

In collaboration with

Karime Maamari

Adam He

Wendy Crumrine

Trey Driskell

arxiv 2301.08299 2301.08260 2010.02936 2008.00022 1904.10000

Rui An

Ethan Nadler

Also: Mikhail Ivanov, Jordan Mirocha, Yue Zhang, Kim Boddy, Andrew Benson, Risa Wechsler, +DES and ACT Collaborations.

Cosmology x DM physics

DM microphysics at the small-scale frontier

Lyman-alpha forest, dwarf galaxies, stellar streams, galaxy clustering, strong and weak lensing, intensity mapping, etc.

Near-field Cosmology

Known MW satellites from DES + PanSTARRS + SDSS

30 50

10

 $k [h \text{ Mpc}^{-1}]$

Nadler, Gluscevic, Boddy, Wechsler (2019) DES+ (2020)

Interactions of sub-GeV DM with the Standard Model

DM-proton scattering bounds

Karime Maamari (USC)

3-5 OOM improvement.

Dodelson-Widrow sterile neutrinos:

$$\nu_4 = \cos\theta \,\nu_s + \sin\theta \,\nu_a$$

Problem: sterile nus decay and produce observable X-rays.

Sterile neutrinos + neutrino self-interactions

$$\mathcal{L} \supset rac{\lambda_{\phi}}{2}
u_{a}
u_{a} \phi + ext{h.c.}$$

Sterile neutrinos + neutrino self-interactions

Rui An

Power suppression from sterile neutrino free streaming:

Rui An

Lab bounds on neutrino self-interactions:

https://arxiv.org/pdf/2203.01955.pdf

Mediators > 1GeV are ruled out.

Rui An

Shi-Fuller mechanism is ruled out (for 100% DM)

Ethan Nadler (USC/Carnegie)

Nadler, DES+ (2020) 2008.00022

*Including: realistic modeling of galaxy-halo connection (incl. disruption of subhalos by the Milky Way disk) and mock observations of the satellite abundance (luminosity, size, and radial distribution). 16

IDM transfer + N-body simulations + galaxy-halo model

PRELIMINARY

Rui An

Andrew Benson

Next up: Hydrodynamic simulations with DM-proton scattering

Karime Maamari

Illustration only.

Large scale structure

S8 tension

Less matter clustering is measured by weak lensing surveys, than anticipated by CMB + LCDM.

S8 tension = k-dependent suppression?

S8 tension: IDM?

Adam He

$$\sigma_{MT} = \sigma_0 v^{\cap}$$

Does IDM alleviate S8 tension?

Adam He

Нο	lyanov	Λn	Gluscevic	(2023)	
пe,	ivanov,	ΑΠ,	Gluscevic	(ZUZS)	

Model	Λ CDM, $Planck + BOSS + DES$	IDM, Planck + BOSS + DES
$\sigma_0 \ [10^{-26} \ \mathrm{cm}^2]$	-	$13.23 \ (5.163)^{+5.2}_{-6.5}$
S_8	$0.813 \ (0.813) \pm 0.009$	$0.794 \ (0.804)^{+0.009}_{-0.01}$
$\Delta\chi^2_{ m min}$	_	-6.7

Does IDM alleviate S8 tension?

Adam He

- Pre-tension physics
- Consistent across data
- Does not mess up H0
- Imminently falsifiable

НΔ	lyanov	Δn	Gluscev	ic I	(2023)	١
пe,	ivanov,	ΑΠ,	Gluscev	/IC	(ZUZS))

Model	Λ CDM, $Planck + BOSS + DES$	$\overline{\text{IDM}, Planck} + \text{BOSS} + \overline{\text{DES}}$
$\sigma_0 \ [10^{-26} \ \mathrm{cm}^2]$	_	$13.23 (5.163)^{+5.2}_{-6.5}$
S_8	$0.813 \; (0.813) \pm 0.009$	$0.794 \ (0.804)^{+0.009}_{-0.01}$
$\Delta\chi^2_{ m min}$	_	-6.7

21-cm cosmology

Altered thermal history:

Driskell + (2022) Munoz+ (2016) EDGES collab. (2018)

Suppression of structure:

(Not included in previous modeling)

Suppression + cooling

Trey Driskell

Millicharge cannot explain the EDGES signal. V^-4 Coulomb-like scattering is further constrained by the timing of the signal.

Trey Driskell

Driskell + (2022)

Key Points

• Small scale structure is sensitive to DM physics. **MW satellites** currently drive a non-CDM frontier.

• **Sterile neutrino** DM is heavily constrained by small scale structure, regardless of the particle spectra.

• **DM-baryon scattering** alleviates S8 tension, through scale-dependent power suppression.

• 21cm signal requires accurate modeling of structure formation + thermal history.