Clustering and tracking in dense hadronic environments with the ATLAS ITk.

Cluster merging

In environments with a high density of charged particles such as the center of high-p_T jets, silicon clusters can merge

- >Merged clusters usually end on multiple tracks
 - >Tracks sharing clusters are penalised in the reconstruction, hence tracking **efficiency is reduced**
- > Merged clusters reduce the quality of tracking
 - >Track parameter resolution worsens and this affects jet flavour tagging
 - >Flavour tagging is crucial for many measurements and searches
- >Merged clusters are identified (Number Network) and split (Mixture Density Network) with the current detector
- > Expected tracking performance in dense environments with the ITk?

Effects of cluster merging

>Cluster position residuals

 $\left(x_{\rm reco} - x_{\rm truth}^{\rm particle}\right)$

Reconstructed position of merged clusters is degraded

The ITk

- > All-silicon ATLAS tracker for High-Luminosity LHC
- > Pixel and Strip sub-detectors
- > Finer granularity than current ID (but higher occupancy)

Pixel pitch	Innermost layer	Other layers
ITk	25 μ m $ imes$ 100 μ m	50 μ m $ imes$ 50 μ m
Current ID	50 μ m $ imes$ 250 μ m	50 μ m $ imes$ 300 μ m

Tracks inside of jets

>Fraction of Shared¹ clusters increases in jet core

> Efficiency of track reconstruction

No classification of merged clusters

- > Reconstruction efficiency reduction in jet core
- > Better expected performance than current Inner Detector [3]

Perfect vs no classification of merged clusters

- >Focus on jet core
- No identification of merged clusters leads to efficiency loss in jet core
 ~1% at 1 TeV

References

- > [1] ATLAS Collaboration, Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2, Eur. Phys. J. C 77 (2017) 673
- > [2] ATLAS Collaboration, Expected tracking and related performance with the updated ATLAS Inner Tracker layout at the High-Luminosity LHC, tech. rep. ATL-PHYS-PUB-2021-024
- > [3] ATLAS Collaboration, Modelling of Track Reconstruction Inside Jets with the 2016 ATLAS $\sqrt{s} = 13$ TeV pp Dataset, tech. Rep. ATL-PHYS-PUB-2017-016
- > [4] ATLAS Collaboration, Clustering and Tracking in Dense Environments with the ATLAS Inner Tracker for the High-Luminosity LHC, ATL-PHYS-PUB-2023-022

Nicola de Biase, Katharina Behr (DESY) Connecting the Dots 2023 poster session

HELMHOLTZ

