
Reconstructing charged 
particle track segments with a 
quantum-enhanced support 
vector machine 

Marcin Jastrzębski

P. Duckett, G. Facini, M. Jastrzebski, S. Malik, S. Rettie, T. Scanlon

London, UKCambridge, UK

https://arxiv.org/abs/2212.07279

1

https://arxiv.org/abs/2212.07279


UCL-HEP-Q

Marcin 
Jastrzębski

Dr Sarah 
Malik

Dr Mohammad 
Hassanshahi

Callum 
Duffy

2



Z
Z

Z

Entanglement

Superposition
Randomness

Z

X

Y

|0⟩

|1⟩

Quantum 
computation

Quantum bit (qubit)

3



EntanglementSuperposition Randomness

Z

X

Y

|0⟩

|1⟩

|0⟩⊗N α |00…0⟩ + β |00…1⟩ + … (011…1)(α |0⟩ + β |1⟩)⊗N

U1

U2

U3

U1,2
U1,3

U2,3

Quantum 
computation - circuit

4



QC for HEP landscape
Theory Experiment
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6



Check out

Experiment
QC for HEP landscape
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This workshop
Experiment
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This workshop
Experiment
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Right now!This workshop

QC for HEP landscape
Experiment

10

Check out
https://www.nature.com/

articles/
s42254-022-00528-1

https://www.nature.com/articles/s42254-022-00528-1


Intro to SVM

Maximise this

Usually done using the 
dual (think Lagrangian 
multipliers) 

x1

x2
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Intro to SVM

Maximise this

Usually done using the 
dual (think Lagrangian 
multipliers) 

Results in building a 
kernel matrix
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Quantum circuit as 
feature map and kernel

K1,1 K1,2 K1,3

Kx,z …

Encode data 
point x in the 
circuit

Encode data 
point z in the 
circuit 
(backwards) 15
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Classical Quantum
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Dataset  
+ 
Simplifications • Barrel only 

• Remove noise 
• One hit per track per layer 
• Look at >0.75GeV only

17



Dataset  
+ 
Simplifications
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• Slice-up the detector



Record all 
the hits

Recap of 
tracking
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Consider all 
possible 

connections

Ed
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Intro to SVM

x1

x2

Supervised learning - 
show examples to train 
on, test on unseen data

Kernel for this with 
a classical or 

quantum computer!
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show examples to train 

on, test on unseen data

Kernel for this with 
a classical or 

quantum computer!
Intro to SVM
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NOTE: All results 
shown here are 
obtained on a 
classical computer 
pretending to be a 
quantum computer

24
(We are running on hardware but no worthy results yet)



Results
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Train on up to 
50 events



Results
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Train on up to 
240 events



BONUS: Complexity 
A B
C

A
B C

A
B
C

Complexity - how 
narrow is the 

margin?

Geometric difference - 
given two models, will 
same data be mapped 

similarly?
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Quantum 
kernel 
sufficiently 
different and 
less complex! 

BONUS: 
Complexity 
results
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The future of 
HEP and 
quantum 
computing

2022

2028

2024

2040+

2026

FCC?

HyperK

Euclid

LISA

CEPC DUNE

Mu2e

HL-LHC

…

IonQ: 35

IBM: 4000 DWave: 7000 

…

Rigetti: 4000
IonQ:1024

IBM: 1221

Useful quantum?
Quantum winter?

Particle Physics/HEP experiments Company: # of qubits
Year:

But error 
mitigation and 
error 
correction will 
be necessary 

[…] 
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Thank you
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• Slide 3 top right pic: https://www.nature.com/articles/
s41566-023-01272-3 

• Slides 5-10: https://arxiv.org/abs/2307.03236 
• Slides 17/18: trackml logo https://www.kaggle.com/

competitions/trackml-particle-identification/overview 
• Slide 35: https://arxiv.org/abs/1804.11326 
• Slide 37: https://quantumtech.blog/2022/10/20/quantum-

computing-modalities-a-qubit-primer-revisited/
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BONUS: Main cons/
pros

No chance of advantage 
until larger number of 
features

Algorithmic complexity 
(M^2)

IBM takes kernel methods 
seriously (paper estimating 
runtimes). They suggest 
collaboration with kernel 
methods experts

Feature mapping (thus 
kernels) very natural for 
quantum computers

Most tangible possibility for 
proven advantage

The shots with data scaling 
means most likely need a 
more sophisticated 
implementation
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BONUS: Areas of 
current/future focus

Running on hardware

Quantum autoencoders

Generative models

Collaboration
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BONUS: What’s 
needed for 
advantage?

Algorithm

[maybe] error mitigation

Use case
[probably] Error correction
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BONUS: 
Advantage from 
kernels - 
forrelation
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BONUS:Cluster 
computers

DELL PowerEdge servers, 15 
with two six-core Intel Xeon 
E5-2430 2.7 GHz CPUs and 48GB 
of RAM, 11 with two eight-core 
Intel Xeon E5-2620 3.0 GHz CPUs 
and 64GB of RAM or better.
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https://www.hep.ucl.ac.uk/twiki/bin/view/Computing/PowerEdge


BONUS: qubit 
modalities
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