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Particle tracking

Particle tracking is used in almost all physics object reconstruction

Leptons

Jet flavor tagging

Primary vertices, displaced vertices

Pileup removal for jets and missing energy
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https://cds.cern.ch/record/2770815/files/

Machine Learning for Tracking-related tasks

Particle tracking is used in almost all physics object reconstruction

Leptons — HeteroGNN(Huang, 2023)

Jet flavor tagging — Transformers(Qu. 2022)

Primary vertices, displaced vertices — DNN(Akar, 2023)

Pileup removal for jets and missing energy — PUMML (Komiske, 2017), Attention(Maier,

2021)
e Tracking finding — GNN(Ju, 2021)

— One model for one task. However, these tasks are so deeply intertwined that factorizing them
will inevitably lose information and hurt overall performance
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Generalist Model for particle tracking

> Generalist Model ( )

|
/\/ l

e
A\

~
J

Inspired by large language models (LLMs), we propose to design an
intermediate generalist model that offers learned detector h g
encodings for various particle tracking tasks.
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Data representation and ML

Data is a vector Data is an image or grid
— multilayer perceptrons — Convolutional Neural Network
(MLPs) (CNNs)
Convolved
w1 w2 vt Wi Convolutions Feature Layers
W21 W22 Wam :
(z1 @ T, ) X .
Wn1 Wm2 *°* Wnm

Data is of dynamic size, irregular

shape, sparse density

— Graph Neural Network
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Data is a sequence
— Recurrent Neural Network

(RNNs)
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Data representation and ML

Data is a sequence
— Transformers — LLMs

Data is an image or grid
— Convolutional Neural Network
(CNNs)

Data is a vector
— multilayer perceptrons
(MLPs)
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Data is of dynamic size, irregular shape, mofg N

sparse density

— Graph Neural Network (GNNs)

Generalist Model for Particle Tracking | X. Ju

> =200

-400

—600

—800

-1000 —800 —600 —-400 —-200 O 200 400 600
X

Positional
Encoding

Positional
Encoding

Tnput

I Embedding

Output I

Embedding

Inputs

Outputs

(shi

ifted right)



NLP vs ATLAS

Analogy between NLP and ATLAS

Muon
Spectrometer

Detector elements Words
:’.‘\l‘ : Neulnv!o‘.
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Particle trajectories or Sentences
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http://atlas.ch
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BERT arxiv:1810.04805

Pre-training of Deep Bidirectional Transformers for Language Understanding

Inputs Nv Mask LM Mask LM \
e A npair of sentences (SA, SB) 4 - = *

e Randomly mask some words in each sentence v [ (e [T ] -

e Randomly swap the two sentences

5% TrkX

Outputs: continuous embedding for each word in the
dictionary BERT
Loss Functions EREN .. Eol | Eeepl| REL - (D5

e Masked Language Modelling (MLM): predict the g e B e i L B

e
masked word as a classification task ! v [ [ e ([ ) [ o

e Next Sentence Prediction (NSP): predict
whether sentence A and B are swapped Masked Sentence A Masked Sentence B

*
Unlabeled Sentence A and B Pair
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https://arxiv.org/abs/1810.04805

BERT inputs
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[SEP] play
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Positional Encoding Matrix for the sequence ‘I am a robot’
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Sentence vs Tracks yrenet

Tracks are represented by a list of detector modules

"This is a input text." ’ [

| 2yl
Tokenization @ {1

[CLS] This is a input ; [SEP]

[CLS] (x,¥,2) ... (X,¥,2) [SEP]
2 UMID ... UMID 3

Embeddings @ iyl

0.0390, -0.0558, -0.0440, 0.0119, 0069, 0.0199, -0.0788, ‘ [

101 2023 2003 1037 7953 1012 102

-0.0123, 0.0151, -0.0236, -0.0037, 0.0057, -0.0095, 0.0202,

Em in
-0.0208, 0.0031, -0.0283, -0.0402, -0.0016, -0.0099, -0.0352, beddings
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Input data

Focusing on Pixel detectors and tracks with 4 - 8 spacepoints. About 4M tracks are selected for
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TrackingBert

Embodding[ wi ] [Cwe | (Cws ] Cwe ] [ ws

softmax
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Classification Layer: Fully-connected layer + GELU + Norm
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Tune parameters of the Transformer
model — 7M trainable parameters
Gradually increase the mask rate
during the training: 15% — 30% —
50%
Randomly select two tracks A, B; track
A with higher pT
Two tasks:
o Predict the masked detector
modules (UMID)
o  Predict if track B is with higher
pT than track A



Results for first track

Accuracy in predicting masked detector modules

e Mask 1 module in the first track and ask the model to predict the masked module.
e Evaluate the distance between the predicted module and the true module.

Normalized Distribution, Accuracy: 99.81% Cumulative Distribution
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Results on first track R

The impact on the track length

e Mask the first module, middle modules, or the last module to check the performance

11 B S | e No clear dependances on the sequence
—_— lengths
2 1000, e The same test is performed on the
£ second track — Mask detector modules
B in the second particle
S 500 - $ ! e And we observe a similar performance
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Sequence Length
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Conclusions A oAex

e Our work is the first application of (large) language models in HEP, thanks to the new data
presentation for particles: tokenized data elements
o Particles can be presented as a sequence of detector-element tokens stemmed from
the particle interacting with the detector

e We applied a language model (BERT) to new data presentation and obtained a novel
detector representation learned from unsupervised training
o We found larger training data and larger models often resulting in better results
o  And the model can accurately predict the masked detector modules
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Outlooks

Short term aims:

e extract the detector module embedding from
BERT to have a “deep representation of the
Pixel detector”

e apply the learned detector presentation for
other tasks, such as metric learning-based
graph construction, end-to-end track finding

Long term aims:

e build a deep representation for calorimeters
e apply the representation for particle
reconstructions
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Results on second track

Accuracy in predicting masked detector modules

e Mask 1 module in the second track and ask the model to predict the masked module.
e Evaluate the distance between the predicted module and the true module.

Normalized Distribution, Accuracy: 99.70% Cumulative Distribution
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Results for second track

The impact on the mask position and track length

e Mask the first module, middle modules, or the last module to check the performance
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