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Pixel Detector Data
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o Spatial – divides the area 
of the sensor into sectors

o Temporal – divides the hits into 
time windows. 
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Method Mean IoU Std IoU

Step based parallel 0.99986 0.0001

Step and data based 
parallel, simple merge

0.99983 0.0002

Step and data based 
parallel, parallel merge

0.99983 0.0002

Halo clustering 0.856 0.025
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ProcessHit(hit):

  N = findNeighboringClusters(hit)

  if (|N| == 0)

    createNewCluster(hit)

  else if(|N| == 1)

    addHitToCluster(hit, N.first)

  else

    newCluster = mergeClusters(N)

    addHitToCluster(hit, newCluster)

  outputOldClusters()

High energy

Low energy

● Hybrid pixel detectors like 
Timepix3 and Timepix4 
detect individual pixels hit by 
particles. For further analysis, 
individual hits from such 
sensors need to be grouped 
into spatially and temporally 
coinciding groups called 
clusters. 

● The Timepix3 detectors can 
generate up to 80 Mhit/s (up to 
640 Mhit/s with Timepix4) which is 
far beyond the current capabilities 
of the real-time clustering 
algorithms, processing at roughly 3 
MHit/s. 

Timepix3 properties

Pixel matrix 256×256

Pixel size 55 𝜇m × 55 𝜇m

Time
resolution

1.56 ns

Bits per hit 48

Methods

Goals

Parallel clustering performs the distributed computation of the clusters

● Step based (pipeline) – perform individual steps of the algorithm in the parallel

● Data based – split the data between workers, which can produce incomplete clusters. 

● Accelerate the clustering process.

● Focus on its real-time application. 

● Selectively initiate clustering to reduce storage space.

Merging incomplete clusters split by the parallelization

● Merging must be performed fast. A cascade approach is used to quickly detect complete 
clusters. Moreover, the merging is parallelized. 

● With temporal split, the expected divided cluster rate can be lower than 1%,  compared 
to nearly 2% for spatial split.

Introduction

● Computation of statistical features for each time window (mean and maximum for 
deposited energy and spatial coordinates, temporal cluster features).

● Feature differentiation with median filtering.

● There are two selective trigger approaches:

o Explicit – user specifies the interesting feature ranges (DNF formula)

o Implicit (ML-based) – user specifies interesting window examples and ML model is 
trained to trigger clustering (MLP, SVM,...)

o Our approach was compared against the 
state-of-the-art fixed-window clustering 
method, using IoU metric 

● Validity tests 

● Temporal clustering – consider only the temporal neighborhood, ignore spatial 
information

● Tiled clustering – use lower resolution of spatial matrix, effectively increasing 
neighborhood size and overcoming dead pixels.

● Halo based clustering – exploit the idea: „If two hits are spatially and temporally close, 
and one of them has high deposited energy, they likely belong to the same cluster“

Selective clustering monitors the hit stream and triggers clustering based on the monitored 
statistical features

Approximative clustering aims to exchange cluster quality for clustering speed

o We measured the maximal 
speed (throughput) of the 
clustering methods with 
respect to their 
parameters.

Experiments

● Performance tests 

o Sample task 1: Initiate 
clustering on nontrivial hit 
frequency change.

o Solution: MLP and SVM 
models were trained using 
200 ms time windows, the 
mean throughput reached 
16 Mhit/s for the laptop 
and 13 Mhit/s for the 
server architecture. The 
data reduction rate 
approached 60%.

● Selective clustering test

● Parallel clustering – Despite the interdependence of different data subsets, we achieve 
a speed-up scaling with the number of used cores (up to 7× speedup).

● Selective clustering – Further, we exploited options to reduce the computational 
demands of the clustering by determining radiation field parameters from raw 
(unclustered) data features and self-initiating further clustering if these data show 
signs of interesting events. 

● Validation – The proposed methods were validated and benchmarked using real-world 
and simulated datasets.

o Sample task 2: Initiate clustering on outlier window feature values.

o Solution: Any unsupervised, outlier detection algorithm can be used. For this purpose, we 
chose a single class SVM, which reduced the data by nearly 90%. This resulted in throughput 
increase to 25 Mhit/s and 15 Mhit/s.

Conclusion

𝐼𝑜𝑈 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

● Additionally, the hits from detector 
are not guaranteed to be fully 
temporally ordered.
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