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* Conclusions and Outlook

* We implemented the first customized backend for the GNN-based Tracking as a
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o Service and observed much better performance comparing with our previous
0 20 O L0 50 100 ensemble backend implementation.
| * We observed that Triton server can yield higher throughput than direct inference
* Perimutter CPU node: 2x AMD EPYC 7763 CPUs, 64 cores per CPU, with an affordable number of instances (constrained by the device)

512 GB of DDR4 memory total, 204.8 GB/s memory bandwidth per CPU.

* Triton server better utilizes CPU cores. One possible * Continue studies in the future

explanation: * Measure the performance with more realistic data and models
- The buildEdges step uses the FAISS library, which uses » Evaluate the performance with multiple GPUs and multiple GPU compute
multithreading too. There may be a clash of resource node
management between the external libraries and the * Measure the network latency
TBB used in the main function » Estimate resource requirements for online data processing
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