
Acceleration of Event-Building for Data-Driven Hybrid
Pixel Detector Data

T1 T2

T3 T4

o Spatial – divides the area
of the sensor into sectors

o Temporal – divides the hits into
time windows.

Reader ClustererSorterCalibrator Outputter

A D

B C F E H

G

A B C D E F G H

Hits – spatial
dimension

x

Temporal
window cutoff

time

y

Hits – temporal
dimension

T1 T2

Reader Trigger

sorting, clustering (merging)

and outputting blockCalibrator

Reader

ClustererSorterCalibrator

ClustererSorterCalibrator

ClustererSorterCalibrator

Merger

ClustererSorterCalibrator

Outputter

Merger

Merger

Merger

Outputter

Outputter

Outputter

Method Mean IoU Std IoU

Step based parallel 0.99986 0.0001

Step and data based
parallel, simple merge

0.99983 0.0002

Step and data based
parallel, parallel merge

0.99983 0.0002

Halo clustering 0.856 0.025

Tomáš Čelko𝟏,𝟐, František Mráz𝟏, Petr Mánek𝟏,𝟐,𝟑, Benedikt Bergmann𝟐

1Faculty of Mathematics and Physics, Charles University in Prague
2Institute of Experimental and Applied Physics, Czech Technical University in Prague

3Department of the Physics and Astronomy, University College London

10th – 13th October 2023
Connecting The Dots 2023, Toulouse
Email: celko.tom@gmail.com

ProcessHit(hit):

 N = findNeighboringClusters(hit)

 if (|N| == 0)

 createNewCluster(hit)

 else if(|N| == 1)

 addHitToCluster(hit, N.first)

 else

 newCluster = mergeClusters(N)

 addHitToCluster(hit, newCluster)

 outputOldClusters()

High energy

Low energy

● Hybrid pixel detectors like
Timepix3 and Timepix4
detect individual pixels hit by
particles. For further analysis,
individual hits from such
sensors need to be grouped
into spatially and temporally
coinciding groups called
clusters.

● The Timepix3 detectors can
generate up to 80 Mhit/s (up to
640 Mhit/s with Timepix4) which is
far beyond the current capabilities
of the real-time clustering
algorithms, processing at roughly 3
MHit/s.

Timepix3 properties

Pixel matrix 256×256

Pixel size 55 𝜇m × 55 𝜇m

Time
resolution

1.56 ns

Bits per hit 48

Methods

Goals

Parallel clustering performs the distributed computation of the clusters

● Step based (pipeline) – perform individual steps of the algorithm in the parallel

● Data based – split the data between workers, which can produce incomplete clusters.

● Accelerate the clustering process.

● Focus on its real-time application.

● Selectively initiate clustering to reduce storage space.

Merging incomplete clusters split by the parallelization

● Merging must be performed fast. A cascade approach is used to quickly detect complete
clusters. Moreover, the merging is parallelized.

● With temporal split, the expected divided cluster rate can be lower than 1%, compared
to nearly 2% for spatial split.

Introduction

● Computation of statistical features for each time window (mean and maximum for
deposited energy and spatial coordinates, temporal cluster features).

● Feature differentiation with median filtering.

● There are two selective trigger approaches:

o Explicit – user specifies the interesting feature ranges (DNF formula)

o Implicit (ML-based) – user specifies interesting window examples and ML model is
trained to trigger clustering (MLP, SVM,...)

o Our approach was compared against the
state-of-the-art fixed-window clustering
method, using IoU metric

● Validity tests

● Temporal clustering – consider only the temporal neighborhood, ignore spatial
information

● Tiled clustering – use lower resolution of spatial matrix, effectively increasing
neighborhood size and overcoming dead pixels.

● Halo based clustering – exploit the idea: „If two hits are spatially and temporally close,
and one of them has high deposited energy, they likely belong to the same cluster“

Selective clustering monitors the hit stream and triggers clustering based on the monitored
statistical features

Approximative clustering aims to exchange cluster quality for clustering speed

o We measured the maximal
speed (throughput) of the
clustering methods with
respect to their
parameters.

Experiments

● Performance tests

o Sample task 1: Initiate
clustering on nontrivial hit
frequency change.

o Solution: MLP and SVM
models were trained using
200 ms time windows, the
mean throughput reached
16 Mhit/s for the laptop
and 13 Mhit/s for the
server architecture. The
data reduction rate
approached 60%.

● Selective clustering test

● Parallel clustering – Despite the interdependence of different data subsets, we achieve
a speed-up scaling with the number of used cores (up to 7× speedup).

● Selective clustering – Further, we exploited options to reduce the computational
demands of the clustering by determining radiation field parameters from raw
(unclustered) data features and self-initiating further clustering if these data show
signs of interesting events.

● Validation – The proposed methods were validated and benchmarked using real-world
and simulated datasets.

o Sample task 2: Initiate clustering on outlier window feature values.

o Solution: Any unsupervised, outlier detection algorithm can be used. For this purpose, we
chose a single class SVM, which reduced the data by nearly 90%. This resulted in throughput
increase to 25 Mhit/s and 15 Mhit/s.

Conclusion

𝐼𝑜𝑈 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

● Additionally, the hits from detector
are not guaranteed to be fully
temporally ordered.

This research was funded

by the Czech Science
Foundation grant number

GM23-04869M

mailto:celko.tom@gmail.com

	Snímka 1: Acceleration of Event-Building for Data-Driven Hybrid Pixel Detector Data

