Connecting the Dots 2023

# Improving Tracking Algorithms with ML: A case for Line Segment Tracking at the HL-LHC On behalf of the CMS Collaboration October 12th, 2023





Cornell University



1







# Challenge: HL-LHC Tracking "High Luminosity" LHC (HL-LHC) planned for 2030s



#### Nominal Run 2 event (PU 30)

#### O(10x) concurrent collisions ("pile up") = O(10x) tracks ⇒ need a fast tracking algorithm to keep up



HL-like event (PU 130)

Current tracking algorithm is inherently sequential  $\Rightarrow$  poor scaling We propose LST: a highly parallelizable tracking algorithm





# Solution: Line Segment Tracking (LST) At each step, one thread per object: deciding keep or discard



Each step is designed such that objects can be assessed independently  $\Rightarrow$  massively parallelizable!



# Solution: Line Segment Tracking (LST)





IP

#### **Outer Tracker**

We will provide a basic description of each step of the LST algorithm here

We show the steps here only to introduce the LST terminology/context

More info on LST can be found here: CTD 2022, CHEP 2023, CMS DP Note



# **LST in a Nutshell: Mini-Doublets**





Inner Tracker

IP



# **LST in a Nutshell: Mini-Doublets**





### Build all good MDs

### good = pt > 0.8

### **One thread per MD**







# LST in a Nutshell: Line Segments

# Not allowed to skip layers Inner Tracker **Outer Tracker** IP

Build all valid connections of two MDs: i.e. Line Segments (LSs)

Derived a "module map" that pre-determines valid LSs







# LST in a Nutshell: Line Segments





### Keep good LSs

### good = consistency between MD pT

### **One thread per LS**





# LST in a Nutshell: Triplets





Keep **good** pairs of LSs that share a MD: i.e. Triplets (T3s)

good = p<sub>T</sub> consistency + other constraints







# LST in a Nutshell: Quintuplets





Keep good pairs of T3s that share a MD: i.e. Quintuplets (T5s)

good = p<sub>T</sub> consistency + circle fit quality







# LST in a Nutshell: Track Candidates





Take all T5s and match to pixel seeds (pLS): i.e. pT5s

Keep good pT5s as Track Candidates (TCs)

Take unmatched T5s, good pT3s (pLS + T3), and unmatched **pLS** also as **TCs** 

good = p<sub>T</sub> consistency + circle fit quality











# Improving LST with ML

- Line Segment Tracking (LST) is already highly performant and parallelizable
- Central question: where can Machine Learning (ML) realistically be used to improve LST?
- In this talk we will...
  - Outline a suitable step in LST to try a simple ML solution
  - Show significant improvements to LST!
  - Present a prospectus for more ambitious ML solutions/algorithms









Simulated track  $\eta$ 

### pT5s (pLS + T5) + T5s give most of the TC efficiency **T5s** have a high fake rate

ML Opportunity: Quintuplets



Track candidate η





# ML Opportunity: Quintuplets



**Outer Tracker** 

pT5s + T5s give most of the TC eff. T5s have a high fake rate  $\Rightarrow$  there is room for improvement

### **Can ML do better without heavily** impacting the total LST runtime?

**Next:** we train/deploy a small neural network for classifying real vs. fake T5s











#### **Objective** Train DNN to classify "real" vs. "fake" T5s

**Real:** > 75% of hits are from the same sim track **Fake:** not "real"

> Uses variables that the DNN might use better

Tracker

**Outer Tracker** 

# **T5 DNN Training Data**

**Baseline LST T5s** Pass basic quality cuts Pass r-z  $\chi^2$  cut Pass r- $\phi \chi^2$  cut Quality of circle fit

Remove r- $\phi \chi^2$  cut

T5 circle fit

#### **DNN Training T5s** Pass basic quality cuts Pass r-z x<sup>2</sup> cut

~2.1 million T5s **40% real** 

Pass r-o x<sup>2</sup> cut





# **T5 DNN Features and Configuration**

### **Objective** Train DNN to classify "real" vs. "fake" T5s **Real:** > 75% of hits are from the same sim track **Fake:** not "real"



\*Not always the inner hit: for PS modules, it is always the pixel (P) hit, which is not necessarily the hit that is closest to the beamline





# **T5 DNN Training and Selection**





## Choice of epoch is arbitrary after 400 (we choose 500)







# **Aside: Other T5 DNN Architectures**

- Additional layers (up to 4) gives an extra ~3% decrease in bkg. efficiency (i.e. fake rate)
- Selected 2-layer DNN as a balance between performance and computational complexity
- A larger DNN could be used, but seems to be diminishing returns







# **T5 DNN Performance**

- Performance gain over pre-DNN baseline  $(\mathbf{\star})$ 
  - Background efficiency = Fake rate
- Cannot get full picture of DNN in LST from this ROC curve alone:
  - Only looking at T5s, but the TCs are more diverse
  - Effects of duplicate removal, TC selection, etc. are non-trivial
- **Next:** implement DNN inference in LST and compare to pre-DNN performance
  - Details of implementation are in the backup









# **DNN gives ~40% reduction of fake rate in the barrel**

Fake Rate Comparison



Track candidate η









# Efficiency Comparison



Simulated track  $\eta$ 

### **DNN gives no loss in efficiency** Using DNN WP that matches LST signal efficiency





# CMS

# Efficiency vs. rvertex Comparison



## Significant gain in efficiency for displaced tracks

#### Standalone

Contributions from material interactions are lower than neighboring bins due to the detector geometry







# Efficiency Comparison: Muon Cube





#### 50cm cube shown for visualization purposes

Significant recovery of efficiency for displaced tracks









#### Units of milliseconds (ms)

|         | T5          | 1/Throughput | N strea |
|---------|-------------|--------------|---------|
| pre-DNN | 3.37 ± 0.13 | 28.4 ± 1.5   | 1       |
| DNN     | 3.39 ± 0.07 | 28.7 ± 1.1   | 1       |

#### Error is 1 standard deviation for 10 trials

### **DNN** has no measurable impact on LST runtime (Measured on an NVidia A30 GPU)

#### Standalone

# **T5 DNN Timing Impact**







# **T5 DNN Summary**

- We have trained a lightweight DNN to classify real vs. fake LST T5s
- We have shown that the T5 DNN improves LST w/ no impact on runtime
- We have established a pipeline for training ML algorithms on LST data
  - Includes a full simulation of the CMS detector









- Interaction Networks (DeZoort, Thais, Duarte et al.) https://doi.org/10.1007/s41781-021-00073-z
- Exa.TrkX (Ju, Murnane, Calafiura et al.) https://doi.org/10.1140/epjc/s10052-021-09675-8
- GNNs (review by DeZoort, Battaglia, Biscarat et al.)  $\bullet$ https://doi.org/10.1038/s42254-023-00569-0
- And much more (see CTD 2023 agenda)!



# **GNN Prospectus**

#### **Promising results from TrackML GNNs** No single best graph-building algorithm No results using full CMS simulation

#### Use LST to build input graph, most obvious: MD nodes, LS edges

If GNN can build good TCs: LST becomes a very fast graph building algorithm! O(ms/event)







# **GNN Prospectus: Learning Objective** Targeting Exa.TrkX-like algorithm: <u>https://exatrkx.github.io/</u>



Develop some edge classifier that can efficiently select real LSs

#### Cut on classifier score and connect all remaining LSs (+ pLS) as TCs

Working on bringing pixel seeds into LS graph built by LST → full end-to-end tracking algorithm





# Conclusion

- LST is a highly performant and parallelizable tracking algorithm
- We are investigating how LST could be improved with ML
- We have improved LST with a lightweight DNN
  - The DNN has no impact on the runtime
- We are working towards training a LST GNN $\rightarrow$ track candidate pipeline •



Thank you!



# Backup







# Phase 2 Tracker Layout







# **T5 DNN Training and Testing**

- Background efficiency = FPR = FP/N
  - i.e. Fake rate
- Signal efficiency = TPR = TP/P
- For DNN ROC curve:
  - TP|FP = # real|fake T5s after DNN cut
  - P|N = # real|fake T5s before DNN cut
- For pre-DNN performance (★):
  - TP|FP = # real|fake T5s after r- $\phi \chi^2$  cut
  - $P|N = \# real|fake T5s before r-\phi \chi^2 cut$







# T5 DNN in LST For each object, one thread per candidate





Device

e.g. for T5 kernel, each thread determines whether or not to pass a given T5 candidate to the next step





# T5 DNN in LST

# Each thread (one per T5) runs the ML inference!

AMDAT Host Device

```
def passT5QualityCutsPseudoCode(...)
// Original LST cuts
if (!passBasicT5QualityCuts(...)) { return false; }
 if (!passRZChi2T5Cut(...)) { return false; }
// Build DNN input features vector
 float x[38] = {
     log10(innerT3pT),
     innerT3eta,
     . . .
};
// Input -> first hidden layer
 float hidden0[32];
 for (int col = 0; col < 32; ++col) {</pre>
     hidden0[col] = 0.f;
     for (int inner = 0; inner < 38; ++inner) {</pre>
         hidden0[col] += x[inner]*wgts0[inner][col];
hidden0 = leakyReLU(hidden0);
 ••• // and so on...
// Last hidden layer -> output
 float inference = 0.f;
 for (int i = 0; i < 32; ++i) {
     inference += hidden1[i]*wgts4[i][0];
 inference = sigmoid(inference);
 if (inference < LSTDNN::WP95) { return false; }</pre>
 return true;
```



Very simple implementation (certainly not optimal)







Simulated track  $\eta$ 

### T5s account for much of the LST efficiency T5s have a high fake rate

#### Standalone

# **Pre-DNN Performance**



Track candidate η





# Performance Comparison





Simulated track  $\eta$ 

### Significant reduction of fake rate in the barrel No loss in efficiency

#### Standalone + CMSSW





