Expected tracking performance of the ATLAS Inner Tracker Upgrade for Phase-II

Paul Gessinger — on behalf of the ATLAS Collaboration CERN 2023-10-10 — Connecting The Dots 2023, Toulouse

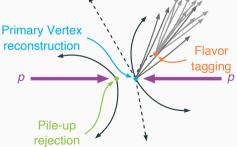
Paul Gessinger

Run 2

 $\langle \mu \rangle \sim 25$

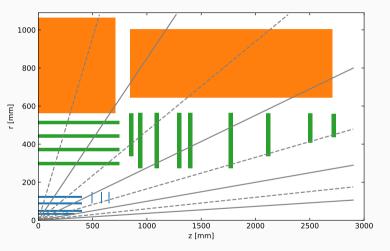
Tracking challenges at HL-LHC

- Tracking is fundamental for event reconstruction: almost everything uses some form of tracking information
- Require tracking to
 Be highly efficient
 - Have low fake rate
- Produce high-precision tracks
- Be fast!
- Tracking complexity scales with number of interactions (μ): It's a combinatorial problem!
- Will push luminosity for HL-LHC
- Detector + reconstruction need to keep up!

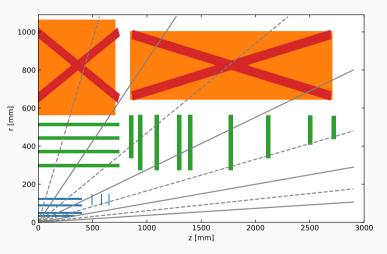

Run 3

 $\langle \mu \rangle \sim 50$

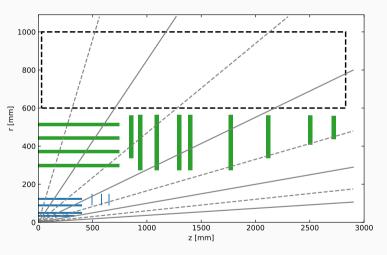
2023-10-10 — CTD 2023


HL-LHC

 $\langle \mu \rangle \sim 200$

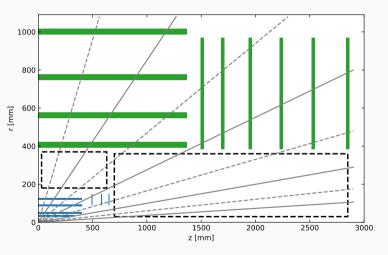

ATLAS InnerTracker Phase-II Upgrade

InnerDetector

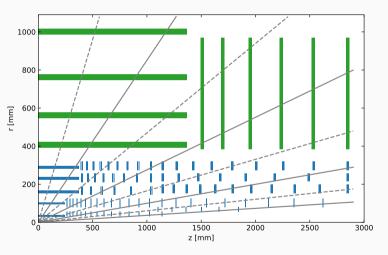

Start from the InnerDetector

InnerTetector

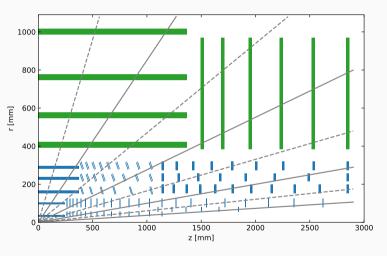
- Start from the InnerDetector
- Drop the TRT


InnerTrtector

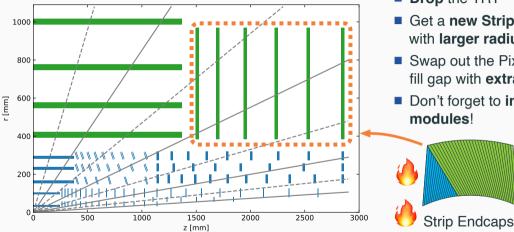
- Start from the InnerDetector
- Drop the TRT


2023-10-10 - CTD 2023

InnerTraector

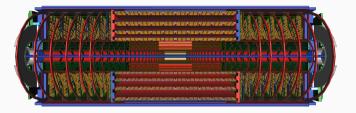

- Start from the InnerDetector
- Drop the TRT
- Get a new Strip detector with larger radius

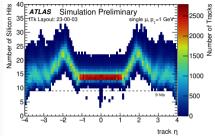
InnerTractor


- Start from the InnerDetector
- Drop the TRT
- Get a new Strip detector with larger radius
- Swap out the Pixel detector, fill gap with **extra layers**

InnerTracker

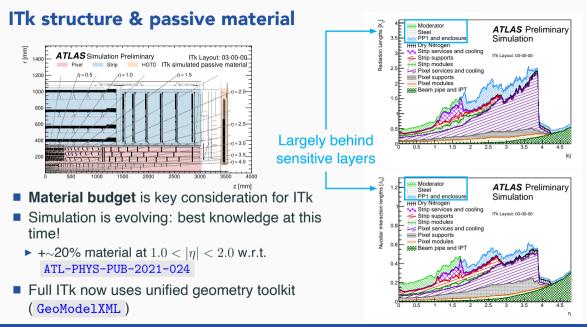
- Start from the InnerDetector
- Drop the TRT
- Get a new Strip detector with larger radius
- Swap out the Pixel detector, fill gap with **extra layers**
- Don't forget to incline your modules!

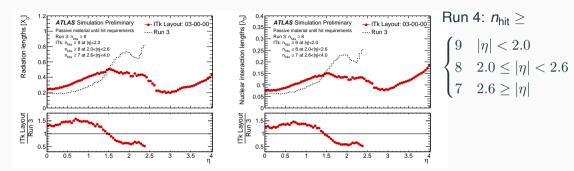

InnerTracker



- Start from the InnerDetector
- Drop the TRT
- Get a new Strip detector with larger radius
- Swap out the Pixel detector, fill gap with extra layers
- Don't forget to incline your modules!

Hottest sensor shape in the business!


ATLAS InnerTracker Phase-II Upgrade



All-silicon detector!

- Strip detector: 4 barrel layers + 6 endcap disks
- Pixel detector: 5 barrel layers + inclined and vertical rings
 - Lowest-radius measurement moves from 33.25 mm (IBL) to 34 mm
 - ▶ Pitch of innermost layer: $50 \times 250 \ \mu m^2$ (IBL) $\Rightarrow 25 \times 100 \ \mu m^2$
- Shown here: best knowledge of detector at this time (03-00-00)!
 - Some results shown with 23-00-03 from 2021
 - Working on comprehensive update as a paper

ITk structure & passive material

- Key quantity of interest: material until hit-requirement
- Quantity has evolved as understanding of ITk construction improved
- Increase material until hit requirement in ITk at central η
- \blacksquare Crossover point at $|\eta| \sim 1.5$ due to inclined Pixel layers
 - $\blacktriangleright\,$ Less material in ITk from about $|\eta|>1.5,$ to the end of ID coverage

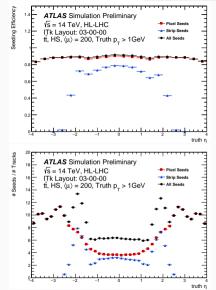

Software environment

- Historically: ITk used separate branch for development
 - Herculean effort to bring changes back into modern toolchain (21.9, still decoupled, ATL-PHYS-PUB-2021-024)
 - ► Follow-up effort to merge with main , reconcile with ongoing Run 3 developments
 - Migration of tracking to ACTS for performance and long-term maintainability
- These are the first public results on ITk performance with the main ATLAS software + first public results of ACTS in Athena!

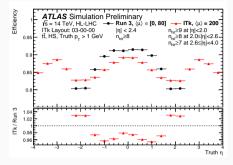
Software environment

More on that later!

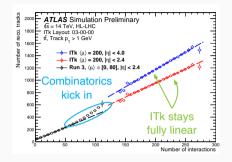
■ Historically: ITk used separate branch for development


- Herculean effort to bring changes back into modern toolchain (21.9, still decoupled, ATL-PHYS-PUB-2021-024)
- ► Follow-up effort to merge with main , reconcile with ongoing Run 3 developments
- These are the first public results on ITk performance with the main ATLAS software + first public results of ACTS in Athena!

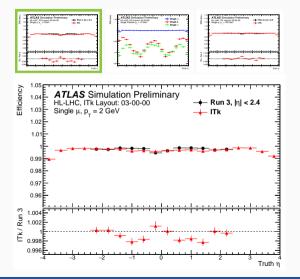
ITk tracking with the current software


PLOTS-IDTR-2023-05

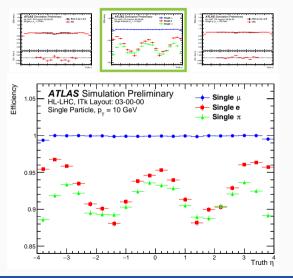
Pattern recognition: Triplet seeding


- First stage of ATLAS track finding: triplet seeding
- Seed efficiency: fraction of particles with a seed with >50% hits shared with the particle
- Independent efficiencies for Pixel- and Strip-only seeds
- Reco chain: Strip seeds processed first, Pixel seeds only used if no track found
 - High barrel efficiency even for Pixel-only due to 5 layers
 - Also enables early rejection by requiring 4th compatible hit
- Seed redundancy: number of seeds over number of tracks vs truth η
 - Well above one, illustrates robustness of pattern recognition

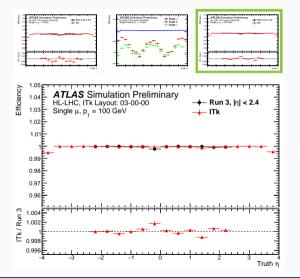
Tracking efficiency in $t\bar{t}$



- Tracking efficiency at $\langle \mu \rangle = 200$ within 5% of Run 3 at $\langle \mu \rangle \in [0, 80]$ (particles $p_{\rm T} > 1$ GeV)
- Increased hit requirements for ITk largely compensated by optimized layout

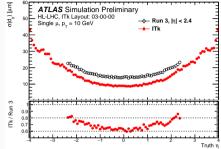

- SW improvement for Run 3. But: still becomes non-linear at $\langle \mu \rangle \sim 80$
- Hardened hit req. and improved seed purity results in linear scaling of number of tracks with µ ~> negligible fake-rate

Tracking efficiency in single-particles

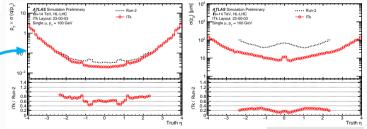

- Single-particle indicative of performance isolated from event activity
- Characterizes detector material, precision, etc.
- µ efficiency is very high as expected at all momenta
- *e* and π efficiencies modulated with detector geometry / material
- High-p_T µ loss-rate of ~140 ppm due to beam-spot requirements & pattern recognition edge effects

Tracking efficiency in single-particles

- Single-particle indicative of performance isolated from event activity
- Characterizes detector material, precision, etc.
- µ efficiency is very high as expected at all momenta
- *e* and π efficiencies modulated with detector geometry / material
- High-p_T μ loss-rate of ~140 ppm due to beam-spot requirements & pattern recognition edge effects


Tracking efficiency in single-particles

- Single-particle indicative of performance isolated from event activity
- Characterizes detector material, precision, etc.
- µ efficiency is very high as expected at all momenta
- *e* and π efficiencies modulated with detector geometry / material
- High-p_T μ loss-rate of ~140 ppm due to beam-spot requirements & pattern recognition edge effects

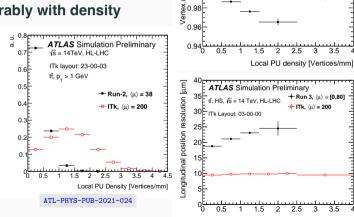

Impact parameter resolution

PLOTS-IDTR-2023-05

Silicon strips outperform TRT in bending plane: improved momentum resolution

- ITk improves IP resolution w.r.t. the Run 3 detector across its coverage
 - Shown here: transverse IP *d*₀ at 10 GeV
 - Same picture at other momenta & z_0
- Critical for pileup rejection & flavor tagging
- Smaller Pixel pitch of innermost layer helps a lot! $(50 \times 250 \ \mu m^2 \rightarrow 25 \times 100 \ \mu m^2)$

ATL-PHYS-PUB-2021-024


2023-10-10 - CTD 2023

+ Run 3, ⟨μ⟩ ∈ [0,80]

+ ITk. (u) = 200

Vertexing performance

- High pileup vertex density at $\langle \mu \rangle$ =200: primary vertexing challenging in presence of pileup tracks
 - Studied in tt events with pileup vertices
- Vertex efficiency scales favorably with density
- Longitudinal resolution at ~10 µm: enables robust pileup vertex rejection!
- ITk reconstruction now (also) uses the ACTS Adaptive Multi-Vertex Finder algorithm
 - Deployed as default for Run 3

- 1.06 1.04

reconstruction

1.06 ATLAS Simulation Preliminary

HS √S = 14 TeV HI-I HC

Tk I avout: 03-00-00

Local PU density [Vertices/mm]

2023-10-10 - CTD 2023

ITk tracking with ACTS

ACTS in ATLAS

What is ACTS? (Repository)

- Experiment-independent toolkit for tracking
 - In-use or in evaluation by a number of experiments!
- Modern software, unit tested, continuous integration
- Minimal external dependencies
- Ready for multi-threading by design

ats,

ACTS and ATLAS

- ATLAS will heavily use ACTS for reconstruction in HL-LHC
- Most advanced deployment: ACTS for ITk reconstruction
 - Projects in other domains ongoing!
- Development fully integrated into ATLAS software environment


```
ATLAS stepper transcribed to ACTS
```

```
double PC = pVector[4] * C[0]
+ pVector[5] * C[1] + pVector[6] * C[2];
double Bn = 1. / PC;
```

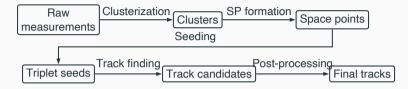
```
double Bx2 = -A[2] * pVector[29];
double Bx3 = A[1] * pVector[38]
- A[2] * pVector[37];
```

```
double By2 = A[2] * pVector[28];
double By3 = A[2] * pVector[36]
- A[0] * pVector[38];
```

```
double Bz2 = A[0] * pVector[29]
- A[1] * pVector[28];
double Bz3 = A[0] * pVector[37]
- A[1] * pVector[36];
```

```
double B2 = B[0] * Bx2 + B[1]
* By2 + B[2] * Bz2;
double B3 = B[0] * Bx3 + B[1]
* By3 + B[2] * Bz3;
```

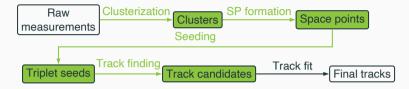
ACTS reimplemented EigenStepper


reinitializeJacobians(freeTransportJacobian,

freeToPathDerivatives, boundToFreeJacobian, direction);

Software written 30+ years before with no one still around who wrote it is not maintainable!

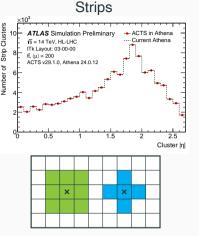
*not exactly identical code

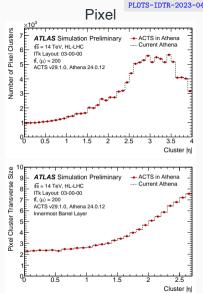

ACTS for ITk deployment

Adding implementations using ACTS tools

- Add option allowing running a tracking chain with pieces using ACTS
- At the same time: enable ACTS output Event Data Model (EDM) to use ATLAS IO infrastructure
 - Converters for validation to allow reusing robust tooling in place
 - No conversions foreseen for final configuration
- At this time: full tracking chain using ACTS available!
 - Post-processing currently using non-ACTS components

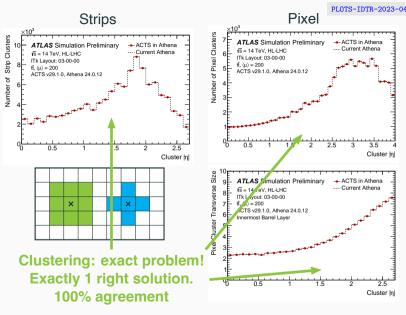
ACTS for ITk deployment

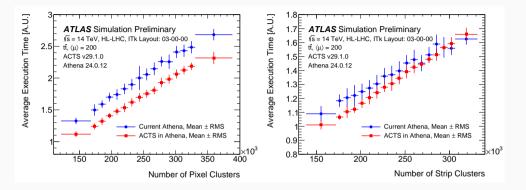



Implemented with ACTS!

- Adding implementations using ACTS tools
- Add option allowing running a tracking chain with pieces using ACTS
- At the same time: enable ACTS output Event Data Model (EDM) to use ATLAS IO infrastructure
 - Converters for validation to allow reusing robust tooling in place
 - No conversions foreseen for final configuration
- At this time: full tracking chain using ACTS available!
 - Post-processing currently using non-ACTS components

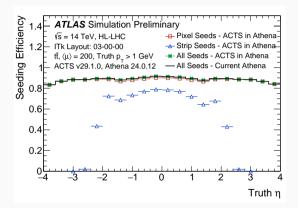
ACTS Clusterization


- Reimplementation of pixel and strip clustering
 - Based on prior ATLAS implementation, with some modifications
- Number of clusters and cluster sizes agree with current ATLAS SW
- Slightly favorable timing compared to current ATLAS SW



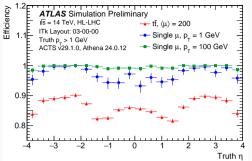
ACTS Clusterization

- Reimplementation of pixel and strip clustering
 - Based on prior ATLAS implementation, with some modifications
- Number of clusters and cluster sizes agree with current ATLAS SW
- Slightly favorable timing compared to current ATLAS SW


ACTS Clusterization timing

- ACTS Clusterization faster than previous Athena implementation
- Pixel: timing differences constant vs. event complexity
- Strips: ACTS implementation has larger speedup at lower complexity

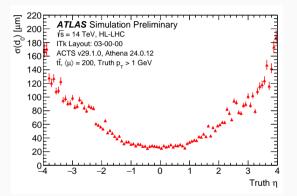
ACTS Seeding performance


- Reimplementation of ATLAS seeding in ACTS¹
- Validated to reproduce 1:1 identical seeds to non-ACTS seeding
- Trade-off of ultimate CPU performance vs. maintainability:
 - No magic numbers!
 - Can tune without changing hard-coded values, less risk of inconsistencies
 - Currently about 10% slower than Athena implementation
 - Optimization ongoing

¹See L. Coelho's talk tomorrow

ACTS tracking efficiency

- Simulation of *tt* events with pileup with standard Athena workflow
- Configured ACTS tracking chain: clusterization, space-point formation, seeding, combinatorial track finding using Combinatorial Track Finder (CKF)
- CKF is a complete reimplementation!
- Outputs converted to standard ATLAS tracks
 - Ambiguity resolution (without refitting) using non-ACTS tools
 - Standard performance validation toolchain



- Single μ efficiencies reasonably high (note: reconstruction requires p_T > 900 MeV at central η!)
- $t\bar{t}$ efficiency within striking distance target performance

All of this is pending thorough optimization & tuning!

ACTS resolution

- Transverse impact parameter resolution directly from the ACTS CKF (no refitting)
- Produces results compatible with the standalone Kalman Filter
 - Caveats: no smoothing, no in-fit measurement calibration
 - KF independently validated against the ATLAS workhorse: the global χ² fitter
- Resolution here mainly due to composition of track population under study

Conclusion

Current Athena

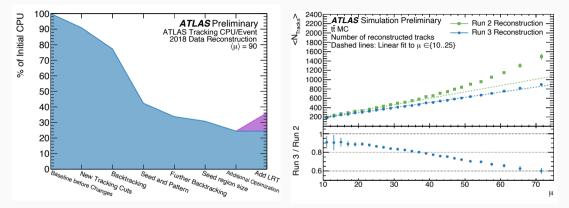
- ITk reconstruction runs on main ATLAS software branch for the first time!
 - No more disconnected branch!
- Brought forward all ITk specific developments
- Most up-to-date description of ITk available
- Results show excellent performance of ITk reconstruction
- Will serve as baseline for developments going forward!

ACTS for ITk

To ensure long-term maintainability of tracking SW:

migration to ACTS for tracking!

- Deployment is progressing
- Full ACTS-based tracking chain now available!
- Reimplementations of existing algorithms + new algorithms
- Performance is promising but still needs optimization


Truth matching

- Efficiencies and resolutions use matched truth particles
- Not trivial since tracks are assembled from individual hits
- Truth matching uses a truth-match probability:

$$P_{\text{match}} = \frac{10 \cdot N_{\text{Pixel}}^{\text{common}} + 5 \cdot N_{\text{Strip}}^{\text{common}}}{10 \cdot N_{\text{Pixel}}^{\text{track}} + 5 \cdot N_{\text{Strip}}^{\text{track}}}$$

• Matched particle: $P_{\text{match}} > 0.5$

Software improvements for Run 3

ATL-PHYS-PUB-2021-012