

Application of Quantum Annealing with Graph Neural Network Preselection in Particle Tracking at LHC

WAI YUEN CHAN, SANMAY GANGULY, RYU SAWADA, JUNICH TANAKA, KOJI TERASHI

Connecting The Dots 2023

2023/10/12

Motivation

- HL-LHC is coming
- With larger pile-up ($\langle \mu \rangle \sim 200$) and high readout rate, CPU consumption will dramatically increase.
 - Especially track reconstruction -> New techniques are needed

Introduction: Quantum Annealing

• Quantum Annealing:

An optimisation process for finding the global minimum of a given function by using quantum fluctuations.

• Quantum Annealer: The machine which is designed to perform the quantum annealing process. e.g. D-Wave computers

• Quantum Annealer can only deal with the problem which can be transform to a "QUBO" or "Ising" function.

Quantum Pattern Recognition: Algorithm Overview

 We found the Quantum Annealing could improve the speed of pattern recognition and provide another way to perform the particle tracking. Result published on: <u>arXiv: 1902.08324</u>

potential _ doublets

- T_i : potential triplet
- a_i : Bias weight which has been set to 0.
- b_i : The coupling strength, depending on the relation between $T_i \& T_j$

GNN doublet selection: Phase I

We wonder can we improve the tracking performance by implement the GNN technique in the doublet building section

GNN doublet selection: Phase I

Conclusion of Phase I

- Graph: 4 hits only, nearby hits = BKGs
- Edge classification
- Result: The network didn't recognise that $e_{ij} = e_{ji}$ in this bi-directed graph
- QUBO strength doesn't looks like the target at all.
- <u>Talk @ CHEP2023</u>

GNN doublet selection: Phase II

Main goal in phase II:

- Classify doublet that can be form the QUBO from the "nature" geometry.
- Make a usable QUBO based on GNN results.

A **bi-directed graph** is formed with the following node features:

Node features 'x'	Node features 'h'
r	eta
phi	VoLayer ID
z	

• Hit ID also pass through the network but not being use in the pattern recognition.

VoLayer ID

2023/10/11

Sample pre-selection

A small sample is used to train the network. We focus on |eta| <= 1 region.

- To further simplify the graph (mainly number of edges) we only consider |phi|, eta| < 0.15 in the training
- Also edges can only being formed under these conditions:
 - |dz| < 50
 - |dphi| < 0.2

Event 1001	#Nodes	#Edges	Edges/node
eta < 1.0	51	398	7.8
eta < 1.5	141	1866	13.2
eta < 2.0	267	4806	18

Signal (hits from QUBO doublets)

BKGs (hits which is not being used in QUBO doublets)

Network architecture

- Our training target, is to match the doublet which being use in the QUBO in the same |eta|, |phi| region.
- By comparing the Hit ID from the nodes which formed the edges, one can calculate the confusion matrix for each graph.

In each EdgeConv Layers

$$\begin{aligned} x_i^{l+1} &= mean \big[\theta_{x,m} \big(x_j^l - x_j^l \big) + \phi_{x,m} (x_i^l) \big]_j \\ h_i^{l+1} &= mean \big[\theta_{x,m} \big(h_j^l - h_j^l \big) + \phi_{x,m} (h_i^l) \big]_j \end{aligned}$$

$$e_{ij}^{1} = W(\theta_{x}, \phi_{x}, \theta_{en}, \phi_{en})$$
$$e_{ij}^{l+1} = e_{ij}^{l} + W(\theta_{x}, \phi_{x}, \theta_{en}, \phi_{en})$$

- Since we are constructing a bi-directed graph, a doublet is represented by 2 edges, and we have 2 classes for each edges.
- By taking average score between e_{ij} and e_{ji} , we ensure that both edges going into opposite directions reserve the symmetry.
- The score, *e_{ij}* contain 2 values: *s*(0) and *s*(1), which is the score for the edges belongs to class 0 (BKG-like), and belongs to class 1 (Signal-like), respectively.

Performances with 1 event

After training the model, we use one of the events to generate the QUBO, as QUBO is an event-based object.

TP = 68 FP = 17	FP = 17		Threshold	100%	90%	80%	70%	60%	50%	40%	30%
FN = 363 TN= 1344		score	-4.3	-1.96	-1.53	-1.2	-0.923	-0.73	-0.631	-0.49	
	IN- 1544	#Doublets	4648	4188	3719	3256	2789	2326	1860	1396	

QUBO strength distribution: explanation

$$O(a;b;q) = \sum_{i=1}^{N} a_i q_i + \sum_{i=1}^{N} \sum_{j=1}^{N} b_{ij} q_i q_j \quad q \in \{0,1\}$$

bias weight a_i	influences one qubit q_i	-1 1	q_i tends to collapse into 0. q_i tends to collapse into 1.
coupling strength b_{ij}	influences two qubits q_i and q_j	-2 2	both q_i and q_j tend to collapse into 1. at least one of q_i and q_j tends to collapse into 0.

In the code, 3 steps to create a QUBO: 1: Set Qbits with their weight (doublets with a common weight) e.g. ('23472_31455_38557', '23472_31455_38557'): 0

2: exclusion couplers Add more entries to QUBO, e.g.: ('83840_90726_96873', '76774_83829_96873'): 1

3: inclusion couplers Add more entries to QUBO, e.g.: ('18380_27166_34273', '27166_34273_40293'): -0.6423072319215068

2023/10/12

Compare to classic method: QUBO strength

Compare to classic method: #Doublets

The University of Tokyo

- Simulated Annealing Sampler has been used to solve the QUBO
- Simulated Annealing Sampler: An annealing process performed with CPU rather than QPU

Compare to classic method: Track reconstruction

The track reconstruction performance of an event can be judged by TrackML score, efficiency (recall) and purity(precision).

Compare to classic method: Reconstructed tracks display (r-z plane)

- Fake doublets
- ---- Reconstructed doublets (without the momentum acceptance)
- ---- Reconstructed doublets (within the momentum acceptance)

Conclusion

- A GNN has been implemented into the Quantum annealing-based tracking algorithm.
- In phase I, the network didn't recognise the opposite edges between 2 nodes should form a single doublet.
- In Phase II, the following improvement has been made:
 - A more general graph has been used.
 - The network architecture has been improved, and the average edge score between opposite edges are considered.
 - Instead of calculating the probability, the target matching is preformed.
 - The GNN generated doublets are being used to construct QUBO, and the strength looks different to the original QUBO.
 - The QUBO generated based on the GNN model, have much more doublets.
 - However, the tracking performance of the solved QUBO is worse.

<u>Outlook</u>

- Phase II model looks ok, but still have more room to improve.
- In Phase III, we are aiming to:
 - Improve the ROC
 - Redefine the task: matching doublets -> purely edge classification
 - Try to use k-nn graph / graph clustering instead of bi-directed graph.
 - Steady with a larger dataset.
 - Construct triplet / triplet pair objects from GNN.