracks**
	-
	-
- **Train Data**
	-
	-
- **Test Data**
	-
	-

Philipp Zehetner 10.10.2023

■ Electrons, photons, charged pions, or kaons (K-long)

Proton-proton collisions at 13 TeV

Tracks are added for all charged particles **Tracks are flagged as such and have the particles original smeared out energy**

■ Multiple showers + Gaussian noise ■ Multiple showers + Gaussian noise + 200 PU in random 30° φ region

OVERVIEW

DETECTOR SPACE

CONCEPT

- Colour represents different showers
- Overlapping showers make clustering in detector space difficult
- Learn mapping into clustering space
- Learn confidence
- close to 1 hit can β epresent shower
- **In clustering** space hits from the same shower should be close
- Every shower should have at least one hit with high (condensation point)

Philipp Zehetner 10.10.2023

CLUSTER SPACE

OBJECT CONDENSATION

Potential in cluster space seen by a single hit β_j

Minimum: Matching condensation point Local peaks: Condensation points from 3 other showers

 $q_{\alpha} = \tanh^2(\beta_{\alpha})$ $V_{\rm att} \propto q_{\alpha}$ \mathcal{Q}^{\backslash} hit $j \in$ shower k else [Object Condensation](https://arxiv.org/abs/2002.03605)

OBJECT CONDENSATION IN TRAINING

Philipp Zehetner 10.10.2023

7

GRAVNET

GRAVNET LAYER

- transformed features $\frac{1}{\text{transformed features}}$
transformed features F_{in}
low-dimensional GravNet coordinates
-
- 2. Use GravNet coordinates t∂ build graph connect nearest neighbours (KNN) \overline{S}

3. Aggregate Kweighted over neighbours $\frac{1}{2}$

1. Transform input features via dense layer into

- Weights depend on distance between nodes PETWEE
- Aggregation is mean and max value of all neighbours

4. Concatenate to produce output $F_{\rm out}$

MAXIMILIANS NETWORK ARCHITECTURE

- Confidence β
- Energy correction factor
- Particle ID

1. Transform and normalize inputs 2. Use several GravNet layers to exchange information among neighbours 3. Create ouputs using information from all Gravnet

-
- layers

• Cluster coordinates

<https://arxiv.org/abs/1902.07987>

- 1. Sort hits by confidence
- 2. Highest is first condens ation point
- 3. Hits with \hat{n} n distance threshold = 0.25 around are assigned to first shower **tat**
- 4. Remove *falready assigned hits from list*
- 5. Repeat steps 2 4 as long as highest value is larger then threshold $=0.3$ β
- 6. Remaining hits are classified as noise

CREATING SHOWERS

 0.5

X

FAST CLUSTERING ALGORITHM

More sophisticated clustering algorithms such as HDBSCAN can improve our performance at the cost of speed

CLUSTER SPACE

MATCHING SHOWERS

MATCHING CONDITIONS

To evaluate the performance of the algorithm, reconstructed showers are matched with truth showers.

- Reconstructed showers are matched with true showers based on their energy weighted overlap.
- More precisely: The intersection over union between two showers has to be larger than 33%
- If truth shower and reconstructed shower have equal energy, this translates that at least 50% of each shower overlaps

Philipp Zehetner 10.10.2023 1) True shower and predicted shower overlap 2) More complicated matching scenario

Important:

The matching conditions influence the performance metrics, but do not change the performance of the algorithm.

A low threshold allows to find a match for nearly every shower but comes at the cost of degraded energy resolution and vice versa.

DATASETS

to evaluate

CLUSTERING & ENERGY

- Single shower
	- Electrons, photons, charged pions, or kaons (K-long)
	- $E = 20$ GeV, 50 GeV, 100 GeV, 200 GeV
	- $\eta = 2.0$
- Random Gaussian noise
- 200 (40) minimum bias proton-proton collisions

to evaluate

PARTICLE IDENTIFICATION

- 60-90 showers
	-
	- \blacksquare 0.1 GeV \leq E \leq 200 GeV
	- \blacksquare 1.5 \leq η \leq 3.0
- Random Gaussian noise
- No pile-up

Electrons, photons, charged pions, kaons (K-long)

SHOWER QUALITY

EFFICIENCY

Percentage of truth showers that are matched to a reconstructed shower

PURITY

Energy of a reconstructed shower that belongs to matched truth shower

CONTAINMENT

Energy of truth shower that is contained in the matched reconstructed shower

Trade-off between Purity and Containment

- Algorithms that tend to **merge showers** will have **high containment**, but low purity
- Algorithms that tend to **split showers** will have low containment, but can have **high purity**

EFFICIENCY

Philipp Zehetner 11.1 and 10.10.2023

CONTAINMENT

Reconstructed showers almost fully contain true showers **Execuse Reconstructed showers contain most of true showers Containment is independent of pile-up or momentum but differs between EM and HAD showers**

PURITY

- Reconstructed showers also contain PU-hits
- This effect is strongest for low energies and high pile-up
- Can be improved at the cost of containment

RESPONSE AND RESOLUTION

Metrics for matched showers

RESPONSE

Mean of predicted energy over true energy

- Use truth information for clustering
- Energy is sum of all hit energies belonging to shower
- Pile-up may contaminate truth information for overlapping hits

RESOLUTION

Standard deviation of predicted energy over true energy divided by response

Baseline: Ideal Clustering

RESPONSE - 40PU

Response mostly flat for both EM and HAD showers

RESOLUTION - 40PU

- Calorimetric energy resolution improves with higher energies
- Track information improves electron reconstruction
- Offset between optimal clustering and reconstruction between 3% and 8%

RESPONSE - 200PU

- Increased impurities from higher pile-up deteriorate response
- Expected from the purity metrics
- Plan to investigate more sophisticated clustering algorithms (e.g. HDBSCAN)

RESOLUTION - 200PU

- Calorimetric energy resolution improves with higher energies
- Track information improves electron reconstruction
- Offset between optimal clustering and reconstruction larger of electromagnetic showers

PARTICLE IDENTFICATION

 $e¹$

Truth

Particle identification better for lower energies

Philipp Zehetner 10.10.2023

Particle Identification - 100 GeV < E < 200 GeV

COMPUTATIONAL REQUIREMENTS

Inference time for 200 PU events only including the network prediction and no clustering (as this can be done in multiple ways).

- Inference time scales linear with number of input hits
- In 200 PU events inference needs around one second per event
- We have yet to explore potential optimizations

SUMMARY

Continuing to improve the network architecture • Particle identification in pile-up events

- Able to **efficiently** reconstruct showers within **200 Pilup**
- Learn **energy correction** factor to improve energy resolution
- **Particle ID** in multi-shower events
- Step towards an end-to-end differntiable particle-flow algorithm by adding track information

OUTLOOK

-
- Exploring other clustering methods
-
- Train on HGCAL simulations

THANK YOU FOR YOUR ATTENTION!

This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 13E18CHA)

We thank Ian Fisk and the Flatiron Institute for their support with access to their GPU cluster.

