8th International CTD Workshop Université Paul Sabatier, Toulouse, France 10-13 October 2023

CEPC tracking performance with ACTS

Xiaocong Ai¹, Xingtao Huang², Mengyao Liu², Zuyin Qin¹ ¹Zhengzhou University, ²Shandong University

Connecting

he Dots 2023

Connecting The Dots 2023, Toulouse, Oct 10, 2023

The CEPC Tracking system and tracking requirements

Circular Electron Positron Collider (CEPC) physics program

Operation mode		ZH	z	W+W-	tī	
\sqrt{s} [GeV]		240	91	160	360	
Run time [years]		7	2	1	-	
CDR (30 MW)		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs] 1×10 ⁶ 7×10 ¹¹ 2×10		2×107	-	
Run Time [years]		10	2	1	5	
	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
st)		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	13	60	4.2	0.65
ate		Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
S (L	50 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
ID		∫ <i>L dt</i> [ab ⁻¹ , 2 IPs]	21.6	100	6.9	1.0
		Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

- Precision measurements of Higgs boson properties
- SM measurements: electroweak physics, QCD, flavor physics...
- Search for exotic decays of H, Z, B and T, and BSM

Far more than a Higgs factory !

CEPC Detector Conceptual Designs

CEPC CDR Baseline Design (Particle Flow Approach)

CEPC Detector Conceptual Designs

Alternative designs

Tracking system of CEPC 4th concept

Coverage hermiticity down to $|\cos\theta| < 0.992$

Silicon (VXD, SIT, SET, FTD) + Drift chamber (optimized for particle identification)

Tracking detector design

Tracker	Number of layers	Radius/ z (mm)	σ _x (μm)	σ _y (μm)	Technology
VXD	3 double layers	16-58	2.8/6/4/4/4/4	2.8/6/4/4/4/4	
SIT	4 layers	230-770	7.2	86	Silioon
SET	1 layer	1815	7.2	86	(pixel/strip)
FTD	5/7 layers at each endcap	467-2991	(2.8)/(2.8)/7.2/ 7.2/7.2/7.2/7.2	7.2/7.2/7.2/7.2 /7.2	
DC	100 layers	805-1795	110		Drift Chamber

Track multiplicity

Mostly >20 tracks per event
 Op to 100 tracks per event

A ZH event with 56 particles in detector detection region

A ttbar event with 30 particles in detector detection region

From CEPC CDR Physics&Detector (arXiv: 1811.10545)

Tracking requirements

- >99% tracking efficiency for $p_T > 1 \text{ GeV}$
- Impact track parameter resolution at ~ 5 um
- Momentum resolution reaches per mille level in the range [10, 100] GeV

ACTS implementation

A Common Tracking Software

- A modern, open-source, common tracking reconstruction software for particle and nuclear physics experiments
 - Validated and being validated by various experiment applications
- And is going beyond a tracking software
 - Heterogeneous computing, ML...

More about ACTS from talks:

- → J. Couthures: Flash Talk: Seeding with Machine Learning in ACTS
- → L-G Gagnon: On-the-fly measurement calibration with ACTS
- → A. Stefl: Reconstruction performance with ACTS and the Open Data Detector
- → L. Coelho: Seed finding in the Acts Software Package: Algorithms and Optimizations
- → L. AlSarayra: Studying a new Primary Vertex (PV) identification algorithm within ACTS framewo

https://github.com/acts-project/acts

Experiment-independent toolkit for (charged) particle track reconstruction in (high energy) physics experiments implemented in modern C++

simulation reconstruction particle-track-reconstruction physics-experiment

🛱 Readme

- MPL-2.0 license
- Code of conduct
- Cite this repository ▼
- Activity
- ☆ 90 stars
- 12 watching
- **೪ 132** forks

Report repository

ACTS application strategies

CEPC tracker geometry in ACTS format

CEPC drift chamber in ACTS

- A layer-based geometry model is implemented for the drift chamber so far
 - 100 layers, each layer with hundreds to thousands of Acts::LineSurface
 - -> Plan: indexed grid navigation model

		hX local helper frame
	٨	hY ThZ
5	Î	lock
	global frame	
		Transformation
	x	ACTS line surface

Half length	2980 mm		
Inner and outer radius	800mm to 1800 <i>mm</i>		
# of Layers	100/55		
Cell size	~10mmx10mm/18mmx18mm		
Gas	He:iC ₄ H ₁₀ =90:10		
Single cell resolution	0.11 mm		
Sense to field wire ratio	1:3		
Total # of sense wire	81631/24931		
Stereo angle	1.64~3.64 <i>deg</i>		
Sense wire	Gold plated Tungsten ϕ =0.02mm		
Field wire	Silver plated Aluminum $\varphi \text{=} 0.04 \text{mm}$		
Walls	Carbon fiber 0.2 mm(inner) and 2.8 mm(outer)		

CEPC drift chamber cell structure

Tracking strategies with ACTS

- SpacePoint (SP) Creation + Seeding + Combinatorial Kalman Filter (CKF)
 - Seeding: using SPs from 1th, 3th, 5th layers of VXD and 1th, 2th, 3th layers of FTD (far from being optimized selection)
 - CKF for track following starting from track parameters from the seeds
 - No ambiguity resolving yet

CKF for CEPC

- Progressingly associate compatible hits to tracks based on prediction $\chi_2:\chi_2 = r^T (HCHT + V)^{-1}r$
 - r:residual
 - H: projection from track parameters to measurement
 - V: measurement covariance
- Currently, left/right sign of drift circle is taken to be the same as the predicted track parameters
 - Explosive combinatorics if considering two measurements with opposite signs for each drift distance
 - Plan: Implementation of ML-based predictor for the drift sign

Tracking performance

Seeding performance

- >97% seeding efficiency for $p_T > 1$ GeV in benchmark physics processes
 - With 1% duplicate seeds

Tracking performance

- >=95% tracking efficiency for pT > 1 GeV in benchmark physics processes
 - With 1-2% fake tracks and 10% duplicate tracks

Tracking performance

- >99% tracking efficiency is achieved for p_T > 1 GeV, if more SPs from more pixel layers are used
 - Can introduce far more duplicate tracks (up to 70%)

Tracking resolution

- Fitted track parameters are obtained from CKF and compared with truth track parameters
- At $p_T = 10$ GeV, central region ($|\cos\theta| < 0.8$):
 - \circ σ(do) = 3 μm, σ(zo) = 3.5 μm, σ(p_T)/p_T = 0.16%

Preliminary comparison with CEPCSW tracking performance

- CKF-based tracking finding + GenFit track fitting transcribed from Belle-II tracking software are available in CEPCSW
 - >95% tracking efficiency for single particle with p > 10 GeV based on full simulation (~100% with ACTS based on Fatras simulation and much looser track quality requirements)

22

Summary

- ACTS is preliminarily implemented for tracking at CEPC
 - CEPC 4th concept tracker geometry (silicon + drift chamber) has been successfully implemented with ACTS
 - Connection with CEPCSW simulation is still not available
- Promising tracking performance is achieved
 - >99% tracking efficiency achieved for benchmark processes e.g. HZ, Z,
 WW, but with bunches of duplicate tracks
- Much remains to be optimized
 - Try ACTS ML ambiguity resolver to remove fake/duplicate tracks
 - Performance validation with CEPC full simulation (W/ beam backgrounds)
 - More solid comparison with other tracking strategies for CEPC

BACKUP

6	Higgs	W	Z (3T)	Z (2T)
Number of IPs	2			
Beam energy (GeV)	120	80	4:	5.5
Circumference (km)	100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036	
Crossing angle at IP (mrad)		16.	5×2	8
Piwinski angle	3.48	7	23	3.8
Bunch number	242	1524	12000 (10% gap)
Bunch spacing (ns)	680	210	2	25
No. of particles/bunch $N_e(10^{10})$	15	12		8
Beam current (mA)	17.4	87.9	4	61
Synch. radiation power (MW)	30	30	10	5.5
Bending radius (km)	10.7			
β function at IP: β_x^* (m)	0.36	0.36	0.2	0.2
eta_y^* (m)	0.0015	0.0015	0.0015	0.001
Emittance: x (nm)	1.21	0.54	0.18	0.18
<i>y</i> (nm)	0.0024	0.0016	0.004	0.0016
Beam size at IP: σ_x (µm)	20.9	13.9	6.0	6.0
σ_y ($\mu { m m}$)	0.06	0.049	0.078	0.04
Beam-beam parameters: ξ_x	0.018	0.013	0.004	0.004
ξ_y	0.109	0.123	0.06	0.079
RF voltage V_{RF} (GV)	2.17	0.47	47 0.1	
RF frequency f_{RF} (MHz)	650			
Natural bunch length σ_z (mm)	2.72	2.98	2.42	
Bunch length σ_z (mm)	4.4	5.9	8.5	
Natural energy spread (%)	0.1	0.066	0.038	
Energy spread (%)	0.134	0.098	0.08	
Photon number due to beamstrahlung	0.082	0.05	0.023	
Lifetime (hour)	0.43	1.4	4.6	2.5
F (hour glass)	0.89	0.94	0.99	
Luminosity/IP $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	3	10	17	32

 Table 3.1: Main beam parameters for the CEPC operation at three center-of-mass energies. The detector solenoid magnetic field affects the beam quality in the Z-factory operation mode. The last two columns compare the beam parameters for the case of a 2 or 3 Tesla detector solenoid.

Concept	ILD	CEPC baseline	IDEA	
Tracker	TPC/Silicon	TPC/Silicon	Drift Chamber/Silicon	
		or FST		
Solenoid B-Field (T)	3.5	3	2	
Solenoid Inner Radius (m)	3.4	3.2	2.1	
Solenoid Length (m)	8.0	7.8	6.0	
L* (m)	3.5	2.2	2.2	
VTX Inner Radius (mm)	16	16	16	
Tracker Outer Radius (m)	1.81	1.81	2.05	
Calorimeter	PFA	PFA	Dual readout	
Calorimeter λ_I	6.6	5.6	7.5	
ECAL Cell Size (mm)	5	10	-	
ECAL Time resolution (ps)	-	200	 0	
ECAL X_0	24	24	. 	
HCAL Layer Number	48	40	-	
HCAL Absorber	Fe	Fe	- 1	
HCAL λ_I	5.9	4.9	-	
DRCAL Cell Size (mm)	2	20	6.0	
DRCAL Time resolution (ps)	-	-	100	
DRCAL Absorber	-	8 7 8	Pb or Cu or Fe	
Overall Height (m)	14.0	14.5	11.0	
Overall Length (m)	13.2	14.0	13.0	

Figure 3.10: Schematic layout of the IDEA detector.