

A Generalist Model for Particle Tracking

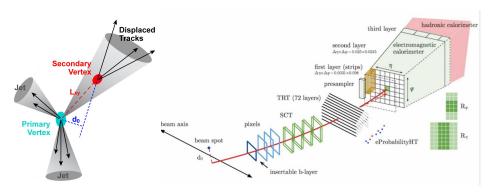
Andris Huang, *Xiangyang Ju*, Yash Melkani, co-authored with Alina Lazar, Daniel Murnane, Minh-Tuan Pham, Paolo Calafiura

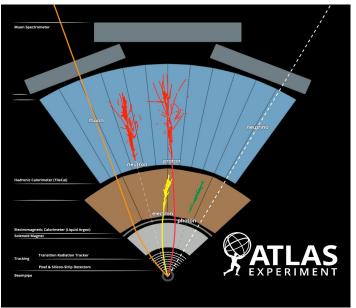
CTD 2023, Toulouse, France, 11/10/2023

Particle tracking

Particle tracking is used in almost all physics object reconstruction

- Leptons
- Jet flavor tagging
- Primary vertices, displaced vertices
- Pileup removal for jets and missing energy





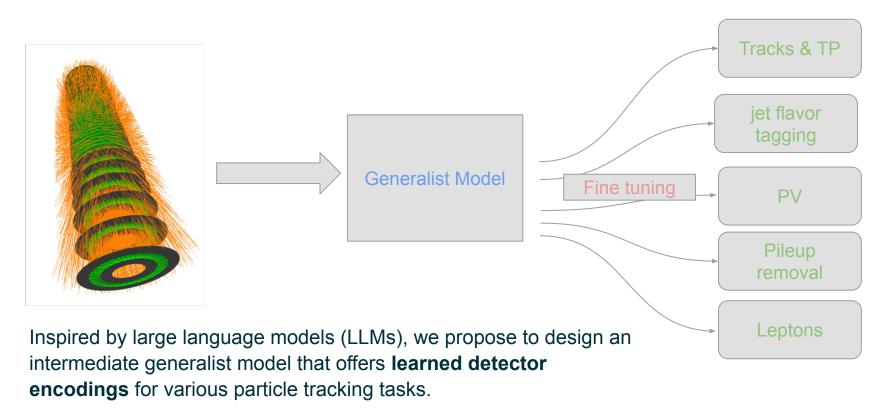
Machine Learning for Tracking-related tasks

Particle tracking is used in almost all physics object reconstruction

- Leptons → <u>HeteroGNN(Huang, 2023)</u>
- Jet flavor tagging → <u>Transformers(Qu, 2022)</u>
- Primary vertices, displaced vertices → <u>DNN(Akar, 2023)</u>
- Pileup removal for jets and missing energy → <u>PUMML(Komiske, 2017)</u>, <u>Attention(Maier, 2021)</u>
- Tracking finding → GNN(Ju, 2021)

→ One model for one task. However, these tasks are so deeply intertwined that factorizing them will inevitably lose information and hurt overall performance

Generalist Model for particle tracking



Data representation and ML

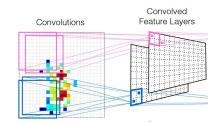
Data is a vector

→ multilayer perceptrons
(MLPs)

$$\left(egin{array}{ccccc} x_1 & x_2 & \cdots & x_n \end{array}
ight) imes egin{pmatrix} w_{11} & w_{12} & \cdots & w_{1m} \ w_{21} & w_{22} & \cdots & w_{2m} \ dots & dots & \ddots & dots \ w_{n1} & w_{m2} & \cdots & w_{nm} \end{array}
ight)$$

Data is an image or grid

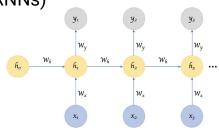
→ Convolutional Neural Network
(CNNs)



Data is a sequence

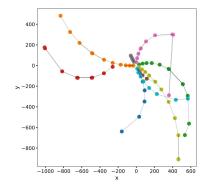
→ Recurrent Neural Network

(RNNs)



Data is of dynamic size, irregular shape, sparse density

→ Graph Neural Network



Data representation and ML

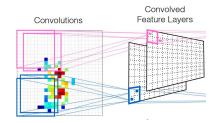
Data is a vector

→ multilayer perceptrons
(MLPs)

$$\left(egin{array}{ccccc} x_1 & x_2 & \cdots & x_n \end{array}
ight) imes egin{pmatrix} w_{11} & w_{12} & \cdots & w_{1m} \ w_{21} & w_{22} & \cdots & w_{2m} \ dots & dots & \ddots & dots \ w_{n1} & w_{m2} & \cdots & w_{nm} \end{pmatrix}$$

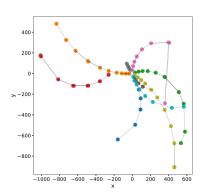
Data is an image or grid

→ Convolutional Neural Network
(CNNs)



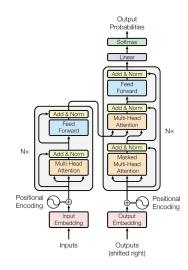
Data is of dynamic size, irregular shape, sparse density

→ Graph Neural Network (GNNs)



Data is a sequence

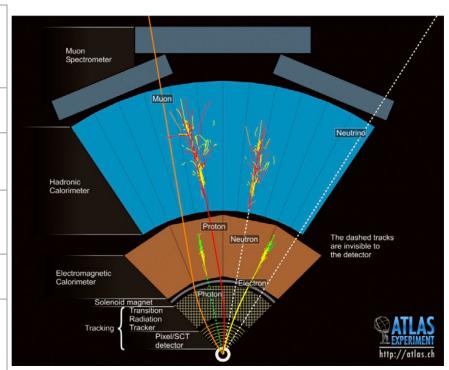
→ Transformers → LLMs



NLP vs ATLAS

Analogy between NLP and ATLAS

Detector elements	Words
All detector elements	Vocabulary
Particle trajectories or showers	Sentences
Collision Events	Paragraphs
Events from the same physics process	Sections



BERT

arxiv:1810.04805

Pre-training of Deep Bidirectional Transformers for Language Understanding

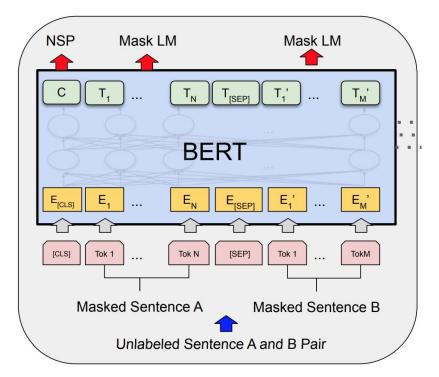
Inputs

- A pair of sentences (SA, SB)
- Randomly mask some words in each sentence
- Randomly swap the two sentences

Outputs: continuous embedding for each word in the dictionary

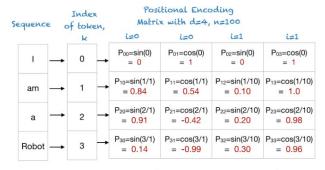
Loss Functions

- Masked Language Modelling (MLM): predict the masked word as a classification task
- Next Sentence Prediction (NSP): predict whether sentence A and B are swapped



BERT inputs





Positional Encoding Matrix for the sequence 'I am a robot'

Token Embeddings

Indices of the words in dictionary

Sentence Embeddings

 Distinction for each sentence in the input pair

Position Embedding:

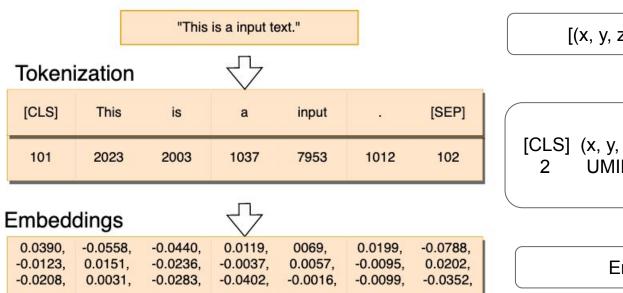
 Encode each word's position into a vector

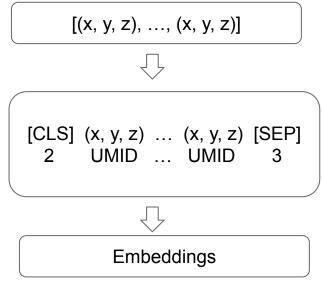
$$P(k,\,2i+1)=\cos\left(rac{k}{n^{2i/d}}
ight) \quad P(k,\,2i)=\sin\left(rac{k}{n^{2i/d}}
ight)$$

Sentence vs Tracks



Tracks are represented by a list of detector modules



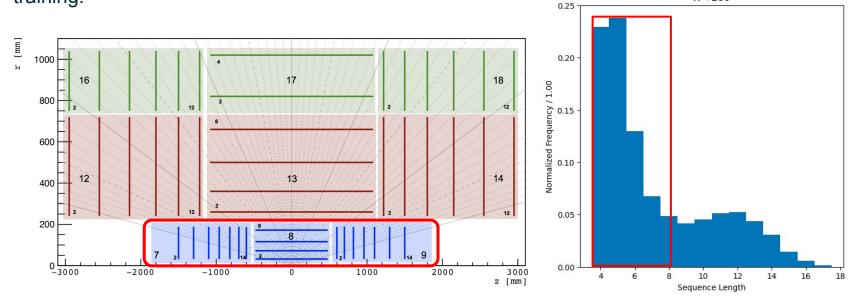


Input data

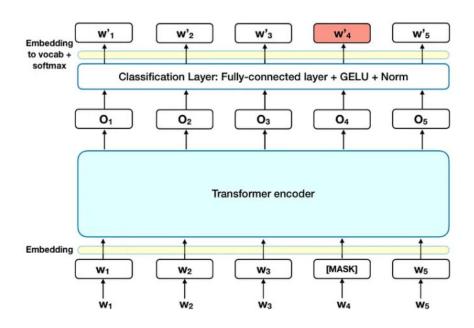
R < 200

Focusing on Pixel detectors and tracks with 4 - 8 spacepoints. About 4M tracks are selected for

training.



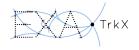
TrackingBert



[Track A, Track B]

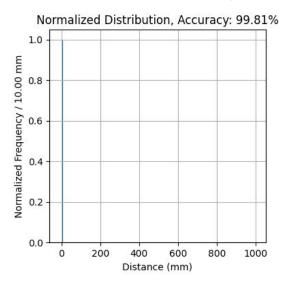
- Tune parameters of the Transformer model → 1M trainable parameters
- Gradually increase the mask rate during the training: $15\% \rightarrow 30\% \rightarrow 50\%$
- Randomly select two tracks A, B; track
 A with higher pT
- Two tasks:
 - Predict the masked detector modules (UMID)
 - Predict if track B is with higher pT than track A

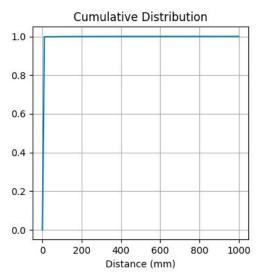
Results for first track



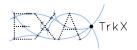
Accuracy in predicting masked detector modules

- Mask 1 module in the first track and ask the model to predict the masked module.
- Evaluate the distance between the predicted module and the true module.



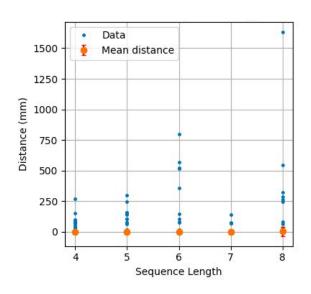


Results on first track



The impact on the track length

Mask the first module, middle modules, or the last module to check the performance



- No clear dependances on the sequence lengths
- The same test is performed on the second track → Mask detector modules in the second particle
- And we observe a similar performance

Conclusions

- Our work is the first application of (large) language models in HEP, thanks to the new data presentation for particles: tokenized data elements
 - Particles can be presented as a sequence of detector-element tokens stemmed from the particle interacting with the detector
- We applied a language model (BERT) to new data presentation and obtained a novel detector representation learned from unsupervised training
 - We found larger training data and larger models often resulting in better results
 - And the model can accurately predict the masked detector modules

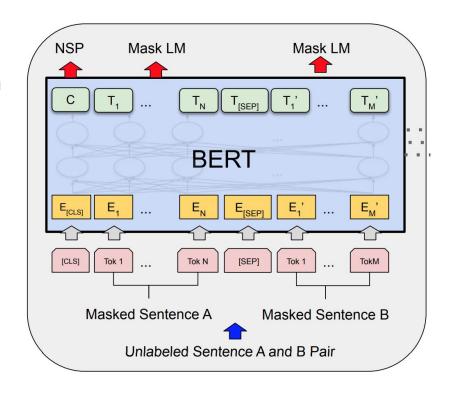
Outlooks

Short term aims:

- extract the detector module embedding from BERT to have a "deep representation of the Pixel detector"
- apply the learned detector presentation for other tasks, such as metric learning-based graph construction, end-to-end track finding

Long term aims:

- build a deep representation for calorimeters
- apply the representation for particle reconstructions

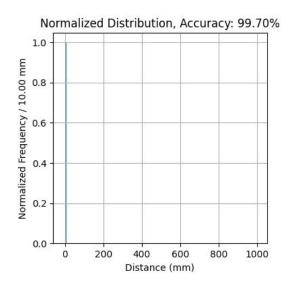


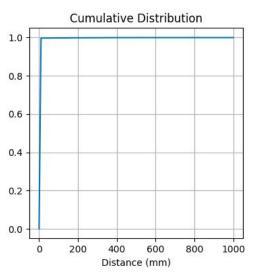
Backup Slides

Results on second track

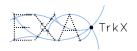
Accuracy in predicting masked detector modules

- Mask 1 module in the second track and ask the model to predict the masked module.
- Evaluate the distance between the predicted module and the true module.





Results for second track



The impact on the mask position and track length

Mask the first module, middle modules, or the last module to check the performance

