
Ensemble Backend

• Increasing Triton model instances increases the GPU utilization and throughput
• Customized backend is better than Ensemble model for complex workflow like 

the GNN-based Tracking
• Direct inferences require higher concurrency to reach maximum throughput

Results on GPU-based GNN Tracking Service

Main Workflow

Conclusions and Outlook

• We implemented the first customized backend for the GNN-based Tracking as a 
Service and observed much better performance comparing with our previous 
ensemble backend implementation.

• We observed that Triton server can yield higher throughput than direct inference 
with an affordable number of instances (constrained by the device)

• Continue studies in the future
• Measure the performance with more realistic data and models
• Evaluate the performance with multiple GPUs and multiple GPU compute 

node
• Measure the network latency
• Estimate resource requirements for online data processing
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Ensemble scheduling uses greedy algorithms to schedule each model. Pros: directly use existing Triton 
inference backends; Cons: little control with the data flow and algorithm scheduling, increasing the IO 
operations and latency à data may be sent to a model in a different device

Customized backend provides means to receive requests 
from and send outputs to the client. Pros : low overhead, full 
control of data flow and devices; Cons : need to write user’s 
own inference code

We build customized backends for the CPU-only and the 
GPU-only ExaTrkX inference service.

• Perlmutter CPU node: 2x AMD EPYC 7763 CPUs, 64 cores per CPU, 
512 GB of DDR4 memory total, 204.8 GB/s memory bandwidth per CPU.

• Triton server better utilizes CPU cores. One possible 
explanation:

• The buildEdges step uses the FAISS library, which uses 
multithreading too. There may be a clash of resource 
management between the external libraries and the 
TBB used in the main function 

Load Balancer

https://www.amd.com/en/products/cpu/amd-epyc-7763

