Performance of the ATLAS Inner Detector tracking and new Long-Lived Particle triggers in the LHC Run 3

Jonathan Long On behalf of the ATLAS Collaboration

University of Illinois Urbana-Champaign

Oct 11th, 2023 CTD 2023

Introduction

- Run 3 ATLAS Inner Detector Trigger
- Run 3 ID trigger performance
- Unconventional tracking triggers for Run 3

44m

ATLAS Trigger Schematic

Trigger Software Tracking Overview

- Signatures that use tracking:
	- Electrons, muons, b-jets, taus, B-physics, long-lived particles
	- Isolation for leptons
	- Full Detector tracking for Jet and Missing Transverse Momentum enables particle flow
		- Closer to offline, better jet resolution, better pile-up rejection
- Crucial element of ATLAS trigger to find and save events needed for physics program
- Designed considering speed and efficiency with respect to offline tracking
	- Computationally challenging in high pile-up environment
- **Full Detector** (entire Inner Detector) and **Region-of-Interest** (small regions around calorimeter or muon spectrometer signature)

HLT Trigger Tracking Flow

● **Data Preparation**

– Retrieve raw Pixel and SCT detector data within region of interest and cluster hits; space-point formation

● **Fast Track Finder (FTF) (unique to trigger)**

- First pass of tracking optimized for speed and efficiency
- *Seeding and track formation (slow)*
- **Optional 'Hypo', i.e. selection to reject event**

Precision Tracking

- Offline-like tracking seeded by Fast Track Finder to increase purity and resolution of tracks
- Runs ambiguity removal between tracks
- Extension into Transition Radiation Tracker

Run 3 Performance of Trigger Lepton Tracking

- Exceptional performance of inner detector trigger continues
- New for Run 3: Gaussian Sum filter (GSF) for electrons (better for Brem.)

Oct 11, 2023 (CTD 2023) Jonathan D. Long (UIUC) 7

Efficiencies are with respect to offline tracks

[ATL-COM-DAQ-](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#ATL_COM_DAQ_2023_075_ID_Trigger)

[2023-075](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#ATL_COM_DAQ_2023_075_ID_Trigger)

New for Run 3: Improved Electron p_T resolution with GSF

 p_T difference wrt offline tracks improved

New For Run 3: Speeding up tracking for Muon Isolation *RoI η and Φ are*

• Run in second step after finding muon **by a set of the contract of the contr**

wider for isolation

- Better use of muon candidate to refine isolation tracking RoI to z_0 position of muon candidate with a 10 mm half-width
	- For Run 2, the z_0 width was not restricted
- 5x reduction in execution time; efficiency remains high

Execution time [ms]

New For Run 3: Full detector tracking in HLT

- Want full detector tracking to improve trigger performance of jets and E_{T}^{miss}
- No new FPGA/GPU-based solution for Run 3
- Full detector tracking is slow $(-1.3$ seconds / evt) and expensive
	- Increase CPU farm performance
	- Optimize tracking (filtering seeds [see backup], only FTF)
	- Run tracking only when we really need it $(\sim)14$ kHz, once per event)

New For Run 3: RoI b-jet tracking + fast b-tagger for early rejection

Unconventional Tracking for Long-Lived Particles (LLPs)

- Many unique, non-standard signatures that **rely on tracking information for identification**
- Only standard tracking was used in the Run 2 trigger, with coverage out to $|d_0|$ < 5-10 mm
	- Not adequate for most LLPs
- Calorimeter and muon spectrometer based triggers generally have **high thresholds** to keep rates reasonable
- Directly triggering on displaced objects keeps rates low while improving trigger acceptance for LLP searches

New LLP triggers for Run 3

- Long-lived charged particles
	- Disappearing track triggers (see [CTD2022](https://indico.cern.ch/event/1103637/contributions/4825735/)/backup)
	- Large dE/dx
	- $-$ Isolated high p_T track
- Long-lived particle decaying into jets
	- Hit-based Displaced Vertex
	- Emerging jets
	- Displaced jets

Generally:

- Make use of full scan tracking
- *Apply additional requirements to reduce Jet or MET thresholds*

[ATL-COM-DAQ-2023-075](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#ATL_COM_DAQ_2023_075_ID_Trigger)

- [◽] *Single jet threshold: 420 GeV*
- [◽] *E^T miss threshold: 90 GeV*
- *Run Large Radius Tracking (LRT)*

Most of the following slides are MCbased performance

• LLPs decaying into SM leptons (see [CTD2022](https://indico.cern.ch/event/1103637/contributions/4825735/)/backup for more)

High dE/dx dE/dx: [JHEP 06 \(2023\) 158](https://link.springer.com/article/10.1007/JHEP06(2023)158)

- Signature: long-lived massive charged particle
	- Relatively large energy deposits in silicon sensors on track
- Run 2 analysis:
	- Trigger **E^T miss > 110 GeV**
- \cdot 3.3 σ excess in Run 2 dE/dx analysis

• Full detector tracking after E_T ^{miss} > 80 GeV $p_T > 50$ GeV and dE/dx > 1.7 MeV/cm $cm²/g$] **ATLAS** Preliminar 4.5 Data 2022, $\sqrt{s} = 13.6 \text{ TeV}$ Numbe *Offline v Trigger* Offline track $\overline{30}$ $p_T > 12$ GeV
dE/dx > 1.25 MeV cm²/g *dE/dx* 20 10 GeV 10 dE/dx > 1.25 MeV cm²/g 2.5 Offline track dE/dx [MeV cm²/g] **ATLAS** Preliminary Data 2022, $\sqrt{s} = 13.6$ TeV Number of 10 Trigger track $p_r > 10$ GeV, $dE/dx > 1.25$ MeV cm²/g *Trigger dE/dx* 10^5

 $10⁴$

1.5

2.5

З

 3.5

4

Track dE/dx [MeV cm²/g]

Directly trigger on high dE/dx tracks

Isolated high p_T **tracks**

- Signature: long-lived massive charged \bullet \bullet $p_T > 120$ GeV + track-based isolation particle with detector (ID) stable lifetime
	- Isolated track
- Also motivated by dE/dx search
	- Would like to lower $\mathsf{E}_{\textsf{T}}^{\textsf{miss}}$ requirement for Run 3 searches

- Directly trigger on isolated high p_T tracks
- Use full scan tracking after E_T ^{miss} > 80 GeV
-

Hit-based Displaced Vertex

- Signature: long-lived neutral particle decaying into jet/displaced vertex in the ID volume
- Run standard full-detector tracking and find left-over hits around jet
	- Large number of hits on outer layer compared to inner layer signature of displaced vertices that are not reconstructed
- BDT uses fraction of hits-per-layer to identify this signature
- 1) E_T ^{miss} preselection and Jet with $p_T > 200$ GeV and |η| < 1 passing BDT
- 2) Jet with $p_T > 260$ GeV and $|\eta| < 1$ passing BDT

Emerging jets

- Signature: semi-visible jets often in models with dark sector
	- Displaced tracks and displaced vertices in semi-visible jets
- Use standard full-detector tracking to compute fraction of jet momentum associated with prompt tracks (PTF)
	- Expect low fraction for emerging jets

- 2) 45 GeV Photon seeded with 2 Large R jets with $p_T > 55$ GeV and PTF ≤ 0.1
- Overall efficiency depends on PTF acceptance

Displaced jets

- Signature: displaced jet
	- Jets without many prompt tracks
- Requires HLT jet with $p_T > 180$ GeV
	- Single jet threshold is 420 GeV
- Count prompt and displaced tracks with $p_T > 1$ GeV around $\Delta R < 0.4$ of jets
	- Threshold at $|d_0|$ = 3 mm
- Run LRT on remaining hits in RoI around jets that pass preselection n_{prompt} ≤ 2

- Leading 180 GeV jet (ISR Jet) +
- 1) 140 GeV jet with $n_{\text{promp}} \le 1$ and $n_{\text{disp}} \ge 3$
- 2) Two 50 GeV jets with $n_{\text{promp}} \leq 2$ and $n_{\text{diss}} \geq 3$
	- − 2nd jet may have n_{disp} ≥ 0 if n_{promp} ≤ 1

Displaced Taus

- Signature: displaced tau
	- Hadronically decaying taus with large d_0
- Standard single tau threshold of 160 GeV
- Retrained tau RNN to select displaced taus based on standard tracking
- Additional trigger running LRT in RoI around tau under development

- Single tau: $p_T > 200$ GeV
- Di-Tau: $p_T > 80$ GeV and $p_T > 60$ GeV
- Tau+X, seeded by X, with lower thresholds

Displaced Electrons: Trigger Tracking Performance

- Signature: displaced electron
	- Electrons with large d_0
- Run LRT in RoI around Calo candidate
- Performance measured with respect to offline electron tracks

Displaced Muons: Trigger Tracking Performance

Full Detector Trigger LRT Tracking Performance with K^os

- Use offline K^os vertices to measure trigger LRT performance
	- $p_T > 1$ GeV, $d_0 > 5$ mm, opp. charge, 25 MeV mass window
	- Match offline (STD+LRT) tracks to *standard trigger tracks* (and remove)
	- Remaining offline tracks used as denominator
- Reprocessed special dataset to run trigger full detector LRT
- Per track efficiency and efficiency of matching both tracks in vertex

Conclusion

- Greatly expanded use of tracking in the HLT for Run 3
	- $-$ Running full detector tracking for all E_T ^{miss} and Jet signatures
	- New triggers targeting a wide variety of LLP signatures
- Tracking is the most CPU intensive part of the HLT, requiring selective use and clever optimization
- Tracking continues to be a key element of the ATLAS Trigger
	- Exciting prospects with new LLP triggers
- Excellent performance in Run 3 so far and continues to improve

Backup

dE/dx Run 2 search

• Follow-up using calorimeter timing. Events not compatible with slow moving particle dE/dx+ToF: [ATLAS-CONF-2023-044](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-044/)

Improvements for Run 3

- Unconventional tracking signatures
- Full detector tracking for Jet and Missing Transverse Momentum signatures

Disappearing Track Trigger **[ATL-COM-DAQ-2022-011](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#High_Level_Trigger_Run_3_Disappe)**

- Modify tracking algorithm to save failed tracklets
	- Run in full scan instances (MET)
- Categorize tracklets based on number of Pixel and SCT hits
- Train BDT based on various track-related quantities to reject fake tracklets (parameters, χ^2 ,..)

Long-lived chargino

Large Radius Tracking (LRT)

- See J. Burzynski's talk from [CTD2022](https://indico.cern.ch/event/1103637/timetable/?view=standard#4-improved-track-reconstructio) for information on improved ATLAS LRT for Run 3
- **Key improvements**
	- Reduced number of fake tracks
	- Improved processing time
- Run 2 LLP searches generally relied on calorimeter or muon-spectrometer based triggers with **high thresholds** (~60 GeV for two objects)
	- Impacted acceptance of interesting models such as light displaced staus, which have relatively low momentum decay products

Large Radius Tracking for Leptons in RoIs

- **SCT only seeding**, without ordering by impact parameter; tighter track selection than for prompt
- **Single pass of tracking, unlike offline tracking that** runs on remaining hits after standard tracking
	- **Reconstructs pT>1 GeV and |d0|>2mm**
	- Timing and performance acceptable without extra complexity of two steps

Region-of-Interest midpoint s ector sector $+1$ $sector -1$ inner middle outer Number of layers required and size of RoI in ϕ limit reach to large displacements [ATL-COM-DAQ-2022-023](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#ATL_COM_DAQ_2022_023_Expected_Hi) [ATL-COM-DAQ-2022-026](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#ATL_COM_DAQ_2022_026_Expected_Ti)

Expected LRT Lepton Trigger Performance

- Target displaced electrons and muons from a **few mm out to 300 mm**
- Efficiency with respect to offline tracks truth-matched to signal leptons

Full Scan Large Radius Tracking

- Useful for signatures without obvious RoI or adding LRT to jets
- Runs as second pass after standard tracking, otherwise similar to RoI LRT
	- 1.7x mean processing time compared to standard tracking
- Optimizations for processing time reduce efficiency compared to offline tracking

 $\mathbf{\Xi}$

—
ი O

Μ−
D

 \blacktriangleright [Q-2](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#ATL_COM_DAQ_2022_026_Expected_Ti) $\mathbf \circ$ \overline{N} $\sum_{i=1}^{n}$ $\overline{\text{C}}$ σ

LRT Lepton Eff vs Prod Radius **[ATL-COM-DAQ-2022-023](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#ATL_COM_DAQ_2022_023_Expected_Hi)**

Additional LRT Full Scan Eff [ATL-COM-DAQ-2022-023](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#ATL_COM_DAQ_2022_023_Expected_Hi)

Speeding up Full Scan tracking

Speeding up Track Seeding

- Full scan tracking is time consuming
- Seeding, forming of triplets, first step in combining hits into tracks
- Number of seeds increases rapidly with number of hits (e.g. larger pileup)
- Number of seeds also impacts time needed for later steps of tracking

Speed up tracking by rejecting bad seeds from the start

ML based filtering

- Train classifier on **cluster width in η** and **doublet inclination angle** with respect to the z-axis
- Train for pixel-barrel and pixel-endcap doublets and standard/long pixel combinations (banding)

cot(e)I $\mathbf p$ **ATLAS** Simulation Preliminary **Predicted correct hit association** L-C Monte Carlo 13 TeV $t\bar{t}$ <u> = 80 O M-D \blacktriangleright [Q-2](https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HLTTrackingPublicResults#ATL_COM_DAQ_2021_003_Machine_Lea) $\mathbf{\circ}$ 2 1-0 2.5 1.5 $\overline{\omega}$ Pixel cluster width w_n [mm] bin(lcot(e)I) 40 **ATLAS** Simulation Preliminary Monte Carlo 13 TeV $t\bar{t}$ <u> = 80 35 $30²$ $25¹$ $20²$ ● Turn acceptance region of doublets into **look** Ooublet acceptance region "0 \mathcal{P} 8 10 12 14 16 18 20 22 24 26 $bin(w_n [mm])$

up table

Optimizing Full Scan Tracking for Jet and MET Signatures

Other backup material Run 2 / RoI details

Timing for Muon Trigger

- Clustering and spacepoint formation is fast: 4-10 ms
- Fast Tracking mean of 40 ms (tail up to 300 ms), precision tracking 7 ms
- Tracking for isolation in wider RoI is slower around 116 ms
- Extension to TRT is also fast, under 10 ms
- Sum of mean times \leq 200 ms

[Eur. Phys. J. C 82 \(2022\) 206](https://doi.org/10.1140/epjc/s10052-021-09920-0)

Lepton Tracking Efficiency and Resolution vs Offline Tracks

E

Two Stage Tracking

- Allows for updating RoI after first pass to optimize CPU performance and efficiency—**improvement** over single stage strategy
- - Run first pass to find luminous / vertex region in Z with narrow eta and phi
	- Second pass with restricted Z region, but full eta and phi

Two Stage Tracking (taus and b-jets)

 \blacksquare د
ا $\overline{\mathtt{U}}$ $\overline{\mathcal{L}}$ \prec s. ے. \bigcap ∞ \overline{N} \mathbf{v} \subset $\bar{\mathcal{N}}$ $\bar{\nu}$ \mathbb{N} $\mathbf{\Omega}$ \overline{O}

b-jet Trigger track multiplicity

Merging Regions-of-Interest: 'Super RoIs'

- B-Jet triggers are most costly in terms of CPU resources
- Jet triggers may have multiple RoIs per event used to seed b-jet trigger
	- **Merging the RoIs** into a single event wide RoI reduces the overhead from overlapping regions, e.g. data preparation
- Two stage tracking strategy to first find luminous region and then for b-jet vertexing
	- Primary vertex cached per event from most expensive step (vertex fast tracking)
	- Vertexing itself is fast <10ms $[O(1)$ ms for lepton RoIs $]$

Electron and b-jet Timing

Electron precision tracking resolution worse than FTF at low pT

- These are likely electrons that have radiated (track) pT<<threshold)
- FTF likely rejecting outermost SCT hit
	- Track not getting pulled by outer hit
	- Better resolution for p_T based on inner hits

[Eur. Phys. J. C 82 \(2022\) 206](https://doi.org/10.1140/epjc/s10052-021-09920-0)

Vertexing Resolution **EUR. 20022** 20022) 200

