
Connecting the Dots 2023

1

Improving Tracking Algorithms with ML:  
A case for Line Segment Tracking at the HL-LHC

On behalf of the CMS Collaboration

October 12th, 2023

2

Challenge: HL-LHC Tracking
“High Luminosity” LHC (HL-LHC) planned for 2030s

Current tracking algorithm is inherently sequential ⇒ poor scaling 
We propose LST: a highly parallelizable tracking algorithm

Nominal Run 2 event (PU 30) HL-like event (PU 130)

O(10x) concurrent collisions (“pile up”) = O(10x) tracks 
⇒ need a fast tracking algorithm to keep up

3

Solution: Line Segment Tracking (LST)
At each step, one thread per object: deciding keep or discard

Each step is designed such that objects can be assessed independently  
⇒ massively parallelizable!

Device

Host

Step 1 Step 2

…

Step 3 Step 4 TC

… … … … …
~25K O(100K) O(10K) O(1K) O(100)

Outer Tracker Outer Tracker Outer Tracker Outer Tracker Outer Tracker 
+ 

Inner Tracker

4

Solution: Line Segment Tracking (LST)

IP Outer Tracker

Inner 
Tracker

We will provide a basic description  
of each step of the LST algorithm here

We show the steps here only to introduce 
the LST terminology/context

More info on LST can be found here: 
CTD 2022, CHEP 2023, CMS DP Note

https://arxiv.org/abs/2207.08207
https://indico.jlab.org/event/459/contributions/11399/
https://cds.cern.ch/record/2857438?ln=en

5

LST in a Nutshell: Mini-Doublets

IP Outer Tracker

Inner 
Tracker

Get two hits in each layer in Phase 2 Outer Tracker:  
i.e. Mini-Doublets (MDs) “pT module”

pT estimate for each MD

6

LST in a Nutshell: Mini-Doublets

IP Outer Tracker

Inner 
Tracker

Build all good MDs

Device

Host

MD

good = pT > 0.8

One thread per MD

7

LST in a Nutshell: Line Segments

IP Outer Tracker

Inner 
Tracker

Not allowed to 
skip layers

Unnatural LS 
also not allowed

Build all valid connections of two MDs: 
i.e. Line Segments (LSs)

Derived a “module map” that  
pre-determines valid LSs

Device

Host

MD LS

One thread per LS

8

LST in a Nutshell: Line Segments

IP Outer Tracker

Inner 
Tracker Device

Host

MD LS

Keep good LSs

good = consistency between MD pT

One thread per LS

9

LST in a Nutshell: Triplets

IP Outer Tracker

Inner 
Tracker Device

Host

MD LS T3

Keep good pairs of LSs that share a MD: 
i.e. Triplets (T3s)

good = pT consistency + other constraints

One thread per T3

10

LST in a Nutshell: Quintuplets

IP Outer Tracker

Inner 
Tracker Device

Host

MD LS T3 T5

Keep good pairs of T3s that share a MD: 
i.e. Quintuplets (T5s)

good = pT consistency + circle fit quality

One thread per T5

11

LST in a Nutshell: Track Candidates

IP Outer Tracker

Inner 
Tracker

Take all T5s and match to pixel seeds (pLS): 
i.e. pT5s

Keep good pT5s as Track Candidates (TCs)

Take unmatched T5s, good pT3s (pLS + T3), 
and unmatched pLS also as TCs

good = pT consistency + circle fit quality

pT5

pT3

12

• Line Segment Tracking (LST) is already highly performant and parallelizable

• Central question: where can Machine Learning (ML) realistically be used to
improve LST?

• In this talk we will…

• Outline a suitable step in LST to try a simple ML solution

• Show significant improvements to LST!

• Present a prospectus for more ambitious ML solutions/algorithms

Improving LST with ML

13

ML Opportunity: Quintuplets

pT5s (pLS + T5) + T5s give most of the TC efficiency 
T5s have a high fake rate

4− 3− 2− 1− 0 1 2 3 4
ηSimulated track

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Tr

ac
ki

ng
 e

ffi
ci

en
cy Simulation Preliminary CMS

t = 14 TeV PU200 ts
 < 2.5 cm

vertex
| < 30 cm, r

vertex
 > 0.9 GeV, |z

T
p

All LST objects pT5 pT3 T5
 iteration seedsinitialUnused

4− 3− 2− 1− 0 1 2 3 4
ηTrack candidate

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
 > 0.9 GeV

T
p

All LST objects pT5 pT3 T5
 iteration seedsinitialUnused

14

ML Opportunity: Quintuplets

IP Outer Tracker

Inner 
Tracker

pT5s + T5s give most of the TC eff. 
T5s have a high fake rate 

⇒ there is room for improvement

Can ML do better without heavily 
impacting the total LST runtime?

Next: we train/deploy a small neural  
network for classifying real vs. fake T5s

4− 3− 2− 1− 0 1 2 3 4
ηSimulated track

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tr
ac

ki
ng

 e
ffi

ci
en

cy Simulation Preliminary CMS
t = 14 TeV PU200 ts

 < 2.5 cm
vertex

| < 30 cm, r
vertex

 > 0.9 GeV, |z
T

p

All LST objects pT5 pT3 T5
 iteration seedsinitialUnused

4− 3− 2− 1− 0 1 2 3 4
ηTrack candidate

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
 > 0.9 GeV

T
p

All LST objects pT5 pT3 T5
 iteration seedsinitialUnused

15

T5 DNN Training Data

IP Outer Tracker

Inner 
Tracker

T5 circle fit

Objective  
Train DNN to classify  
“real” vs. “fake” T5s

Real: > 75% of hits are from the same sim track
Fake: not “real”

DNN Training T5s 
Pass basic quality cuts 

Pass r-z χ2 cut 
Pass r-φ χ2 cut

Remove r-φ χ2 cut

Baseline LST T5s 
Pass basic quality cuts 

Pass r-z χ2 cut 
Pass r-φ χ2 cut Quality of circle fit

Uses variables that the 
DNN might use better

~2.1 million T5s  
40% real

16

T5 DNN Features and Configuration

IP Outer Tracker

Inner 
Tracker

Inner T
3

Outer T3

“Bridge T3”

Object Feature

T3 (x2)

pT

Inner anchor hit r, z, φ, η, layer

Middle anchor hit r, z, φ, η, layer

Outer anchor hit r, z, φ, η, layer

Radius of circle fit

T5 candidate
pT, η, φ

Radius of circle fit for Bridge “T3”

Outer T3 circle fit

Anchor*

ReLU ReLU Sigmoid

38 nodes
32 nodes 32 nodes

Input
Hidden Hidden

Output

1 node

Loss = BCE

Objective  
Train DNN to classify  
“real” vs. “fake” T5s

Real: > 75% of hits are from the same sim track
Fake: not “real”

*Not always the inner hit: for PS modules, it is always the pixel (P) hit, which is not 
 necessarily the hit that is closest to the beamline

pT → log10(pT) 
radius → log10(radius)

T3
⊕
T3
⊕
T5

17

T5 DNN Training and Selection

Choice of epoch is arbitrary after 400 (we choose 500)

~identical

18

Aside: Other T5 DNN Architectures
• Additional layers (up to 4) gives an extra ~3%

decrease in bkg. efficiency (i.e. fake rate)

• Selected 2-layer DNN as a balance between
performance and computational complexity

• A larger DNN could be used, but seems to be
diminishing returns

19

T5 DNN Performance
• Performance gain over pre-DNN baseline (★)

• Background efficiency = Fake rate

• Cannot get full picture of DNN in LST from
this ROC curve alone:

• Only looking at T5s, but the TCs are more
diverse

• Effects of duplicate removal, TC selection,
etc. are non-trivial

• Next: implement DNN inference in LST and
compare to pre-DNN performance

• Details of implementation are in the backup

Significant  
performance gain!

20

Fake Rate Comparison

DNN gives ~40% reduction of fake rate in the barrel

1 10
 [GeV]

T
Track candidate p

2−10

1−10

1

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
| < 4.5η|

pre-DNN DNN

4− 3− 2− 1− 0 1 2 3 4
ηTrack candidate

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
 > 0.9 GeV

T
p

pre-DNN DNN

Standalone

21

Efficiency Comparison

DNN gives no loss in efficiency 
Using DNN WP that matches LST signal efficiency

4− 3− 2− 1− 0 1 2 3 4
ηSimulated track

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
ac

ki
ng

 e
ffi

ci
en

cy Simulation Preliminary CMS
t = 14 TeV PU200 ts

 < 2.5 cm
vertex

| < 30 cm, r
vertex

 > 0.9 GeV, |z
T

p

pre-DNN DNN

1 10
 [GeV]

T
Simulated track p

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Tr

ac
ki

ng
 e

ffi
ci

en
cy Simulation Preliminary CMS

t = 14 TeV PU200 ts
 < 2.5 cm

vertex
| < 30 cm, r

vertex
| < 4.5, |zη|

pre-DNN DNN

Standalone

22

Efficiency vs. rvertex Comparison

Significant gain in efficiency for displaced tracks

0 5 10 15 20 25 30
 [cm]vertexSimulated track r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
ac

ki
ng

 e
ffi

ci
en

cy Simulation Preliminary CMS
t = 14 TeV PU200 ts

| < 30 cm
vertex

| < 2.4, |zη > 0.9 GeV, |
T

p

pre-DNN DNN

Contributions from material  
interactions are lower than  
neighboring bins due to the  
detector geometry

Standalone

23

Efficiency Comparison: Muon Cube

5cm

5cm

5cm

Muon cube sample: 
Production vertex uniformly distributed  
across 5cm cube (no pileup), 
i.e. displaced tracks

μ
μ

rvertex

1 2 3 4 5 6 7 8
 [cm]vertexSimulated track r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
ac

ki
ng

 e
ffi

ci
en

cy Simulation Preliminary CMS
muon-gun w/ 5 cm cube prod. origin

| < 30 cm
vertex

| < 2.4, |zη > 0.9 GeV, |
T

p

pre-DNN DNN

Significant recovery of efficiency for displaced tracks

Standalone

50cm cube shown for  
visualization purposes

24

T5 DNN Timing Impact

Units of milliseconds (ms)

1/
Th

ro
ug

hp
ut

 [m
s]

0

5

10

15

20

1 stream 2 streams 4 streams 8 streams

pre-DNN DNN
CMS Simulation Preliminary

T5 1/Throughput N streams
pre-DNN 3.37 ± 0.13 28.4 ± 1.5 1

DNN 3.39 ± 0.07 28.7 ± 1.1 1

Error is 1 standard deviation for 10 trials

DNN has no measurable impact on LST runtime 
(Measured on an NVidia A30 GPU)

Standalone

25

• We have trained a lightweight DNN to classify real vs. fake LST T5s

• We have shown that the T5 DNN improves LST w/ no impact on runtime

• We have established a pipeline for training ML algorithms on LST data

• Includes a full simulation of the CMS detector

T5 DNN Summary

ReLU ReLU Sigmoid

38 nodes
32 nodes 32 nodes

Input
Hidden Hidden

Output

1 node

Loss = BCE

T3
⊕
T3
⊕
T5

26

GNN Prospectus

IP Outer Tracker

Inner 
Tracker

Promising results from TrackML GNNs 
No single best graph-building algorithm 

No results using full CMS simulation

Use LST to build input graph, 
most obvious: MD nodes, LS edges

If GNN can build good TCs: LST becomes  
a very fast graph building algorithm! 

O(ms/event)

• Interaction Networks (DeZoort, Thais, Duarte et al.) 
https://doi.org/10.1007/s41781-021-00073-z

• Exa.TrkX (Ju, Murnane, Calafiura et al.) 
https://doi.org/10.1140/epjc/s10052-021-09675-8

• GNNs (review by DeZoort, Battaglia, Biscarat et al.) 
https://doi.org/10.1038/s42254-023-00569-0

• And much more (see CTD 2023 agenda)!

https://doi.org/10.1007/s41781-021-00073-z
https://doi.org/10.1140/epjc/s10052-021-09675-8
https://doi.org/10.1038/s42254-023-00569-0

27

GNN Prospectus: Learning Objective

IP Outer Tracker

Inner 
Tracker

Develop some edge classifier that can 
efficiently select real LSs

Cut on classifier score and 
connect all remaining LSs (+ pLS) as TCs

Working on bringing pixel seeds 
into LS graph built by LST 

→ full end-to-end tracking algorithm

0.91

0.92

0.99

0.9

0.05

0.980.01

Targeting Exa.TrkX-like algorithm: https://exatrkx.github.io/

https://exatrkx.github.io/

28

• LST is a highly performant and parallelizable tracking algorithm

• We are investigating how LST could be improved with ML

• We have improved LST with a lightweight DNN

• The DNN has no impact on the runtime

• We are working towards training a LST GNN→track candidate pipeline

Conclusion

Thank you!

Backup

29

30

Phase 2 Tracker Layout

31

T5 DNN Training and Testing
• Background efficiency = FPR = FP/N

• i.e. Fake rate

• Signal efficiency = TPR = TP/P

• For DNN ROC curve:

• TP|FP = # real|fake T5s after DNN cut

• P|N = # real|fake T5s before DNN cut

• For pre-DNN performance (★):

• TP|FP = # real|fake T5s after r-φ χ2 cut

• P|N = # real|fake T5s before r-φ χ2 cut

32

T5 DNN in LST

Device

Host

MD LS T3 T5 TC

… … … … … …

For each object, one thread per candidate

e.g. for T5 kernel, each thread determines whether 
or not to pass a given T5 candidate to the next step

33

T5 DNN in LST

Device

Host

MD LS T3 T5 TC

… … … … … …
def passT5QualityCutsPseudoCode(...)
{
 // Original LST cuts
 if (!passBasicT5QualityCuts(...)) { return false; }
 if (!passRZChi2T5Cut(...)) { return false; }

 // Build DNN input features vector
 float x[38] = {
 log10(innerT3pT),
 innerT3eta,
 ...
 };

 // Input -> first hidden layer
 float hidden0[32];
 for (int col = 0; col < 32; ++col) {
 hidden0[col] = 0.f;
 for (int inner = 0; inner < 38; ++inner) {
 hidden0[col] += x[inner]*wgts0[inner][col];
 }
 }
 hidden0 = leakyReLU(hidden0);
 ... // and so on…

 // Last hidden layer -> output
 float inference = 0.f;
 for (int i = 0; i < 32; ++i) {
 inference += hidden1[i]*wgts4[i][0];
 }
 inference = sigmoid(inference);

 if (inference < LSTDNN::WP95) { return false; }

 return true;
}

Each thread (one per T5) runs the ML inference!

Very simple implementation 
(certainly not optimal)

34

Pre-DNN Performance

T5s account for much of the LST efficiency 
T5s have a high fake rate

4− 3− 2− 1− 0 1 2 3 4
ηSimulated track

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Tr

ac
ki

ng
 e

ffi
ci

en
cy Simulation Preliminary CMS

t = 14 TeV PU200 ts
 < 2.5 cm

vertex
| < 30 cm, r

vertex
 > 0.9 GeV, |z

T
p

All LST objects pT5 pT3 T5
 iteration seedsinitialUnused

4− 3− 2− 1− 0 1 2 3 4
ηTrack candidate

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
 > 0.9 GeV

T
p

All LST objects pT5 pT3 T5
 iteration seedsinitialUnused

Standalone

35

Performance Comparison

Significant reduction of fake rate in the barrel 
No loss in efficiency

4− 3− 2− 1− 0 1 2 3 4
ηSimulated track

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Tr

ac
ki

ng
 e

ffi
ci

en
cy Simulation Preliminary CMS

t = 14 TeV PU200 ts
 < 2.5 cm

vertex
| < 30 cm, r

vertex
 > 0.9 GeV, |z

T
p

pre-DNN DNN

4− 3− 2− 1− 0 1 2 3 4
ηTrack

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
 > 0.9 GeV

T
p

pre-DNN DNN

Standalone + CMSSW

