
Ensemble Backend

• Increasing Triton model instances increases the GPU utilization and throughput
• Customized backend is better than Ensemble model for complex workflow like 

the GNN-based Tracking
• Direct inferences require higher concurrency to reach maximum throughput

Results on GPU-based GNN Tracking Service

Main Workflow

Conclusions and Outlook

• We implemented the first customized backend for the GNN-based Tracking as a 
Service and observed much better performance comparing with our previous 
ensemble backend implementation.

• We observed that Triton server can yield higher throughput than direct inference 
with an affordable number of instances (constrained by the device)

• Continue studies in the future
• Measure the performance with more realistic data and models
• Evaluate the performance with multiple GPUs and multiple GPU compute 

node
• Measure the network latency
• Estimate resource requirements for online data processing

Compute Node

NVIDIA Triton Server

Customized Backend for CPUs and GPUs

Graph Neural Network-based Tracking as a Service

1. LBNL, 2. NERSC, 3. University of Washington, A3D3, 4. MIT, 5. University of Pennsylvania, 6. FNAL

Xiangyang Ju1, Elham E Khoda3, Andrew Naylor2, Haoran Zhao3, coauthored with 

Paolo Calafiura1, Steven Farrell2, Shih-Chieh Hsu3, William Patrick McCormack4, 
Philip Coleman Harris4 , Dylan Sheldon Rankin5, Yongbin Feng6

Results on CPU-based GNN Tracking Service

Server

Spacepoints

Track candidates

Algorithm Backend

Embedding Pytorch
Building (FRNN) Python
Filtering Pytorch
GNN Pytorch
Track labeling (CC) Python

ExaTrkX Model Ensemble

Compute Node

NVIDIA Triton Server

Acknowledgement: 
This research used resources of the National Energy 
Research Scientific Computing Center (NERSC), a U.S. 
Department of Energy Office of Science User Facility 
located at Lawrence Berkeley National Laboratory, 
operated under Contract No. DE-AC02-05CH11231 using 
NERSC award ERCAP0021226
Hsu is supported by NSF award No. 2117997.

Ensemble scheduling uses greedy algorithms to schedule each model. Pros: directly use existing Triton 
inference backends; Cons: little control with the data flow and algorithm scheduling, increasing the IO 
operations and latency à data may be sent to a model in a different device

Customized backend provides means to receive requests 
from and send outputs to the client. Pros : low overhead, full 
control of data flow and devices; Cons : need to write user’s 
own inference code

We build customized backends for the CPU-only and the 
GPU-only ExaTrkX inference service.

• Perlmutter CPU node: 2x AMD EPYC 7763 CPUs, 64 cores per CPU, 
512 GB of DDR4 memory total, 204.8 GB/s memory bandwidth per CPU.

• Triton server better utilizes CPU cores. One possible 
explanation:

• The buildEdges step uses the FAISS library, which uses 
multithreading too. There may be a clash of resource 
management between the external libraries and the 
TBB used in the main function 

Load Balancer

https://www.amd.com/en/products/cpu/amd-epyc-7763

