Probing Lepton Number Violation at LHC

K.S. Babu

Oklahoma State University

Mitchell Conference on Collider, Dark Matter, and Neutrino Physics

May 16 – 19, 2023

Texas A&M Univerity, College Station

Main Message

- If the process $pp \to \ell^{\pm}\ell^{\pm} + \text{ jets}$ is observed at the LHC, lepton number violation by two units would be established. This would imply that neutrinos are Majorana particles.
- This collider signal can compete favorably with neutrinoless double beta decay.
- This possibility is illustrated in the context of two popular neutrino mass models: type-II seesaw model and the Zee model.
- Talk based on:

Babu, Barman, Gonçalves, Ismail, arXiv: 2212.08025 [hep-ph]

Lepton Number Violation in Standard Model

- Lepton Number (L) and Baryon Number (B) happen to be conserved by the renormalizable Standard Model Lagrangian
- * However, these apparent conservation laws are "accidental" and are expected to be broken in nature
- ***** Weak interaction itself breaks B and L, but preserves (B L), via non-perturbative effects
- \clubsuit Baryon and Lepton Number currents have a chiral anomaly which leads to B+L violation

$$\begin{split} J_B^\mu &= \frac{1}{3} \left(\overline{u} \gamma^\mu u + \overline{d} \gamma^\mu d + \ldots \right), \qquad J_L^\mu &= \left(\overline{e} \gamma^\mu e + \overline{\nu}_{eL} \gamma^\mu \nu_{eL} + \ldots \right) \\ \partial_\mu (J_B^\mu - J_L^\mu) &= 0, \qquad \qquad \partial_\mu (J_B^\mu + J_L^\mu) &= \frac{3 \, g_2^2}{32 \pi^2} F_{\mu\nu}^a \tilde{F}_a^{\mu\nu} \end{split}$$

(B+L) is not conserved, and thus L is violated in Standard Model.

Strength of SM Lepton Number Violation

- **\$** B and L violation in Standard Model intrinsically nonperturbative
- At zero temperature tunneling rate between vacuua is suppressed by

$$\left(e^{-\frac{8\pi^2}{g_2^2}}\right)^2 \sim 10^{-160}$$

- B + L violation effects are unobservably small at T = 0't Hooft (1976)
- At finite T, there is a nonperturbative Sphaleron configuration with energy $E_{\rm sph} \sim 10$ TeV, which allows for B+L violation with tunnelling factor of $e^{-E_{\rm sph}/T}$ that is unsuppressed Kuzmin, Rubakov, Shaposhnikov (1985)
- \clubsuit Such violation of B+L symmetry plays a crucial role in Baryogenesis via Leptogenesis

Fukugita, Yanagida (1986)

❖ These suggest that B & L are not fundamental symmetries of nature

Quantum Gravity and Lepton Number Violation

- Quantum gravity is expected to break all global symmetries (but not gauge symmetries such as electromagnetism)
- Lepton number being a global symmetry, would suffer quantum gravitation violations. These effects would scale inversely with the Planck scale
- Leading operators that violate L are dimension-5 operators

$$\mathcal{L}_{ ext{gravity}} = \frac{\kappa_{ij}}{M_{ ext{Pl}}} (L_i L_j H H)$$

These operators would lead to tiny Mojarana masses for the neutrinos:

$$m_
u \sim rac{\kappa \, v^2}{M_{
m Pl}} \sim 10^{-6} \,\, {
m eV}$$

Although not observable in current neutrino oscillation experiments, this feature of gravity suggests *L* violation

L Violation in Beyond the Standard Model

- Standard Model needs to be extended to accommodate neutrino mass and also very likely for dark matter
- Many SM extensions naturally have L violation. This is especially true for theoreis that explain small neutrino masses via the seesaw mechanism
- ☆ If neutrinos are Majorana fermions, as in the seesaw framework, L
 must be violated by two units
- **Other well motivated extesnsions, such as grand unified theories, also have** L (and B) violation embedded in them, independent of the Majorana/Dirac nature of the neutrino. Eg: $p \rightarrow e^+\pi^0$ violates lepton number by one unit

Neutrino Masses & Lepton Number Violation

- Neutrino oscillations have been observed unambiguously with solar, atmospheric, accelerator and reactor neutrinos
- Neutrino oscillations require non-dgenerate neutrino masses. This is absent in the Standard Model, which therefore must be extended
- Most popular extensions have neutrinos as Majorana particles, which require lepton number violation
- If neutrinos are Majorana, neurinoless double beta decay should occur with strength determined by oscillation data
- \Rightarrow High sensitivity searches for $\beta\beta0\nu$ are ongoing, motivated in large part by the discovery of neutrino oscillations

Current knowledge of 3-neutrino oscillations

NuFIT 5.1 (2021)

		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 2.6$)	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
without SK atmospheric data	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$
	$\theta_{12}/^{\circ}$	$33.44^{+0.77}_{-0.74}$	$31.27 \rightarrow 35.86$	$33.45^{+0.77}_{-0.74}$	$31.27 \rightarrow 35.87$
	$\sin^2 \theta_{23}$	$0.573^{+0.018}_{-0.023}$	$0.405 \rightarrow 0.620$	$0.578^{+0.017}_{-0.021}$	$0.410 \rightarrow 0.623$
	$\theta_{23}/^{\circ}$	$49.2^{+1.0}_{-1.3}$	$39.5 \rightarrow 52.0$	$49.5^{+1.0}_{-1.2}$	$39.8 \rightarrow 52.1$
	$\sin^2 \theta_{13}$	$0.02220^{+0.00068}_{-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02238^{+0.00064}_{-0.00062}$	$0.02053 \to 0.02434$
	$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$
	$\delta_{ m CP}/^\circ$	194^{+52}_{-25}	$105 \rightarrow 405$	287^{+27}_{-32}	$192 \rightarrow 361$
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.515^{+0.028}_{-0.028}$	$+2.431 \rightarrow +2.599$	$-2.498^{+0.028}_{-0.029}$	$-2.584 \rightarrow -2.413$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou (2020)

Roadmap for Neutrino Models

Origin of neutrino mass: Seesaw mechanism

Adding right-handed neutrino N^c which transforms as singlet under $SU(2)_L$,

$$\mathcal{L} = f_{\nu} \left(L \cdot H \right) N^{c} + \frac{1}{2} M_{R} N^{c} N^{c}$$

the Integrating out the N^c , $\Delta L = 2$ operator is induced:

$$\mathcal{L}_{ ext{eff}} = -rac{f_{
u}^2}{2}rac{ig(L\cdot Hig)ig(L\cdot Hig)}{M_{P}}$$

Once H acquires VEV, neutrino mass is induced:

$$m_
u \simeq f_
u^2 rac{v^2}{M_R}$$

• For $f_{\nu} v \simeq 100$ GeV, $M_R \simeq 10^{14}$ GeV.

Minkowski (1977) Yanagida (1979) Gell-Mann, Ramond, Slansky (1980) Mohapatra & Senjanovic (1980)

Seesaw mechanism (cont.)

Type II seesaw: $\Phi_3 \sim (1,3,1)$

Mohapatra & Senjanovic (1980) Schechter & Valle (1980) Lazarides, Shafi, & Wetterich (1981)

Type III seesaw: $N_3 \sim (1,3,0)$

Foot, Lew, He, & Joshi (1989)

Ma (1998)

- Φ_3 abd N_3 contain charged particles which can be looked for at LHC
- **\$** Eg: Φ^{++} → $\ell^+\ell^+$, Φ^{++} → W^+W^+ decays would establish lepton number violation

Neutrinoless Double Beta Decay

* Kamland-Zen collaboration has a limit from ¹³⁶Xe:

$$T_{0\nu}^{1/2} > 1.07 \times 10^{26} \text{ yr.}$$

Constrains effective double beta decay mass of neutrino to be

$$m_{\beta\beta} < (61 - 165) \text{ meV}$$

Here

$$m_{\beta\beta} = |\sum_{i} U_{ei}^{2} m_{i}| = |c_{12}^{2} c_{13}^{2} e^{2i\alpha_{1}} m_{1} + c_{13}^{2} s_{12}^{2} e^{2i\alpha_{2}} m_{2} + s_{13}^{2} m_{3}|$$

Neutrinoless Double Beta Decay (cont.)

- \$\text{\text{\$\cong}}\$ Largest uncertainty from unknown Majorana phases α_1, α_2 and θ_{23}
- * For normal hierarchy cancellation possible

$$m_{etaeta} \simeq |c_{13}^2 s_{12}^2 \sqrt{\Delta m_s^2} \, e^{2ilpha_2} + s_{13}^2 \sqrt{\Delta m_a^2}| < 4 imes 10^{-3} \, \, \mathrm{eV}$$

* For inverted hierarchy no such cancellation possible

$$m_{\beta\beta} \simeq \sqrt{\Delta m_{\tilde{\sigma}}^2} \sqrt{1 - \sin^2 2\theta_{12} \sin^2(\alpha_2 - \alpha_1)}, \ 2 \times 10^{-2} \le m_{\beta\beta} \le 5 \times 10^{-2} \text{ eV}$$

Giunti, Bilenki (2014)

New Physics Contribution to $\beta\beta0\nu$

- \$\ \text{Light neutrino exchange is not the only contribution to } \beta \beta 0\nu\$
- Heavy neutrino exchange in left-right symmetry; vectro-scalar exchange in supersymmetry, etc are possible
- \$\frac{1}{2}\$ If new physics is near TeV scale, $\beta\beta0\nu$ mediated by these heavy particles observable

Mohapatra, Vergados (1981); Li, Ramsey-Musolf, Vasquez (2009); Tello, Nemevsek, Nesti, Senjanovic (2010)

Confusion with Neutrino Mass Ordering

 $\beta \beta 0 \nu$ in LR model with light neutrino exchange and heavy neutrino exchange

Tello, Nemevsek, Nesti, Senjanovic (2010)

Effective Field Theory for $\beta\beta0\nu$

- \$\frac{1}{2}\$ 11 operators with 6 fermions
- \clubsuit Effects of these operators on $\beta\beta0\nu$ has been studied
- Light neutrino exchange has left-handed electrons outgoing
 Graesser (2017); Cirigliano, Dekens, De Vries, Graesser, Mereghetti (2018)

$$\begin{array}{rcl} \operatorname{LM1} & = & i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}Q_{c})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{\ell}_{b}\ell_{c}^{C}) \\ \operatorname{LM2} & = & i\sigma_{ab}^{(2)}(\overline{Q}_{a}\gamma^{\mu}\lambda^{A}Q_{c})(\overline{u}_{R}\gamma_{\mu}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{c}^{C}) \\ \operatorname{LM3} & = & (\overline{u}_{R}Q_{a})(\overline{u}_{R}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C}) \\ \operatorname{LM4} & = & (\overline{u}_{R}\lambda^{A}Q_{a})(\overline{u}_{R}\lambda^{A}Q_{b})(\overline{\ell}_{a}\ell_{b}^{C}) \\ \operatorname{LM5} & = & i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}d_{R})(\overline{Q}_{c}d_{R})(\overline{\ell}_{b}\ell_{d}^{C}) \\ \operatorname{LM6} & = & i\sigma_{ab}^{(2)}i\sigma_{cd}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{Q}_{c}\lambda^{A}d_{R})(\overline{\ell}_{b}\ell_{d}^{C}) \\ \operatorname{LM7} & = & (\overline{u}_{R}\gamma^{\mu}d_{R})(\overline{u}_{R}\gamma_{\mu}d_{R})(\overline{e}_{R}e_{R}^{C}) \\ \operatorname{LM8} & = & (\overline{u}_{R}\gamma^{\mu}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C}) \\ \operatorname{LM9} & = & (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})i\sigma_{ab}^{(2)}(\overline{Q}_{a}\lambda^{A}d_{R})(\overline{\ell}_{b}\gamma_{\mu}e_{R}^{C}) \\ \operatorname{LM10} & = & (\overline{u}_{R}\gamma^{\mu}d_{R})(\overline{u}_{R}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C}) \\ \operatorname{LM11} & = & (\overline{u}_{R}\gamma^{\mu}\lambda^{A}d_{R})(\overline{u}_{R}\lambda^{A}Q_{a})(\overline{\ell}_{a}\gamma_{\mu}e_{R}^{C}) \end{array}$$

Muon-Positron Conversion

- $^{\bullet}$ $\mu^- e^+$ conversion occurs similar to $\beta\beta0\nu$ with a e^- by a μ^- swap
- Unlike $\mu^- e^-$ conversion with is lepton flavor violating, but lepton number conserving, this process is L violating
- ★ Mu2e experiment at Fermilab and COMET at JPARC will be sensitive to branching ratios of order 10⁻¹⁴

Berryman, de Gouvea, Kelly, Kobach (2016)

Other *L*-Violating Processes

- $K^+ \to \pi^- \ell^+ \ell^+$ is similar to $\beta \beta 0 \nu$. Obtained by replacing one d-quark by a s-quark.
- NA62 collaboration has searched for this decay, and has obtained a limit of

$$Br(K^+ \to \pi^- e^+ e^+) \le 2.2 \times 10^{-10}$$

 $Br(K^+ \to \pi^- \mu^+ \mu^+) \le 4.2 \times 10^{-11}$

Lepton Number Violation at the LHC

- Classic way to establish Majorana nature of neutrino is to observe neutrinoless double beta decay (Schechter, Valle, 1981)
- **‡** $pp \rightarrow \ell^{\pm}\ell^{\pm}$ + jets process can also establish L violation by two units, and hence Majorana nature of neutrino (Keung, Senjanovic, 1983)
- This is realized in type-II seesaw model (Babu, Barman, Gonçalves, Ismail, 2022; Cai, Han, Li, Ruiz, 2018)

 $pp o t + b + \ell^- + \ell'^-$ signal and Majorana neutrino mass:

L-violation in type-II Seesaw

- Δ A Higgs triplet field $\Delta(1,3,1)=(\delta^{++},\,\delta^{+},\,\delta^{0})$ is introduced to SM
- thas leptonic Yukawa couplings and a cubic scalar coupling which jointly break L by two units:

$$\mathcal{L} \supset -rac{(Y_{\Delta})_{ij}}{\sqrt{2}}\ell_i^{\mathsf{T}} \mathcal{C} \, i\sigma_2 \, \Delta \, \ell_j - rac{\mu}{\sqrt{2}}\phi^{\mathsf{T}} i\sigma_2 \Delta^{\dagger}\phi + \mathit{h.c.}$$

 δ^0 acquires an induced VEV v_{Δ} , thus leading to neutrino mass:

$$v_{\Delta} = \frac{\mu v^2}{\sqrt{2}\mu_{\Delta}^2} \Rightarrow M_{\nu} = \frac{Y_{\Delta}}{\sqrt{2}}v_{\Delta}$$

- **theorem 1.5** When $v_{\Delta} = (10^{-5} 10^{-4})$ GeV, BR for $\delta^{++} \to W^+W^+$ and $\delta^{++} \to \ell^+\ell'^+$ decays become comparable, consistent with neutrino oscillation data. This region is optimal for seeing L violation at LHC
- Note: If either Y_{Δ} or μ (equivalently v_{Δ}) vanishes, L becomes conserved

L-violation in type-II Seesaw at LHC

• $pp \rightarrow \ell^{\pm} + \ell'^{\pm} + \text{ jets can arise from:}$

$$\begin{array}{lll} pp & \rightarrow & \delta^{\pm\pm}\delta^{\mp} \rightarrow \ell^{\pm}\ell'^{\pm}tb, \; \ell^{\pm}\ell'^{\pm}W^{\mp}Z/H \\ pp & \rightarrow & \delta^{\pm\pm}\delta^{\mp\mp} \rightarrow \ell^{\pm}\ell'^{\pm}W^{\mp}W^{\mp} \\ pp & \rightarrow & \delta^{\pm\pm}jj \rightarrow \ell^{\pm}\ell'^{\pm}jj \end{array}$$

 \clubsuit Here W, Z, H and t decay hadronically

Figure: Typical diagrams for $pp o \ell^{\pm} \ell'^{\pm} + {\sf jets}$

LHC Sensitivity for L-violation in type-II Seesaw

Normal neutrino mass ordering assumed, along with vanishing Majorana phases and the Dirac phase. $m_1 = 0.05$ eV is assumed for the lightest neutrino mass.

Babu, Barman, Gonçalves, Ismail, 2022

Radiative neutrino mass generation

- An alternative to seesaw is radiative neutrino mass generation, where neutrino mass is absent at tree level, but arises via quantum loop corrections
- The smallness of neutrino mass is explained by loop and chiral suppressions
- Loop diagrams may arise at 1-loop, 2-loop or 3-loop levels
- New physics scale typically near TeV and thus accessible to LHC
- Further tests in observable LFV processes and as nonstandard neutrino interaction (NSI) in oscillations

Effective $\Delta L = 2$ Operators

```
\mathcal{O}_1 = L^i L^j H^k H^l \epsilon_{ik} \epsilon_{il}
\mathcal{O}_2 = \mathbf{L}^i \mathbf{L}^j \mathbf{L}^k \mathbf{e}^c \mathbf{H}^l \epsilon_{ii} \epsilon_{kl}
\mathcal{O}_3 = \{ L^i L^j Q^k d^c H^l \epsilon_{ii} \epsilon_{kl}, L^i L^j Q^k d^c H^l \epsilon_{ik} \epsilon_{il} \}
\mathcal{O}_4 = \{L^i L^j \bar{Q}_i \bar{u}^c H^k \epsilon_{ik}, L^i L^j \bar{Q}_k \bar{u}^c H^k \epsilon_{ii}\}
\mathcal{O}_5 = L^i L^j Q^k d^c H^l H^m \bar{H}_i \epsilon_{il} \epsilon_{km}
\mathcal{O}_6 = L^i L^j \bar{Q}_k \bar{u}^c H^l H^k \bar{H}_i \epsilon_{il}
\mathcal{O}_7 = L^i Q^j \bar{e^c} \bar{Q}_k H^k H^l H^m \epsilon_{il} \epsilon_{im}
\mathcal{O}_8 = L^i \bar{e^c} \bar{u^c} d^c H^j \epsilon_{ii}
\mathcal{O}_{0} = L^{i}L^{j}L^{k}e^{c}L^{l}e^{c}\epsilon_{ii}\epsilon_{kl}
\mathcal{O}_1' = L^i L^j H^k H^l \epsilon_{ik} \epsilon_{il} H^{*m} H_m
```

```
Babu & Leung (2001) de Gouvea & Jenkins (2008) Angel & Volkas (2012) Cai, Herrero-Garcia, Schmidt, Vicente, Volkas (2017) Lehman (2014) — all d=7 operators Li, Ren, Xiao, Yu, Zheng (2020); Liao, Ma (2020) — all d=9 operators
```

Operator \mathcal{O}_2 and the Zee model

to standard model: Introduce a singly charged scalar and a second Higgs doublet to standard model:

Zee (1980)

Neutrino mass arises at one-loop.

A minimal version of this model in which only one Higgs doublet couples to a given fermion sector with a Z_2 symmetry yields:

Wolfenstein (1980)

$$m_
u = \left(egin{array}{ccc} 0 & m_{e\mu} & m_{e au} \ m_{e\mu} & 0 & m_{\mu au} \ m_{e\pi} & m_{u\pi} & 0 \end{array}
ight), \quad m_{ij} \simeq rac{f_{ij}}{16\pi^2} rac{\left(m_i^2 - m_j^2
ight)}{\Lambda}$$

It requires $\theta_{12} \simeq \pi/4 \to {\sf ruled}$ out by ${\sf solar} + {\sf KamLAND}$ data.

Koide (2001); Frampton et al. (2002); He (2004)

Neutrino oscillations in the Zee model

- Arr Neutrino oscillation data can be fit to the Zee model consistently without the Z_2 symmetry
- **The second Higgs doublet has Yukawa couplings to leptons and quarks, and the** η^- scalar has leptonic Yukawa coupling:

$$\begin{array}{ll} -\mathcal{L}_{Y} & \supset & f_{\alpha\beta}L_{\alpha}^{i}L_{\beta}^{j}\epsilon_{ij}\eta^{+} + Y_{\alpha\beta}\tilde{H}_{2}^{i}L_{\alpha}^{j}\ell_{\beta}^{c}\epsilon_{ij} \\ & + & \tilde{Y}_{u\alpha\beta}H_{2}^{i}Q_{\alpha}^{j}u_{\beta}^{c}\epsilon_{ij} + Y_{d\alpha\beta}\tilde{H}_{2}^{i}Q_{\alpha}^{j}d_{\beta}^{c}\epsilon_{ij} + h.c. \end{array}$$

\$ In addition, there is a cubic scalar coupling that ensures L violation:

$$V\supset \mu H_1^i H_2^j \eta^- \epsilon_{ij} + h.c.$$

Neutrino mass given by:

$$m_{\nu} = \kappa (f M_{\ell} Y + Y^{T} M_{\ell} f^{T})$$

where
$$\kappa = (1/16\pi^2)\sin 2\varphi\,\log(m_{h^+}^2/m_{H^+}^2)$$

Oscillation data can be accommodated easily Babu, Dev, Jana, Thapa (2019)

Neutrino fit in the Zee model

Constraints on Zee Model Parameters

- Υ The product $Y \times f$ has to be rather small to accommodate small neutrino masses
- This allows for large f and small Y which we explore
- \upshape Muon decay receives new contributions from η^- exchange. This interferes with SM amplitude, leadint to the limit

$$|f_{e\mu}\sin\varphi|^2 \le 0.02 (m_{h^+}/{
m TeV})^2$$

- Neutron beta decay is also modified by charged scalar exchange, but due to flavor antisymmetry of f, the antineutrino is $\overline{\nu}_{\mu}$. Since there is no interference with SM contributions, the limits are weaker
- A pseudoscalar coupling of h^{\pm} of the form $y_p \cos \phi \left(\overline{u} \gamma_5 d \right) h^+$ would lead a constraint of $|y_p|_{f_{e\mu}} \cos \phi \sin \phi| \leq 5 \times 10^{-4} \left(m_{h^{\pm}} / \text{TeV} \right)^2$ from $\Gamma(\pi \to e \nu_{\mu}) / \Gamma(\pi \to \mu \nu_{\mu})$. This can be satisfied by choosing $(Y_d)_{11} = (\tilde{Y}_u)_{11} \equiv (Y_q)_{11}$, so that $y_p = 0$

LHC Constraints on Zee Model Parameters

- Since the charged scalar couples to quarks, the model is constrained by dijet searches at LHC
- * We have interpreted dijet resonance searches within the Zee model

Measuring L-violation in the Zee Model at LHC

- ❖ L violation in Zee model occurs via mixing of two charged scalars which carry different lepton number
- $pp \rightarrow e^{+}\mu^{+}$ + jets occurs: Babu. Barman. Goncalves, Ismail, 2022

Conclusions

- Lepton number is very likely to be broken in nature
- Standard Model already has L-violation; most scenarios of neutrino mass predict Majorana neutrino and thereby L violation
- Neutrinoless double beta decay is the best way to test L violation at low energies. Other related processes such as $\mu^- e^+$ conversion are promising
- the Interesting ways of testing L violation at the LHC via $pp \rightarrow \ell^+\ell^+ + \text{jets}$ are studied
- Two popular models, the type-II seesaw model and the Zee model, are shown to be able to provide signals of *L* violation by two units, and thus the Majorana nature of the neutrino