Physics Performance of the **ATLAS GNN4ITk** Track Reconstruction Chain

Heberth Torres (L2I Toulouse) on behalf of the ATLAS Collaboration

Connecting The Dots Workshop 10/10/2023

Introduction **ATLAS GNN4ITk**

Projection of ATLAS compute usage shows the need for aggressive computing R&D

Future ATLAS Inner Tracker ITk for the High Luminosity LHC with extended coverage $|\eta| < 4$ expect 10⁵ hits per event (200 *pp* interaction pileup)

Outline

- Description of the GNN4ITk tracking
- Physics performance
 - Efficiency
 - Track hit content
 - Resolution of track parameters

(ATLAS GNN4ITk plot references: May 2022, May 2023, Oct. 2023)

Simulation data

- Using ATLAS simulation event sample: pp collisions at $\sqrt{s} = 14$ TeV, $t\bar{t}$ process, $\langle \mu \rangle = 200 \, pp$ interaction pileup
- Target particles:
 - $p_T > 1$ GeV, with at least 3 hits or space points, no electron,
 - only primary particles (including B hadron decays) (without "secondary" Geant4 particles from material interactions)

 For today's new physics performance plots: updated ITk layout 23-00-03 (reduced radius of innermost pixel layer, and distribution of passive material with greater detail and accuracy)

ATLAS GNN4ITk Our graph definition

Hits

• Hit or space point in ITk

Graph

- Graph: Set of nodes and edges
- Node: Hit or space point
- Edge: Hypothesis: The two associated nodes represent two successive hits of the same particle

ATLAS GNN4ITk Track Reconstruction Chain

GNN4ITk Graph construction

300k nodes fully interconnected yield 10¹⁰ edges, too m Two filtering alternative methods reduced edges to 106.

- Metric Learning
 - 1. MLP is trained to embed nodes into a space, where common particle nodes are close

2. Additional filtering by another MLP

Module Map: Lookup table of 1M possible triple-module directional connections (table built with 90k simulation events)

- Build edges based on the Module Map
- 2. Additional filtering with geometric cuts

(For today's new physics performance plots: used Module Map)

GRAN4ITK Graph construction

• Performance

- Train Graph Neural Network to identify true edges based on geometric node and/or edge features
- It reduces number of edges: $10^6 \rightarrow 10^4$

GNN config:

- 2 layers per MLP -
- 128D latent space
- 8 message-passing

New w.r.t. CTD 2022:

- Non-recurrent interaction network
- Doing batch norm
- Heterogeneous data

• Performance: Significant improvement compared to CTD22 (low spacial-resolution strip hits was affecting the GNN performance)

edge GNN pe

edge be GNN

Strip hits

Some possible options:

- Problem addressed by passing info of the two individual strip clusters to the GNN; node features:
 - Strip barrel: $r_{\rm hit}, \ldots, r_{\rm cl1}, \ldots, r_{\rm cl2}, \ldots$ Pixel: $r_{\rm hit}, \ldots, r_{\rm hit}, \ldots, r_{\rm hit}, \ldots$

(Heterogeneous data format)

Other alternatives under study: hand-engineered edge features based on hit pair info, & heterogeneous GNN model

GNN4ITk Graph segmentation

Legend: Edge below threshold Edge above threshold Same color nodes = same particle nodes

Connected component algorithm, with loose edge score cut

The better GNN performance the more tracks are ready at this stage and the faster the reconstruction is

> Walk-through algorithm, with tighter edge score cut

(Current graph segmentation mainly developed to complete the chain. Not yet optimized, e.g. could be combined with a Kalman Filter.)

13

Technical check

• Full chain performance: "Technical" tracking efficiency (defined based on our current target particles)

HeteroDat

Standard matching: - Track has 50% hit purity

Strict matching:

- Track includes 100% of the particle hits

- Track has 100% hit purity

O(10⁻³) fake tracks: Track candidates not matched to any particle

Technical check

• Easy task: Single particle tracking

First time test for GNN4ITk

For the moment: Test done with Metric Learning graphs, with GNN model trained on $t\bar{t}$ events artificially altered to contain only hits from particles with $p_T > 1$ GeV

η

Physics Performance of the ATLAS GNN4ITk

Physics Performance of the ATLAS GNN4ITk and apples-to-apples comparison against ATLAS Combinatorial Kalman Filter

Extra step into the chain

Applying standard ATLAS selection

Requirements	Pseudorapidity interval		
	$ \eta < 2.0$	$2.0 < \eta < 2.6$	$2.6 < \eta < 4.0$
pixel + strip hits	≥ 9	≥ 8	≥ 7
pixel hits	≥ 1	≥ 1	≥ 1
holes	≤ 2	≤ 2	≤ 2
$p_T [MeV]$	> 1000		
$ d_0 $ [mm]	≤ 2.0	≤ 2.0	≤ 10.0
$ z_0 $ [cm]	≤ 20.0	≤ 20.0	≤ 20.0

For GNN4ITk 3 cuts are looser: pixel + strip hits \geq 8, $|d_0| < 20 \text{ mm}$ $|z_0| < 25 \text{ cm}$

ATL-PHYS-PUB-2021-024

Tracking efficiency

Competitive "physics" efficiency (excluding electrons)

[O(10⁻³) fake tracks: Track candidates not matched to any particle]

18

Tracking efficiency Tracking inside jets

Competitive "physics" efficiency even in dense environment (excluding electrons)

Track hit content Pixel hits

 Compatible with the detector, and with the CKF

Impact parameter resolution

Given the good pixel hit content, good impact parameter resolution

Track strip-hit content and p_T resolution

- Strip-hit content as expected GNN4ITk considers only "full" strip hits / space points, consisting of two strip clusters CKF considers also individual strip clusters
- Competitive p_T resolution, even with lower strip cluster counts

Prospects

- Further optimization and acceleration of the full GNN4ITk chain
 - Acceleration of graph construction with GPU
 - Machine Leaning model and heterogeneous GNN architectures
 - Study of corrections to strip-spacepoint positions
 - Investigate impact of missing strip-cluster singlets
- Continue physics performance studies (B-hadron decays tracks, electron tracks, etc.)
- Study robustness against detector effects (dead modules, mis-alignment, beam-spot variations)
- Integration of the GNN4ITk software into ACTS and the ATLAS Athena \bullet
- Already proven promising GNN inference speed with GPUs on TrackML dataset (Exa.TrkX)

Conclusion

First look at the physics performance of the GNN4ITk tracking chain (apples-to-apples comparison against the Combinatorial Kalman Filter).

- The GNN4ITk provides competitive tracking efficiency,
- even in challenging dense environment, \checkmark
- and high quality track parameter resolution. \checkmark

