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GNN-based Tracking as a service

Why tracking as a service?
1. Factorize out ML framework

o Easy support for different ML 3. Portable solution to supporting different
frameworks & models coprocessors. No need for client to rewrite code for
2. Factorize out algorithm scheduling specific languages

o ML models can be deployed on
different COprocessors Simu|taneous|y 4. Allow access to remote Al accelerators

and easily
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Ensemble Backend

e GNN-Based Tracking is a complex workflow, consisting
of 5 discrete sub-algorithms
e Ensemble scheduling uses greedy algorithms to
schedule each algorithms (see the flow chart)
o Pros: directly use existing Triton inference
backends
o Cons: little control with the data flow and
algorithm scheduling, increasing the 10
operations and latency
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Customized Backend

Customized backend provides means to receive requests
from and send outputs to the client. Pros : low overhead, full
control of data flow and devices; Cons : need to write user’s
own inference code

We build customized backends for the CPU-only and the
GPU-only ExaTrkX inference service.



CPU-based GNN Tracking Service

One Perlmutter CPU node
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GPU-based GNN Tracking Service
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Number of Triton Model Instances

Increasing Triton model instances increases the GPU utilization and throughput
Customized backend is better than Ensemble model for complex workflow like the

GNN-based Tracking

Direct inferences require higher concurrency to reach maximum throughput
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