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Figure 14: Collider signal processes of interest for this work. The initial W may be on or off-shell.
Note that the leptons labeled ` in each diagram may have the same sign and flavor if N1 is a
Majorana particle.

For both, we adjust the lepton efficiency formulas to include leptons with pT down to 2 GeV.
Where necessary, we adopt additional lepton ID/reconstruction efficiencies by matching
on to existing ATLAS/CMS analyses for the single-N signal. For simplicity, we consider
bounds separately on the Ne coupled only to e via the effective coupling UNee and on the
Nµ coupled only to µ via UNµµ. For notational compactness we use N to represent either
Ne or Nµ with the N flavor implied by its coupling to its respective charged lepton. As a
benchmark, we use �N = 9/4, and we take over existing bounds for |UNe|

2 from Ref. [25].
For current bounds on |UNµ|

2, we consider the bounds adapted from [96–104] and applied
to the unparticle model in Ref. [25].

Using the effective Lagrangian of our holographic model, we can calculate the partial
widths
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for the W -boson to decay decay to the n-the KK-mode of N where ` is either µ or e, and
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for the Z-boson.

5.1 Collider Searches for Single-N

As mentioned above, the single-N signal maps easily onto HNL searches parameterized
in terms of mN and |UN`|

2, and does not depend strongly on details of the UV model.
Therefore, it is straightforward to use the results of CMS [105] and ATLAS [106] searches,
as well as the projected sensitivity of searches for long-lived HNLs at MATHUSLA [53], to
identify the regions of interest in the parameter space of our model.

We divide the parameter space into three regions according to the decay lifetime of N
particles, namely the prompt decay region (region A), the displaced decay region (region
B), and the long-lived region (region C). We illustrate this in Figure 15. We assume for
simplicity that N comes in three degenerate copies, where each N couples exclusively to a
single lepton flavor, and we assume these couplings are flavor-universal. Since bounds on
|UN⌧ |

2 are significantly weaker than on |UNµ,e|
2, we focus our attention on the electron and
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Figure 1: Feynman diagrams for DM annihilation are shown above where composite DM–neutrino
effective vertex /⇤2 is denoted by a red-square and neutrino mixing UN` is shown as a blue circle.
For the left diagram, there is an analogous process for the final state N̄⌫. Flavor indices on neutrinos
are suppressed.

This result means that the SM and the hidden sector will be in equilibrium at early times
for the entire parameter range that leads to the observed abundance of DM after thermal
freeze-out.

In our framework the abundance of DM is set by the standard thermal freeze-out
mechanism. As the temperature falls below the compositeness scale, DM annihilates to the
visible sector through the neutrino portal and eventually freezes out as a cold relic. The
dominant DM annihilation channels to the visible sector are,
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�
��̄ ! ⌫⌫̄. (2.21)

The Feynman diagrams for the above DM annihilation processes are shown in Fig. 1, where
the vertex shown as a red-square corresponds to the interaction between DM and singlet
neutrinos given in Eq. (2.7) and a blue-circle denotes the neutrino mixing angle UN`.

The cross sections for the above DM annihilation processes can be estimated as,
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DM freeze out happens when its thermally averaged interaction rate becomes comparable
to the Hubble rate, n̄�h�vi ⇠ H ⇠ T

2
/MPl, where n̄� ⇠ (m�T )3/2 e�m�/T is the non-

relativistic equilibrium number density for DM. The freeze-out happens at temperatures T
of order m�/10.

The thermally averaged DM annihilation cross sections at DM freeze-out, i.e. for
T = Tfo ⇠ m�/10, can be estimated as,
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where we have made the simplification mN ⇠ m� ⇠ ⇤. The observed DM relic abundance
can be obtained when h�vifo ⇠ 10�8

/ GeV2.
Provided that the ��̄ ! (N ⌫̄, N̄⌫) channel is kinematically open, this will be the

dominant annihilation mode. For values of the composite scale ⇤ ⇠ 1 GeV and ̃ ⇠ (4⇡)2,
we obtain the correct relic abundance from the ��̄ ! (N ⌫̄, ⌫N̄) process with elementary-
composite neutrino mixing UN` ⇠ 10�4. For values of the DM mass m� < mN/2, this
annihilation channel is kinematically forbidden. In this case the relic abundance of DM
is set by the ��̄ ! ⌫⌫̄ channel. However, in this case, larger values of the mixing angle
UN` are required. For instance, for a compositeness scale ⇤ ⇠ 1 GeV and ̃ ⇠ (4⇡)2, we
require UN` ⇠ 10�2 to obtain the correct relic abundance. The discussion above implies
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effective vertex /⇤2 is denoted by a red-square and neutrino mixing UN` is shown as a blue circle.
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MOTIVATION



Why Portals?
Null results in searches at the LHC, and in direct and 
indirect DM searches have severely constrained 
models of new physics. 

These constraints mainly stem from attempts to 
connect the naturalness and DM puzzles, and more 
broadly having new particles carrying SM gauge 
charges. 

Portals of the form                           represent an 
alternative approach with a broad class of models 
with qualitatively different constraints.
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Through a portal, darkly
The most interesting portals are the ones where the 
SM operator has as low a mass dimension as 
possible, including: 

In this talk I will consider the 𝜈-portal and DM 
belonging to the hidden sector. 

Weakly coupled examples for this setup have been 
explored. Let us focus on generic features of strongly 
coupled models.
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MODEL DETAILS



The Singlet Neutrino: N
Consider a strongly coupled CFT with an IR deformation (IR 
scale 𝛬, UV cutoff MUV), and the portal operator 

In the IR, let N be the degree of freedom corresponding to this 
operator: 

Where the portal coupling is naturally small.

2.1 Composite Dark Metter through the Neutrino Portal

Consider a hidden sector composed of a strongly coupled CFT, to which we add a relevant
deformation Odef ,

LUV � LCFT + �defOdef . (2.1)

When the deformation grows large in the infrared (IR), it causes the breaking of the con-
formal dynamics. This occurs at a scale that we denote by ⇤.

We assume that the spectrum of hidden sector states includes three composite Dirac
fermions N↵, which play the role of composite singlet neutrinos. Here ↵ = 1, 2, 3 represents
a flavor index. The low energy effective Lagrangian contains kinetic and mass terms for the
singlet neutrinos,

LIR � iN̄�
µ
@µN � mN N̄N, (2.2)

where we have suppressed the flavor indices. Here mN is the singlet neutrino mass, which is
expected to be of the order of the conformal symmetry breaking scale ⇤. We can decompose
N into components with left- and right-handed chiralities, N = (NL, NR).

The hidden sector interacts with the SM through the neutrino portal,

LUV � �
�̂

M
� bN�3/2
UV

L̄ eH bON + h.c., (2.3)

where L is the SM left-handed lepton doublet, eH ⌘ i�2H
⇤ where H is the SM Higgs

doublet, and bON represents a primary operator of scaling dimension � bN that transforms
as a right-handed Weyl fermion. Here �̂ is a dimensionless coupling constant and MUV

denotes the ultraviolet (UV) cutoff of the theory. At the conformal breaking scale ⇤, this
interaction gives rise to the following term in the low-energy Lagrangian,

LIR � �� L̄ eHNR + h.c., (2.4)

where the dimensionless coupling � scales as

� ⇠ �̂

✓
⇤

MUV

◆� bN�3/2

. (2.5)

This represents a coupling of the SM to the composite singlet neutrinos NR through the
neutrino portal. Once the Higgs acquires a vacuum expectation value (VEV), this inter-
action and the mass term in Eq. (2.2) lead to mixing between the SM neutrinos and the
composite fermions NL. Therefore the light neutrinos contain an admixture of hidden sector
states, while the composite singlet neutrinos acquire an admixture of the SM neutrino. In
this way the composite singlet neutrinos acquire a small coupling to the weak gauge bosons
of the SM.

The scaling dimension of the primary fermionic operator bON is bounded from below
by unitarity, � bN � 3/2, where the limiting case of � bN = 3/2 corresponds to the case of
a free fermion. On the other hand, for scaling dimensions � bN � 5/2 the interaction in
Eq. (2.3) leads to the theory becoming ultraviolet sensitive, which requires the addition of
new counterterms involving the SM fields for consistency [25]. Therefore, in this work, we
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limit our analysis to values of the scaling dimension of bON in the range 3/2  � bN  5/2.
With this choice of � bN , the coupling � in Eq. (2.5) is hierarchically small for ⇤ ⌧ MUV.
As we explain below, this feature of our model can help explain both the smallness of the
neutrino masses and the observed abundance of DM. In this work, we focus on low values
of the compositeness scale, corresponding to values of ⇤ at or below the electroweak scale.

We now assume that at the scale ⇤, in addition to the composite singlet neutrinos N ,
the spectrum of hidden sector states also includes a composite Dirac fermion �, which plays
the role of DM. Then the low energy Lagrangian at scales of order ⇤ includes the terms,

LIR � i�̄�
µ
@µ� � m��̄� . (2.6)

Here m� is the DM mass, which we again take to be of the order of ⇤. To ensure the
stability of DM we assume that the hidden sector respects a discrete Z2 symmetry under
which � is odd, but the singlet neutrinos N as well as the SM fields are even. We further
assume that there are no Nambu-Goldstone bosons or other light states, so � is the lightest
state in the hidden sector.

In our framework, the neutrino portal interaction keeps the hidden sector in equilibrium
with the SM in the early universe. Because of the composite nature of the fermions � and
N , the low energy theory at the scale ⇤ contains nonrenormalizable interactions between
the DM particle and the singlet neutrinos of the schematic form,

LIR � �
̃

⇤2
(�̄N)(N̄�) , (2.7)

where ̃ is of order 16⇡2. Once the temperature falls below m�, these interactions allow
the DM particles to annihilate away through processes such as ��̄ ! ⌫N̄ and ��̄ ! ⌫⌫̄.
The annihilation rate would be expected to be enhanced compared to the freeze-out of DM
of weak scale mass because of the low scale ⇤ that sets the mass of � and the strength
of its interactions, but this can be compensated for by the small mixing between the SM
neutrinos and the composite singlet neutrinos. This class of theories can therefore easily
accommodate the observed abundance of DM.

2.2 Neutrino masses via the Inverse Seesaw Mechanism

In this subsection, we outline how this framework can naturally incorporate the generation
of neutrino masses through the inverse seesaw mechanism. Our discussion is based on
the analysis in [25]. We now assume that the hidden sector possesses a global symmetry
under which the operator bON is charged. The charges under this global symmetry can be
normalized such that bON , and therefore NR, carries charge +1. Then, we see from the
coupling Eq. (2.4) that this symmetry can be subsumed into an overall lepton number
symmetry under which both NR and NL carry charge +1.

In order to employ the inverse seesaw mechanism to generate the SM neutrino masses,
we require a source of lepton number violation in the model. Accordingly, we add to the
theory a lepton number violating deformation arising from an operator O2N , which has
scaling dimension �2N ,

LUV � �
µ̂

M
�2N�4
UV

O2N + h.c, (2.8)
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that the neutrino mixing angle UN` plays a crucial role in setting the DM relic abundance
within this framework. Although this analysis has been based on rough estimates, in Sec. 4
we perform detailed relic abundance calculations within the holographic realization of this
model. After solving the full set of Boltzmann equations, we find that these conclusions
are robust.

A characteristic feature of composite DM within strongly coupled theories is that the
DM particles have sizable self-interactions of order,

�self ⇠

2
�

8⇡

m
2
�

⇤4
. (2.24)

These self-interactions arise from terms in the Lagrangian of the form,

LIR � �
�

⇤2
(�̄�µ�)2 + · · · , (2.25)

where the size of the coupling � ⇠ (4⇡)2 and the ellipses denote higher order terms.
There are several constraints on the DM self-interactions. The most stringent are based

on observations of the Bullet Cluster and lead to �self/m� . 0.7 cm2
/g ⇠ 3000/GeV3, (for

a review see [44]). It is straightforward to convert this constraint on the DM mass as

m� & 2

3

⇣
�

16⇡2

⌘2/3⇣m�

⇤

⌘4/3
GeV. (2.26)

Going forward, we will consider the above result as a rough lower bound on the DM mass.
There could also be constraints on this class of models from effects arising from neutrino

self-interactions inside supernovae [45]. However, the region of parameter space where
these effects are likely to be important is already disfavored by the constraints on DM
self-interactions.

2.4 Signals

Before we close this section, we would like to briefly remark on the implications of this class
of models for direct and indirect detection experiments and for collider searches.

• Indirect detection: Since the DM particle is a thermal relic, its annihilation cross
section is of order h�vi ⇠ 10�8

/ GeV2
⇠ 10�26 cm3

/s. The dominant annihilation
channels are either ��̄ ! (N ⌫̄, N̄⌫) or ��̄ ! ⌫⌫̄. When the dominant annihilation
channel is ��̄ ! (N ⌫̄, N̄⌫), the visible end products such as electrons and photons pro-
duced in the decay of composite singlet neutrinos are constrained by indirect detection
experiments and precision observations of the CMB. When the dominant annihilation
channel is ��̄ ! ⌫̄⌫, the constraints from indirect detection are much weaker. All the
annihilation channels give rise to monochromatic neutrinos and antineutrinos in the
final state. Currently, the most stringent constraints on such a signal are provided by
Super-Kamiokande (SuperK) [46], and the reach will be further expanded by Hyper-
Kamiokande (HyperK) [47] , DUNE [48–50] and JUNO [51]. Unfortunately, as we
show in Sec. 4, for both the ��̄ ! (N ⌫̄, N̄⌫) and ��̄ ! ⌫⌫̄ annihilation channels
the region of parameter space that can be probed by these future searches is already
disfavored by other considerations.
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The annihilation rate would be expected to be enhanced compared to the freeze-out of DM
of weak scale mass because of the low scale ⇤ that sets the mass of � and the strength
of its interactions, but this can be compensated for by the small mixing between the SM
neutrinos and the composite singlet neutrinos. This class of theories can therefore easily
accommodate the observed abundance of DM.

2.2 Neutrino masses via the Inverse Seesaw Mechanism

In this subsection, we outline how this framework can naturally incorporate the generation
of neutrino masses through the inverse seesaw mechanism. Our discussion is based on
the analysis in [25]. We now assume that the hidden sector possesses a global symmetry
under which the operator bON is charged. The charges under this global symmetry can be
normalized such that bON , and therefore NR, carries charge +1. Then, we see from the
coupling Eq. (2.4) that this symmetry can be subsumed into an overall lepton number
symmetry under which both NR and NL carry charge +1.

In order to employ the inverse seesaw mechanism to generate the SM neutrino masses,
we require a source of lepton number violation in the model. Accordingly, we add to the
theory a lepton number violating deformation arising from an operator O2N , which has
scaling dimension �2N ,
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the analysis in [25]. We now assume that the hidden sector possesses a global symmetry
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normalized such that bON , and therefore NR, carries charge +1. Then, we see from the
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Here µ̂ is a dimensionless constant that parametrizes the strength of the deformation. We
assume that O2N carries a charge of +2 under the global symmetry of the hidden sector,
so that this deformation violates lepton number by two units. In the low-energy effective
theory at the scale ⇤, this gives rise to a term in the Lagrangian of the form,

LIR � �(µNLNL + µ
0
NRNR) + h.c. , (2.9)

where the Majorana masses µ and µ
0 parameterize the strength of lepton number violation.

Their values scale with the parameters of the theory as

µ ⇠ µ
0
⇠ µ̂⇤

✓
⇤

MUV

◆�2N�4

. (2.10)

The scaling dimension �2N of the lepton number violating scalar operator O2N is con-
strained by unitarity to satisfy �2N � 1, where the limiting case �2N = 1 corresponds to
the case of a free scalar.

With the inclusion of the lepton number violating term in Eq. (2.9) the low-energy
effective theory now possesses all the ingredients required to realize inverse seesaw mecha-
nism,

LIR �iN̄�
µ
@µN � mN N̄N �

h
µNLNL + �L̄ eHNR + h.c.

i
. (2.11)

By integrating out the composite singlet neutrinos N we obtain a contribution to the masses
of the light neutrinos,

m⌫ = µ

⇣
�vEW

mN

⌘2
. (2.12)

Here vEW ⌘ hHi ' 174 GeV. When the effects of higher resonances are included, this
relation is only approximate, so that

m⌫ ⇠ µ

⇣
�vEW

mN

⌘2
. (2.13)

Note that the neutrino masses depend on both the parameter �, which controls the mixing
with the composite states as seen in Eq. (2.5), and the parameter µ, which controls the
extent of lepton number violation as seen in Eq. (2.10). Then the smallness of the SM
neutrino masses can naturally be explained by either the small parameter � that sets the
size of the neutrino mixing or the small lepton number violating coupling µ. Since the small
values of these parameters admit a simple explanation in terms of the scaling dimensions
of the operators bON and O2N , this class of models can provide a natural explanation for
the smallness of neutrino masses.

Note that in this construction both the Dirac mass term �vEW and the Majorana mass
term µ need to be smaller than the compositeness scale ⇤. This leads to the following range
for the coupling �,

p
m⌫mN

vEW
. � . mN

vEW
, (2.14)

where we have employed Eq. (2.13) in obtaining the lower bound, after setting mN ⇠ ⇤.
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The neutrino mixing angle to the physical mass eigenstates in the limit mN � �vEW

is defined as,

UN` ⌘
�vEW

mN
. (2.15)

It follows from Eqs. (2.14) and (2.15) that the mixing angle UN` lies in the range
r

m⌫

mN
. UN` . 1 . (2.16)

2.3 Abundance of Dark Matter

In this subsection, we outline how this class of models can reproduce the observed abundance
of DM. At high temperatures in the early universe, the hidden sector was in thermal contact
with SM through the portal operator in Eq. (2.3). This interaction populates the hidden
sector, bringing it into thermal equilibrium with the SM. Once the temperature falls below
their masses, the hidden sector states begin to exit the bath. The observed DM today is
composed of the lightest Z2 odd Dirac fermion � that survives as a thermal relic.

We first show that the hidden sector is in thermal equilibrium with the SM at tem-
peratures of order the compositeness scale. The hidden sector states can be produced from
SM neutrinos via processes such as ⌫⌫ ! UN , ⌫⌫ ! ⌫UN , ⌫UN ! ⌫UN , where the label
UN denotes hidden sector states. To see this, note that the strongly coupled nature of the
hidden sector implies large self-interactions between the composite singlet neutrino states,

LIR � �


⇤2

�
N̄�

µ
N
�2

+ · · · , (2.17)

where the size of the coupling  is the order ⇠ (4⇡)2 and ellipses denote higher order terms.
These interactions are characteristic of the composite nature of the singlet neutrinos. To
see that the hidden sector is in equilibrium with the SM at temperatures of order ⇤, we
estimate the rate for the ⌫⌫ ! UN process. At the scale ⇤ this rate is expected to be
parametrically of the same order as the ⌫⌫ ! NN rate. From Eq. (2.17) we can estimate
the cross section for this process as,

�⌫⌫!UN ⇠ �⌫⌫!NN ⇠
1

4⇡

✓


⇤2

◆2��UN`

��4 T 2
. (2.18)

From this, we can write the thermally averaged interaction rate as,

n̄⌫h�⌫⌫!NN vi ⇠

2

4⇡

��UN`

��4 T
5

⇤4
, (2.19)

where n̄⌫ ⇠ T
3 represents the equilibrium number density of SM neutrinos. In order to

keep the SM and hidden sector in thermal and chemical equilibrium at the compositeness
scale the above interaction rate should be larger than the Hubble rate H ⇠ T

2
/MPl at

temperature T ⇠ ⇤, where MPl denotes the Planck mass. Taking  ⇠ (4⇡)2, the condition
for thermal equilibrium condition at temperature T ⇠ ⇤ can be translated into a lower
bound on the neutrino mixing angle UN` as,

|UN`|
2 &

p
⇤/4⇡MPl . (2.20)
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with a mixing angle



Relic Abundance
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Figure 1: Feynman diagrams for DM annihilation are shown above where composite DM–neutrino
effective vertex /⇤2 is denoted by a red-square and neutrino mixing UN` is shown as a blue circle.
For the left diagram, there is an analogous process for the final state N̄⌫. Flavor indices on neutrinos
are suppressed.

This result means that the SM and the hidden sector will be in equilibrium at early times
for the entire parameter range that leads to the observed abundance of DM after thermal
freeze-out.

In our framework the abundance of DM is set by the standard thermal freeze-out
mechanism. As the temperature falls below the compositeness scale, DM annihilates to the
visible sector through the neutrino portal and eventually freezes out as a cold relic. The
dominant DM annihilation channels to the visible sector are,

��̄ !
�
N ⌫̄, ⌫N̄

�
��̄ ! ⌫⌫̄. (2.21)

The Feynman diagrams for the above DM annihilation processes are shown in Fig. 1, where
the vertex shown as a red-square corresponds to the interaction between DM and singlet
neutrinos given in Eq. (2.7) and a blue-circle denotes the neutrino mixing angle UN`.

The cross sections for the above DM annihilation processes can be estimated as,

���̄!N ⌫̄ ⇠
̃
2
U

2
N`

4⇡

T
2

⇤4
, ���̄!⌫⌫̄ ⇠

̃
2
U

4
N`

4⇡

T
2

⇤4
. (2.22)

DM freeze out happens when its thermally averaged interaction rate becomes comparable
to the Hubble rate, n̄�h�vi ⇠ H ⇠ T

2
/MPl, where n̄� ⇠ (m�T )3/2 e�m�/T is the non-

relativistic equilibrium number density for DM. The freeze-out happens at temperatures T
of order m�/10.

The thermally averaged DM annihilation cross sections at DM freeze-out, i.e. for
T = Tfo ⇠ m�/10, can be estimated as,

h���̄!N ⌫̄vifo⇠
̃
2
U

2
N`

40⇡⇤2
, h���̄!⌫⌫̄vifo⇠

̃
2
U

4
N`

40⇡⇤2
, (2.23)

where we have made the simplification mN ⇠ m� ⇠ ⇤. The observed DM relic abundance
can be obtained when h�vifo ⇠ 10�8

/ GeV2.
Provided that the ��̄ ! (N ⌫̄, N̄⌫) channel is kinematically open, this will be the

dominant annihilation mode. For values of the composite scale ⇤ ⇠ 1 GeV and ̃ ⇠ (4⇡)2,
we obtain the correct relic abundance from the ��̄ ! (N ⌫̄, ⌫N̄) process with elementary-
composite neutrino mixing UN` ⇠ 10�4. For values of the DM mass m� < mN/2, this
annihilation channel is kinematically forbidden. In this case the relic abundance of DM
is set by the ��̄ ! ⌫⌫̄ channel. However, in this case, larger values of the mixing angle
UN` are required. For instance, for a compositeness scale ⇤ ⇠ 1 GeV and ̃ ⇠ (4⇡)2, we
require UN` ⇠ 10�2 to obtain the correct relic abundance. The discussion above implies
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The cross sections for the above DM annihilation processes can be estimated as,
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DM freeze out happens when its thermally averaged interaction rate becomes comparable
to the Hubble rate, n̄�h�vi ⇠ H ⇠ T

2
/MPl, where n̄� ⇠ (m�T )3/2 e�m�/T is the non-

relativistic equilibrium number density for DM. The freeze-out happens at temperatures T
of order m�/10.

The thermally averaged DM annihilation cross sections at DM freeze-out, i.e. for
T = Tfo ⇠ m�/10, can be estimated as,
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where we have made the simplification mN ⇠ m� ⇠ ⇤. The observed DM relic abundance
can be obtained when h�vifo ⇠ 10�8

/ GeV2.
Provided that the ��̄ ! (N ⌫̄, N̄⌫) channel is kinematically open, this will be the

dominant annihilation mode. For values of the composite scale ⇤ ⇠ 1 GeV and ̃ ⇠ (4⇡)2,
we obtain the correct relic abundance from the ��̄ ! (N ⌫̄, ⌫N̄) process with elementary-
composite neutrino mixing UN` ⇠ 10�4. For values of the DM mass m� < mN/2, this
annihilation channel is kinematically forbidden. In this case the relic abundance of DM
is set by the ��̄ ! ⌫⌫̄ channel. However, in this case, larger values of the mixing angle
UN` are required. For instance, for a compositeness scale ⇤ ⇠ 1 GeV and ̃ ⇠ (4⇡)2, we
require UN` ⇠ 10�2 to obtain the correct relic abundance. The discussion above implies
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values of m�/mN above about 0.8. This is an example of forbidden DM [60]. For
this annihilation channel, the thermally averaged cross section is proportional to y

4
e↵ ,

which in a strongly coupled theory is expected to be large. Therefore, the annihilation
is extremely effective and the observed dark matter abundance is only obtained in a
limited region of parameter space.

• 0.5 . m�/mN . 0.8: In this mass range the dominant annihilation process is �̄� !

(N̄⌫, ⌫̄N). The thermally averaged cross section is proportional to y
4
e↵U

2
N`, and the

observed DM relic abundance can be obtained at sufficiently small mixing.

• m�/mN < 0.5: In this case the dominant annihilation process is �̄� ! ⌫̄⌫ and the
thermally averaged cross section is proportional to y

4
e↵U

4
N`. Therefore larger mixing

angles are favored compared to the mass range above.

We used the package micrOMEGAS-5.2 [61] to determine the relic abundance. In our
analysis we were careful to include the coannihilation processes involving higher KK modes.
However, for pedagogical reasons, in the discussion below we limit ourselves to an approx-
imate analytic calculation of the DM relic abundance that involves only the lowest KK
modes.

We first consider the case when the dominant DM annihilation channel is �̄� !

(N̄⌫, ⌫̄N). In the limit m
2
� � t, we can approximate the spin-averaged cross section to

a single flavor of the final state neutrinos (�̄� ! N̄⌫, ⌫̄N) as
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where t is the Mandelstam variable. After summing over the different flavors and thermally
averaging the cross section, we obtain
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The Boltzmann equation for the yield (Y� ⌘ n�/s) as a function of x ⌘ m�/T is given by,
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where n� is the DM number density and s is the entropy density. In this expression the
equilibrium yield Ȳ� and the parameter �� are defined as
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Here MPl is the reduced Planck mass, H is the Hubble rate and K2(x) is the modified
Bessel function. The parameters g? and g?S represent the effective number of relativistic
degrees of freedom for the energy and entropy densities of radiation respectively, while g�

denotes the number of degrees of freedom in DM.
Equivalent expressions for the �̄� ! ⌫̄⌫ annihilation channel are
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which in a strongly coupled theory is expected to be large. Therefore, the annihilation
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where n� is the DM number density and s is the entropy density. In this expression the
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Here MPl is the reduced Planck mass, H is the Hubble rate and K2(x) is the modified
Bessel function. The parameters g? and g?S represent the effective number of relativistic
degrees of freedom for the energy and entropy densities of radiation respectively, while g�

denotes the number of degrees of freedom in DM.
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Going beyond 4𝜋’s
In order to make more quantitative predictions, we can 
construct a holographic model of the hidden sector in a 
warped 5D setup. 

Elevate all hidden sector fields to 4-component fermions. 

Focus only on low-lying KK modes from here on.

IR Brane (𝛬): 
Dirac mass terms 

for N, 𝜒

UV Brane (MUV): 
SM, portal coupling 
Lepton # violation

Bulk: 
Mediator 𝜙 

N𝜙𝜒 interaction



NON-COLLIDER 
PROBES



Direct Detection
Leading contribution shown.  

Suppressed by loop factor as well as two 
mixing angles. 

KK modes of N also contribute.

� ��n

# q

Z⇤

Nr Ns

•

Figure 5: The figure shows the Feynman diagram for the loop induced coupling of DM to the
Z-boson. The subscripts on the fields in the loop denote the KK-modes. The blue dot denotes the
coupling of the Z in the mass eigenbasis to Nr and Ns, which is suppressed by mixing angles.

by the squares of the mixing parameters. On the other hand, since the couplings yr1n arise
from strong dynamics, they are expected to be large.

The contribution to gZ�̄� from just the lowest KK-modes of N and � in the limit
m� � mN is given by
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However, we find that including the higher KK-modes of N in the loop corrects this expres-
sion by an order one factor. We therefore provide formulas for the general terms appearing
in the sum. In particular, in the limit q

2
⌧ m

2
�, one can simplify the above Passarino–

Veltman C0 function. For r = s, the C0 function simplifies to
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For r 6= s, we get instead,
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The Källén kinematic triangular polynomial �(a, b, c) and the function ⇤(m2
0,mi,mj) ap-

pearing in the formulae above are defined as
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The DM–nucleon spin-independent cross section �
SI
�n mediated via Z exchange is given

by,

�
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where mn is the nucleon mass, Z/A is the ratio of the atomic and mass numbers of the
target nucleus, and Vf =(2T 3

f � 4Qf sin
2
✓W ) for a fermion f with electric charge Qf and

isospin number T 3
f . Using this cross section, we plot in Figs. 6 and 7, for a set of benchmark
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Figure 6: We plot the current exclusion from the LZ experiment (2022) [52], along with the
expected sensitivity of the XENONnT experiment [43] and the mixing angle corresponding to the
neutrino floor [43], for the benchmark model parameters listed at the top of the figure. The gray-
shaded region is ruled out by a variety of collider and beam dump searches. The solid blue curve
represents the contour of ye↵ =

p
4⇡ which produces the observed DM relic abundance.

Figure 7: We plot the current exclusion from the LZ experiment [52], along with the expected
sensitivity of the XENONnT experiment [43] and the mixing angle corresponding to the neutrino
floor [43], for the benchmark model parameters listed at the top of the figure. The gray-shaded
region is ruled out by a variety of collider searches. The solid blue curve produces the observed DM
relic abundance for ye↵ =

p
4⇡.

model parameters, the mixing angles as a function of m� that correspond to the current
exclusion from the first results of LZ experiment [52] and the expected sensitivity of the
XENONnT experiment [43]. Also shown is the mixing angle that would result in a cross
section equal to the neutrino floor [43].
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Interlude - N decays
When mN>2m𝜒 then N can decay to 𝜒𝜒𝜈 via 
strong hidden sector interactions and one 
mixing angle. 

Any competing visible decay has to go 
through the portal so these also include a 
mixing angle, as well as other suppression 
factors such as GF. So in this regime the N 
decays invisibly. 

When mN<2m𝜒 then the invisible decay is 
kinematically closed. There is still a 3𝜈 
channel, but it is suppressed by additional 
mixing angles, so visible decays can 
compete, except when U~O(1).

�

�̄

N

⌫̄
•

�

�̄

•
⌫

⌫̄
•

Figure 1: Feynman diagrams for DM annihilation are shown above where composite DM–neutrino
effective vertex /⇤2 is denoted by a red-square and neutrino mixing UN` is shown as a blue circle.
For the left diagram, there is an analogous process for the final state N̄⌫. Flavor indices on neutrinos
are suppressed.

This result means that the SM and the hidden sector will be in equilibrium at early times
for the entire parameter range that leads to the observed abundance of DM after thermal
freeze-out.

In our framework the abundance of DM is set by the standard thermal freeze-out
mechanism. As the temperature falls below the compositeness scale, DM annihilates to the
visible sector through the neutrino portal and eventually freezes out as a cold relic. The
dominant DM annihilation channels to the visible sector are,

��̄ !
�
N ⌫̄, ⌫N̄

�
��̄ ! ⌫⌫̄. (2.21)

The Feynman diagrams for the above DM annihilation processes are shown in Fig. 1, where
the vertex shown as a red-square corresponds to the interaction between DM and singlet
neutrinos given in Eq. (2.7) and a blue-circle denotes the neutrino mixing angle UN`.

The cross sections for the above DM annihilation processes can be estimated as,
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DM freeze out happens when its thermally averaged interaction rate becomes comparable
to the Hubble rate, n̄�h�vi ⇠ H ⇠ T

2
/MPl, where n̄� ⇠ (m�T )3/2 e�m�/T is the non-

relativistic equilibrium number density for DM. The freeze-out happens at temperatures T
of order m�/10.

The thermally averaged DM annihilation cross sections at DM freeze-out, i.e. for
T = Tfo ⇠ m�/10, can be estimated as,

h���̄!N ⌫̄vifo⇠
̃
2
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̃
2
U

4
N`

40⇡⇤2
, (2.23)

where we have made the simplification mN ⇠ m� ⇠ ⇤. The observed DM relic abundance
can be obtained when h�vifo ⇠ 10�8

/ GeV2.
Provided that the ��̄ ! (N ⌫̄, N̄⌫) channel is kinematically open, this will be the

dominant annihilation mode. For values of the composite scale ⇤ ⇠ 1 GeV and ̃ ⇠ (4⇡)2,
we obtain the correct relic abundance from the ��̄ ! (N ⌫̄, ⌫N̄) process with elementary-
composite neutrino mixing UN` ⇠ 10�4. For values of the DM mass m� < mN/2, this
annihilation channel is kinematically forbidden. In this case the relic abundance of DM
is set by the ��̄ ! ⌫⌫̄ channel. However, in this case, larger values of the mixing angle
UN` are required. For instance, for a compositeness scale ⇤ ⇠ 1 GeV and ̃ ⇠ (4⇡)2, we
require UN` ⇠ 10�2 to obtain the correct relic abundance. The discussion above implies
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Indirect detection-CMB
When mN<2m𝜒 then the N𝜈 
annihilation channel is open, 
and the N decays visibly, 
producing electrons, positrons 
and photons. These give 
indirect detection signatures. 

In contrast, when mN>2m𝜒 then 
the annihilation channel is 𝜈𝜈 
and there are no indirect 
detection signatures except 
possibly a 𝜈-line. 

For light DM with mN<2m𝜒, 
there are constraints from the 
CMB.

Figure 9: The blue curve shows fe↵(m�)/m�, the fraction of energy transferred to the IGM due
to DM annihilations around the time of recombination divided by m�, as a function of m�, for the
benchmark spectrum listed above the figure. The dominant annihilation channel is ��̄ ! (N̄⌫, ⌫̄N).
The horizontal dashed line represents the 95% constraint on this quantity from the Planck [62]
collaboration for h�vi = 2.2⇥10�26 cm3 s�1. As a result, this annihilation mode is ruled out for DM
masses in the shaded region. The horizontal dotted line shows the projected sensitivity of CMB-S4
at 95% C.L., which implies a sensitivity to DM annihilation in this channel up to m� ⇠10 GeV.

where h�vi is the total thermally averaged cross section. The calculation of the photon
energy spectrum using pythia8 has been described in the previous subsection, with the
result shown in the left panel of Fig. 8. The J-factor is given by

J ⌘

Z
d⌦

Z `max

0
d` ⇢

2
�(`), (4.19)

where d⌦ is integrated over the region of interest and the d` integral is over the line of sight.
We consider two different DM density profiles, the standard Navarro-Frenk-White (NFW)
profile [69] and a cored DM halo profile proposed by Read et al. [70]. The standard NFW
profile is given by

⇢�(r) = 4 ⇢s

✓
rs

r

◆✓
1 +

r

rs

◆�2

, (4.20)

where r is the distance from the GC and ⇢s is the DM density at the scale radius rs = 20 kpc.
We take ⇢s = 0.065GeV/cm3, which gives the local DM density as ⇢(r0) = 0.3GeV/cm3

for r0 = 8.5 kpc, the distance of the sun from the center of the Milky Way. The line of sight
` is related to r by

r =
q

r
2
0 � 2`r0 cos ✓ + `2, (4.21)

where ✓ is the angle between the GC and the line of sight. We take the integration limit
`max in Eq. (4.19) to satisfy

`max =
q
r
2
MW � r

2
0 sin2 ✓ + r0 cos ✓, (4.22)

where rMW ⇠ 40 kpc is the size of the Milky Way halo.
For the cored halo profile, we employ a core radius rc = 1kpc. The mass of the cored

profile Mcore(r) asymptotically approaches that of the NFW profile MNFW(r) in the outer
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Indirect detection - gamma rays

The strongest constraints come from the Galactic Center, 
using the NFW density profile.

100 101 102 103

m� [GeV]

10�27

10�26

10�25

10�24

h
�
vi

[c
m

3 /
s]

��h2 =0.12

Cored

NFW

m�/mN = 0.7, mN/� ' 1.12, m�/� ' 1.7

Fermi GC

Fermi dSphs

Figure 10: We show the 95% CL limit on h�vi from Fermi-LAT GC (blue curves) and dSphs (green
curve) as a function of the DM mass m� for the benchmark value m�/mN = 0.7, the dominant
annihilation channel being �̄� ! (N̄⌫, ⌫̄N). The horizontal gray line denotes the value required
for the observed DM relic abundance ⌦�h

2
' 0.12. The solid and dashed blue curves correspond

to Cored and NFW DM halo profiles respectively, based on data from Fermi-LAT fourth source
catalogs.

regions as [68, 70],
Mcore(r) = MNFW(r) tanh(r/rc). (4.23)

In Fig. 10 we present the results of our analysis. For the cored DM halo profile, shown as
the solid blue curve, we find that the range of m� between 2 GeV and 20 GeV is excluded
at 95% C.L. for the benchmark case m�/mN = 0.7. For the NFW DM halo profile, shown
as the dashed-blue curve, the exclusion range is found to be between m� = 1 GeV and
m� = 30 GeV. As expected, the limits from the NFW profile are somewhat stronger.

Dwarf Spheroidal Satellite Galaxies: We also calculate the constraints from a set of
dSphs galaxies with well-determined J-factors. We employ the log-likelihood profiles for
the dSphs from Fermi-LAT data [71, 72] and we take the uncertainties in the J-factors
from [73]. These uncertainties are calculated from fits to the stellar kinematic data using
generalized NFW profiles. From the analysis, we find an exclusion at 95% CL for DM in
the mass range m�⇠(5� 10) GeV for m�/mN = 0.7. This is shown in Fig. 10 as the green
curve. This limit is weaker than the bound on gamma rays from the GC.

4.3.3 Neutrino Line Signal

Several experiments including SuperK [74], IceCube [75], and ANTARES [76] have placed
limits on a neutrino line signal from DM annihilations. Their data has also been reanalyzed
by independent groups seeking to extend the constraints to lower values of the DM mass [77–
80]. Recently, the KamLAND experiment [81] also reported a bound on DM annihilation
to neutrinos in the low mass range m� ⇠ [8 � 30] MeV. In the top half of Table 2, we
summarize a variety of experimental constraints on the thermally averaged cross section
h�vi, along with the mass range for which they are applicable.

For an annihilation cross section compatible with obtaining the correct DM relic abun-
dance, these experiments are only sensitive when the DM mass is below a GeV, because
then the DM number density is high and therefore the flux in the neutrino line is large.
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Neutrino-line signal
Both the N𝜈 and 𝜈𝜈 annihilation 
channels produce 
monoenergetic neutrinos. 

There are bounds from existing 
searches, as well as projections 
for future experiments. In order 
to get sufficient flux, light DM 
masses are preferred. 

For the N𝜈 channel, a line signal 
would be in conflict with CMB 
bounds.  

For the 𝜈𝜈 channel, there is 
conflict with beam dump 
searches. 

Figure 11: We show the indirect detection constraint from the SuperK experiment (shaded orange
region), along with the projected sensitivities of upcoming experiments (colored curves). All the
constraints correspond to a standard NFW DM density profile. The green line denotes the anni-
hilation cross section that reproduces the observed relic abundance. At the lower end of the DM
mass range, �Ne↵ bounds from CMB and BBN disfavor values of m� below 8 MeV [85–87].

4.4 Results

We are now ready to combine the conclusions of the different parts of this section and
identify viable regions in the parameter space of our model. For the case when the dominant
annihilation channel is �̄� ! (N̄⌫, ⌫̄N), we present all the relevant constraints in Fig. 12,
for the choices of �N = � bN = 9/4 (corresponding to mN ' 1.12⇤) and �� = �b� ' 2

(corresponding to m� = 0.7mN ). At each point, ye↵ has been chosen such that the correct
DM relic abundance is obtained, and the inequalities in Eq. 2.16 can be satisfied throughout
this parameter region, in other words the correct neutrino masses can be obtained. The
various shaded regions in the plot are excluded (see the figure caption for more detailed
information on each constraint). The DM self-interaction constraint from Eq. (2.26) for this
benchmark point corresponds to m� & 0.5 GeV. The gray shaded region corresponds to the
bounds on HNLs from colliders and beam dumps. The reason that this constraint weakens
for larger masses is that the N particles become too heavy to be produced from on-shell W
decays. Therefore the signal cross section drops precipitously while the background cross
section falls more gradually, resulting in greatly reduced experimental sensitivity. We see
from the plot that future direct detection experiments will have sensitivity for values of the
DM mass above about 40 GeV. In the next section, we will evaluate the reach of future
collider searches in this parameter space.

In this plot we have included the constraints (light-gray region) from the lepton flavor
violating processes µ ! e conversion and µ ! e�, after relaxing the assumption that the
couplings of the composite singlet neutrinos to the SM are flavor diagonal. Then, at the
one-loop level, they contribute to these lepton flavor violating processes [25]. The light-gray
region is the current constraint in the limit that we have maximal mixing between the µ

and e flavors, i.e.
��P

n U
⇤
NnµUNne

�� =
��UN`

��2, where the sum over n is over the KK modes in
the loop. We adopt the strongest constraint from the MEG experiment [88] for the µ ! e�
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Other non-collider constraints

• Terms such as                        give rise to DM self 
interactions. 

Constraints on the cross section (bullet cluster) translate to 

• So far we assumed a flavor diagonal portal coupling. 
However, off-diagonal couplings would give rise to 
processes such as 𝜇→e𝛾. Existing constraints are already 
strong, and they will further improve.

that the neutrino mixing angle UN` plays a crucial role in setting the DM relic abundance
within this framework. Although this analysis has been based on rough estimates, in Sec. 4
we perform detailed relic abundance calculations within the holographic realization of this
model. After solving the full set of Boltzmann equations, we find that these conclusions
are robust.

A characteristic feature of composite DM within strongly coupled theories is that the
DM particles have sizable self-interactions of order,

�self ⇠

2
�

8⇡

m
2
�

⇤4
. (2.24)

These self-interactions arise from terms in the Lagrangian of the form,

LIR � �
�

⇤2
(�̄�µ�)2 + · · · , (2.25)

where the size of the coupling � ⇠ (4⇡)2 and the ellipses denote higher order terms.
There are several constraints on the DM self-interactions. The most stringent are based

on observations of the Bullet Cluster and lead to �self/m� . 0.7 cm2
/g ⇠ 3000/GeV3, (for

a review see [44]). It is straightforward to convert this constraint on the DM mass as

m� & 2

3

⇣
�

16⇡2

⌘2/3⇣m�

⇤

⌘4/3
GeV. (2.26)

Going forward, we will consider the above result as a rough lower bound on the DM mass.
There could also be constraints on this class of models from effects arising from neutrino

self-interactions inside supernovae [45]. However, the region of parameter space where
these effects are likely to be important is already disfavored by the constraints on DM
self-interactions.

2.4 Signals

Before we close this section, we would like to briefly remark on the implications of this class
of models for direct and indirect detection experiments and for collider searches.

• Indirect detection: Since the DM particle is a thermal relic, its annihilation cross
section is of order h�vi ⇠ 10�8

/ GeV2
⇠ 10�26 cm3

/s. The dominant annihilation
channels are either ��̄ ! (N ⌫̄, N̄⌫) or ��̄ ! ⌫⌫̄. When the dominant annihilation
channel is ��̄ ! (N ⌫̄, N̄⌫), the visible end products such as electrons and photons pro-
duced in the decay of composite singlet neutrinos are constrained by indirect detection
experiments and precision observations of the CMB. When the dominant annihilation
channel is ��̄ ! ⌫̄⌫, the constraints from indirect detection are much weaker. All the
annihilation channels give rise to monochromatic neutrinos and antineutrinos in the
final state. Currently, the most stringent constraints on such a signal are provided by
Super-Kamiokande (SuperK) [46], and the reach will be further expanded by Hyper-
Kamiokande (HyperK) [47] , DUNE [48–50] and JUNO [51]. Unfortunately, as we
show in Sec. 4, for both the ��̄ ! (N ⌫̄, N̄⌫) and ��̄ ! ⌫⌫̄ annihilation channels
the region of parameter space that can be probed by these future searches is already
disfavored by other considerations.
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Summary of non-collider constraints

Figure 12: We show the constraints on our model in the parameter space of DM mass and the
N -⌫ mixing angle for the benchmark parameters listed above the figure. The dominant annihilation
channel is �̄� ! (N ⌫̄, N̄⌫), and ye↵ at each point has been chosen to reproduce the correct DM relic
abundance. Contours of constant ye↵ are shown as purple lines. The grey-shaded region is excluded
by collider, beam dump, and astrophysical constraints [25]. The light-gray region corresponds to
the current exclusion from the lepton flavor violating processes µ ! e conversion and µ ! e� under
the assumption of maximal lepton mixing, whereas the dotted gray curve represents the projected
future sensitivity from these processes. The orange-shaded region on the left is excluded at 95% C.L.
by Planck CMB data as discussed in Sec. 4.3.1. The red-shaded region in the top-right corner is
excluded by the direct detection constraint from the LZ (2022) experiment as discussed in Sec. 4.2.
The red-dotted curve shows the projected sensitivity of the LZ/XENONnT experiment and the
brown-dashed curve corresponds to the mixing angle below which the signal in direct detection
experiments would fall below the neutrino floor. The gamma ray constraints of Fig. 10 are depicted
by the green and blue shaded regions. The purple shaded region corresponds to ye↵ > 4⇡ and is
accordingly disfavored by unitarity considerations.

process and from the SINDRUM II experiment [89] for µ ! e conversion. In the near future
the Mu2e [90] and COMET [91] experiments will be searching for µ ! e conversion. The
future constraints in the absence of a signal are shown in Fig. 12 as the dotted-gray curve.
Note that relaxing the assumption of maximal lepton mixing would lead to a weakening of
the corresponding constraints.

For the case when the primary annihilation channel is �̄� ! ⌫̄⌫, we present the relevant
constraints in Fig. 13, for the choices of �N = � bN = 9/4 (corresponding to mN ' 1.12⇤)
and m�/mN = 0.4 (corresponding to �� ' 7/4). As before, ye↵ at each point has been
chosen to obtain the correct DM relic abundance, and the entire parameter region in the plot
is compatible with Eq. 2.16. The shaded regions correspond to exclusions, except for the red
and blue vertical hatched bands denoting the regions of sensitivity to future neutrino-line
searches, as discussed in Sec. 4.3.3. Unfortunately, these regions are already excluded by
the existing collider and beam dump bounds. Moreover, the DM self-interaction constraint
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Summary of non-collider constraints

Figure 13: This plot shows the constraints on our model in the parameter space of DM mass and the
N -⌫ mixing angle for the benchmark parameters listed above the figure. The dominant annihilation
channel is �̄� ! ⌫̄⌫, and ye↵ at each point has been chosen to reproduce the correct DM relic
abundance. Contours of constant ye↵ are shown as purple lines. The grey-shaded region is excluded
by beam dump and electroweak precision constraints [92]. The light-gray region corresponds to the
current exclusion from the lepton flavor violating processes µ ! e conversion and µ ! e� under
the assumption of maximal lepton mixing, whereas the dotted gray curve represents the projected
future sensitivity from these processes. The red-shaded region in the top-right corner is excluded
by the direct detection constraint from the LZ (2022) experiment as discussed in Sec. 4.2 and to the
left of the brown-dashed verticle line the direct detection experiments would fall below the neutrino
floor. The orange-shaded region on the left is excluded by the CMB and BBN constraints on the
effective number of relativistic degrees of freedom �Ne↵ . The blue and red vertical hatched bands
are projected regions where future HyperK and DUNE experiments, respectively, have sensitivity
for the detection of a neutrino-line. The green-shaded region is excluded due to DM self-interaction
constraints discussed in Sec. 2.3. The purple shaded region corresponds to ye↵ > 4⇡ and is disfavored
by unitarity considerations.

in Eq. (2.26), i.e. �self/m� . 0.7 cm2
/g, leads to a lower bound on the DM masses shown

as the green solid band, where we assumed � ' y
2
e↵ . This constraint also implies that the

future HyperK and DUNE reach for a neutrino line signal is excluded.

5 Collider Phenomenology

Let us now turn our attention to the collider signatures of this class of models. As described
earlier, composite singlet neutrinos can be produced at colliders via the neutrino portal.
When m� < MN/2 (i.e. when the annihilation channel is ��̄ ! ⌫⌫̄), N can decay fully
invisibly into ��̄⌫. This decay occurs via the NN̄��̄ interaction in the strongly coupled
sector, with an insertion of N -⌫ mixing. Since any N decay channels into SM final states
also require at least one mixing angle (in the form of the portal coupling), and are further
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Collider overview
Production always through 𝜈-portal.  

N or its KK modes produced first. Depending 
on mass, dominant source is heavy meson 
decays or Drell-Yan. 

N behaves as a Heavy Neutral Lepton 

𝜒 can be produced along with N (from N2 
decays etc.) 

Need visible N decays. Take 

Relax relic abundance constraint for exploring 
collider signatures (𝜒 might be only 
subcomponent of DM).

suppressed by G
2
Fm

4
N due to the off-shell W or Z bosons that mediate the process, the

decays to ��̄⌫ will completely dominate over the SM decays. Therefore, in this region of
parameter space, N decays are completely invisible, making discovery at colliders extremely
challenging. As a result our analysis below will focus solely on the region where m� > MN/2

(i.e. the annihilation channel is ��̄ ! (N ⌫̄, N̄⌫)).
As we have seen in the previous section, only the region of parameter space around

m� ⇠ 1GeV is consistent with the existing constraints when the annihilation channel is
��̄ ! ⌫⌫̄ and only heavier (>⇠ 20 GeV) DM masses are allowed when the annihilation
channel is ��̄ ! (N ⌫̄, N̄⌫). However, in this section we will explore the collider signatures
across the entire parameter space for the N -⌫ annihilation channel, even for regions that
may not be compatible with the constraints outlined in the previous section. There are two
reasons for this. Firstly, it is worth considering the possibility that � constitutes only a
fraction of DM, in which case the indirect detection constraints on DM can be weakened.
Secondly, similar signals may arise in the larger class of DM models where a dark sector
couples to the SM through the neutrino portal. Accordingly, we will proceed with our
analysis assuming only that we are in the regime m� > MN/2.

The lowest energy state that can be probed via the neutrino portal is single N , and
therefore single-N production will generally have the highest production cross section. In
collider physics contexts, neutral fermionic particles such as N are typically categorized as
HNLs (see, for example, [93]). Depending on the mass of the N , it can be produced in
Drell-Yan processes or from the decays of heavy mesons. The latter will have a significantly
larger production cross section (and also significantly larger backgrounds). However, those
channels will only be present when the N is lighter than the heavy meson, while for mN >

⇠

5 GeV, only Drell-Yan production is available. Since charged leptons are preferable to
neutrinos in collider searches, searches for HNLs generally focus on Drell-Yan production
via W bosons as opposed to Z bosons. This results in a richer set of possible charge and
flavor combinations of final states, such that backgrounds can be controlled.

Once an HNL has been produced, the standard searches assume that it decays into a
charged lepton and an off-shell W boson (which can produce another charged lepton and
a neutrino, or hadrons), or a neutrino and an off-shell Z boson (which can produce an
opposite sign same flavor pair of leptons, a pair of neutrinos, or hadrons). We can therefore
expect that the beyond-the-SM channel that may be the easiest to observe might be single-
N production, followed by a leptonic decay of the off-shell W . This channel is the most
commonly searched-for channel at the LHC for HNLs, with only null results thus far.

While LHC searches assume the HNL to be a weakly coupled particle, the searches are
parameterized in terms of mN and the small mixing angle between N and the SM neutrinos,
so the bounds can be applied to our model as well. However, there is one important caveat.
Even in the region m� > MN/2, it is possible for the dominant decay mode of N to be
invisible, through NN̄NN̄ interactions in the strongly coupled sector leading to the decay
like N ! ⌫⌫⌫̄ ("N ! 3⌫"). The corresponding width scales as �N!3⌫ ⇠ |UN``|

6. This
decay mode is highly suppressed for the range of masses and mixing angles for which �

can constitute all of DM. However, it can play a role for larger values of the mixing angle,
corresponding to a reduced abundance of �. When the mixing angle is sufficiently large,
presence of this channel weakens the bounds on HNL-like searches. For nearly all of the
parameter space we are interested in, the effect of this N ! 3⌫ channel remains negligible.
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Figure 14: Collider signal processes of interest for this work. The initial W may be on or off-shell.
Note that the leptons labeled ` in each diagram may have the same sign and flavor if N1 is a
Majorana particle.

For both, we adjust the lepton efficiency formulas to include leptons with pT down to 2 GeV.
Where necessary, we adopt additional lepton ID/reconstruction efficiencies by matching
on to existing ATLAS/CMS analyses for the single-N signal. For simplicity, we consider
bounds separately on the Ne coupled only to e via the effective coupling UNee and on the
Nµ coupled only to µ via UNµµ. For notational compactness we use N to represent either
Ne or Nµ with the N flavor implied by its coupling to its respective charged lepton. As a
benchmark, we use �N = 9/4, and we take over existing bounds for |UNe|

2 from Ref. [25].
For current bounds on |UNµ|

2, we consider the bounds adapted from [96–104] and applied
to the unparticle model in Ref. [25].

Using the effective Lagrangian of our holographic model, we can calculate the partial
widths
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for the W -boson to decay decay to the n-the KK-mode of N where ` is either µ or e, and
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for the Z-boson.

5.1 Collider Searches for Single-N

As mentioned above, the single-N signal maps easily onto HNL searches parameterized
in terms of mN and |UN`|

2, and does not depend strongly on details of the UV model.
Therefore, it is straightforward to use the results of CMS [105] and ATLAS [106] searches,
as well as the projected sensitivity of searches for long-lived HNLs at MATHUSLA [53], to
identify the regions of interest in the parameter space of our model.

We divide the parameter space into three regions according to the decay lifetime of N
particles, namely the prompt decay region (region A), the displaced decay region (region
B), and the long-lived region (region C). We illustrate this in Figure 15. We assume for
simplicity that N comes in three degenerate copies, where each N couples exclusively to a
single lepton flavor, and we assume these couplings are flavor-universal. Since bounds on
|UN⌧ |

2 are significantly weaker than on |UNµ,e|
2, we focus our attention on the electron and
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Status of HNL searches

Depending on the N mass and 
the mixing angle, a wide range 
of N lifetimes are possible. 

We use Monte Carlo methods 
to reproduce existing analyses 
in the three lifetime regions. 
This serves as calibration for 
the later part of our analysis. 

We also incorporate 
projections at increased 
luminosity into our results.
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Figure 15: Contours of c⌧ for generic HNL particles (in meters) in the mN � |UN`|
2 plane. In

region A, shaded light red, the HNL decays fast enough for prompt searches to be sensitive. In
region B, shaded light green and partially overlapping regions A and C, displaced vertex searches in
the tracker have sensitivity. In region C, shaded light blue, the HNL is too long-lived to be searched
for by ATLAS or CMS, but dedicated long-lived particle detectors such as MATHUSLA may have
sensitivity.In the grey shaded region, the N ! 3⌫ decay channel induced within the CFT sector
dominates, and the above lifetime contours are not accurate.

muon channels. We also assume that N can be treated as a Majorana particle, that is, an
N can decay to `

± with equal probabilities, resulting in charge and flavor combinations of
leptons that have very small SM backgrounds. This is in contrast to an N that preserves
lepton number, and can therefore decay to only one of `± (while N̄ decays to the other).
The necessary criterion for this is �mN & �N [107], where �mN is the splitting between
N mass eigenvalues. This criterion is satisfied for all regions of parameter space that will
be explored below.

In Region A, the N lifetime is relatively short, and hence N ’s produced in colliders
can be detected in prompt searches at the LHC. In Region B, the N lifetime is c⌧ ⇠

O(10�4
�10) m, which is long enough to possibly register as a displaced vertex. The existing

ATLAS displaced search in this regime has sensitivity to HNLs with mN ⇠ O(1) GeV and
|U |

2
⇠ 10�3.5

� 10�5.5. In Region C, the N is long-lived with c⌧ ⇠ O(100 � 107 m), and
can be searched for in dedicated long-lived particle (LLP) detectors such as the proposed
MATHUSLA experiment. The MATHUSLA sensitivity region for HNLs extends up to
around mN ⇠ 5 GeV and to about |U |

2
⇠ 10�9.
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Going beyond HNL searches
DM can be produced along with N, 
but discovery is challenging. 

Suppose that N is first discovered in 
a traditional HNL channel, and then a 
search is performed in the visible 
channel to measure mN. 

Now the kinematics in the visible N 
channel can be used to separate the 
added signal component. 

Standard channels will also have 
sensitivity with well-chosen kinematic 
cuts (MET, m3l) or a long-lived 
particle facility like MATHUSLA.

Figure 14: Collider signal processes of interest for this work. The initial W may be on or off-shell.
Note that the leptons labeled ` in each diagram may have the same sign and flavor if N1 is a
Majorana particle.

For both, we adjust the lepton efficiency formulas to include leptons with pT down to 2 GeV.
Where necessary, we adopt additional lepton ID/reconstruction efficiencies by matching
on to existing ATLAS/CMS analyses for the single-N signal. For simplicity, we consider
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for the Z-boson.

5.1 Collider Searches for Single-N

As mentioned above, the single-N signal maps easily onto HNL searches parameterized
in terms of mN and |UN`|

2, and does not depend strongly on details of the UV model.
Therefore, it is straightforward to use the results of CMS [105] and ATLAS [106] searches,
as well as the projected sensitivity of searches for long-lived HNLs at MATHUSLA [53], to
identify the regions of interest in the parameter space of our model.

We divide the parameter space into three regions according to the decay lifetime of N
particles, namely the prompt decay region (region A), the displaced decay region (region
B), and the long-lived region (region C). We illustrate this in Figure 15. We assume for
simplicity that N comes in three degenerate copies, where each N couples exclusively to a
single lepton flavor, and we assume these couplings are flavor-universal. Since bounds on
|UN⌧ |

2 are significantly weaker than on |UNµ,e|
2, we focus our attention on the electron and
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Figure 19: The distribution of mN` with L = 3 ab�1 for a single-N signal events (red) and N��̄

events (blue) at the parameter point mN = 10 GeV and |UN`|
2 = 10�5. The error bars correspond

to statistical uncertainties in our analysis, and they include uncertainties due to the finite size of
our Monte Carlo event samples.

simply compare the N��̄ signal to the single-N signal in the fully visible channel and study
the statistical significance of the excess. Projections for a dedicated search in this channel
should be conducted by experimental collaborations. In other words, below we simply aim
to demonstrate what might be possible if the backgrounds can be sufficiently reduced.

The fully visible decay channel of N not only has a higher branching fraction compared
to the leptonic one, but it has the very important advantage that the N momentum can be
fully reconstructed. As before, we take finite energy resolution into account in the study
below by passing all events through Delphes [95]. In order to discriminate between the two
signal components, we focus on the variable mN`, the invariant mass of the N � ` system,
where ` is the lepton produced in association with the N . While for single-N events we
expect the distribution of mN` to be sharply peaked around mW , the distribution for N��̄

events will be broad and peak at mN` < mW due to the DM particles carrying away energy.
An example of this for the parameter point mN = 10 GeV and |UN`|

2 = 10�5 is shown in
Figure 19.

Accordingly, we perform a MC study for this final state (a same-sign, same-flavor lepton
pair plus jets, e and µ channels combined) with 3 ab�1 of luminosity, with only minimal pT
requirements for the leptons and pT > 10 GeV for jets. We require that two jets and one of
the leptons reproduce a particle of mass mN within a tolerance of 20%. We also demand
that the invariant mass of the two leptons not be within 15 GeV of mZ , since a Z-veto will
almost certainly be used in a dedicated search to reduce the Z+jets background with the
charge of one lepton misidentified. By performing a shape analysis of the mN` distribution,
we evaluate the statistical significance of the �N��̄ excess. Our results for the two combined
channels assuming UNe = UNµ are shown in Figure 20. This search can reach as far as
|UN`|

2
⇠ 10�7. Below mN . 2 GeV, N becomes too long-lived to decay consistently in
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Figure 21: Parameter space of |UN`|
2 plotted against mN , with contours of the N lifetime in

meters overlaid (diagonal), for the muon mixing angle (above) and electron mixing angle (below).
The navy-shaded regions in each plot are excluded by existing collider and beam dump constraints.
Solid colored lines represent projected exclusion limits for single-N sensitivity. Dashed contours
represent exclusion limits for N��̄ sensitivity. The dot-dashed magenta contour is our optimistic
N��̄ sensitivity for a visible collider search. In the gray shaded region, the lifetime of N in our
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SUMMARY



We have explored the possibility of a strongly coupled hidden sector coupled to 
the SM via a 𝜈-portal. 

The state directly accessed by the portal is a composite singlet neutrino, and small 
SM neutrino masses can arise naturally via the inverse seesaw mechanism. 

The DM can be a composite state in the hidden sector, kept stable by a Z2 
symmetry. The relic abundance is set by thermal freezeout. 

The phenomenology is different for m𝜒/mN being above or below 0.5. 

For the former case, indirect detection, colliders and lepton flavor violation 
searches can probe most of the parameter space. 

The latter case is more challenging due to invisible N decays, but rare meson 
decay searches, DM self interactions and 𝛥N rule out low masses, with LFV 
providing sensitivity at larger masses. 

HNL searches at the LHC are expanding the reach for N. If N can be observed in 
a visible channel, then there may be sensitivity for the DM production as well.



ADDITIONAL INFORMATION



Consistency condition for 𝜈-masses

Both the Dirac and Majorana masses for N need to be smaller 
than the compositeness scale.

Here µ̂ is a dimensionless constant that parametrizes the strength of the deformation. We
assume that O2N carries a charge of +2 under the global symmetry of the hidden sector,
so that this deformation violates lepton number by two units. In the low-energy effective
theory at the scale ⇤, this gives rise to a term in the Lagrangian of the form,

LIR � �(µNLNL + µ
0
NRNR) + h.c. , (2.9)

where the Majorana masses µ and µ
0 parameterize the strength of lepton number violation.

Their values scale with the parameters of the theory as

µ ⇠ µ
0
⇠ µ̂⇤

✓
⇤

MUV

◆�2N�4

. (2.10)

The scaling dimension �2N of the lepton number violating scalar operator O2N is con-
strained by unitarity to satisfy �2N � 1, where the limiting case �2N = 1 corresponds to
the case of a free scalar.

With the inclusion of the lepton number violating term in Eq. (2.9) the low-energy
effective theory now possesses all the ingredients required to realize inverse seesaw mecha-
nism,

LIR �iN̄�
µ
@µN � mN N̄N �

h
µNLNL + �L̄ eHNR + h.c.

i
. (2.11)

By integrating out the composite singlet neutrinos N we obtain a contribution to the masses
of the light neutrinos,

m⌫ = µ

⇣
�vEW

mN

⌘2
. (2.12)

Here vEW ⌘ hHi ' 174 GeV. When the effects of higher resonances are included, this
relation is only approximate, so that

m⌫ ⇠ µ

⇣
�vEW

mN

⌘2
. (2.13)

Note that the neutrino masses depend on both the parameter �, which controls the mixing
with the composite states as seen in Eq. (2.5), and the parameter µ, which controls the
extent of lepton number violation as seen in Eq. (2.10). Then the smallness of the SM
neutrino masses can naturally be explained by either the small parameter � that sets the
size of the neutrino mixing or the small lepton number violating coupling µ. Since the small
values of these parameters admit a simple explanation in terms of the scaling dimensions
of the operators bON and O2N , this class of models can provide a natural explanation for
the smallness of neutrino masses.

Note that in this construction both the Dirac mass term �vEW and the Majorana mass
term µ need to be smaller than the compositeness scale ⇤. This leads to the following range
for the coupling �,

p
m⌫mN

vEW
. � . mN

vEW
, (2.14)

where we have employed Eq. (2.13) in obtaining the lower bound, after setting mN ⇠ ⇤.
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Or in terms of the mixing angle:

The neutrino mixing angle to the physical mass eigenstates in the limit mN � �vEW

is defined as,

UN` ⌘
�vEW

mN
. (2.15)

It follows from Eqs. (2.14) and (2.15) that the mixing angle UN` lies in the range
r

m⌫

mN
. UN` . 1 . (2.16)

2.3 Abundance of Dark Matter

In this subsection, we outline how this class of models can reproduce the observed abundance
of DM. At high temperatures in the early universe, the hidden sector was in thermal contact
with SM through the portal operator in Eq. (2.3). This interaction populates the hidden
sector, bringing it into thermal equilibrium with the SM. Once the temperature falls below
their masses, the hidden sector states begin to exit the bath. The observed DM today is
composed of the lightest Z2 odd Dirac fermion � that survives as a thermal relic.

We first show that the hidden sector is in thermal equilibrium with the SM at tem-
peratures of order the compositeness scale. The hidden sector states can be produced from
SM neutrinos via processes such as ⌫⌫ ! UN , ⌫⌫ ! ⌫UN , ⌫UN ! ⌫UN , where the label
UN denotes hidden sector states. To see this, note that the strongly coupled nature of the
hidden sector implies large self-interactions between the composite singlet neutrino states,

LIR � �


⇤2

�
N̄�

µ
N
�2

+ · · · , (2.17)

where the size of the coupling  is the order ⇠ (4⇡)2 and ellipses denote higher order terms.
These interactions are characteristic of the composite nature of the singlet neutrinos. To
see that the hidden sector is in equilibrium with the SM at temperatures of order ⇤, we
estimate the rate for the ⌫⌫ ! UN process. At the scale ⇤ this rate is expected to be
parametrically of the same order as the ⌫⌫ ! NN rate. From Eq. (2.17) we can estimate
the cross section for this process as,

�⌫⌫!UN ⇠ �⌫⌫!NN ⇠
1

4⇡

✓


⇤2

◆2��UN`

��4 T 2
. (2.18)

From this, we can write the thermally averaged interaction rate as,

n̄⌫h�⌫⌫!NN vi ⇠

2

4⇡

��UN`

��4 T
5

⇤4
, (2.19)

where n̄⌫ ⇠ T
3 represents the equilibrium number density of SM neutrinos. In order to

keep the SM and hidden sector in thermal and chemical equilibrium at the compositeness
scale the above interaction rate should be larger than the Hubble rate H ⇠ T

2
/MPl at

temperature T ⇠ ⇤, where MPl denotes the Planck mass. Taking  ⇠ (4⇡)2, the condition
for thermal equilibrium condition at temperature T ⇠ ⇤ can be translated into a lower
bound on the neutrino mixing angle UN` as,

|UN`|
2 &

p
⇤/4⇡MPl . (2.20)
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Further details on the 5D model
Fermionic field content:

with N . For both the prompt and displaced searches, we describe how optimizing
the cuts could extend the sensitivity for the DM+N signal. We also describe how
reconstructing the N (in a fully visible decay channel such as N ! `qq̄) would offer
the most promising avenue to detect the additional signal. Unfortunately, most of the
parameter space of interest for future collider searches is in tension with the existing
constraints from indirect detection.

3 Holographic Realization

In this section we present a holographic realization of our framework for composite DM
via the neutrino portal. Theories in which the strong conformal dynamics is spontaneously
broken are dual [54, 55] to the two-brane Randall-Sundrum (RS) construction [30]. Accord-
ingly we consider a slice of 5D anti-de Sitter (AdS5) space bounded by two 3-branes. The
metric in the AdS5 slice is given by

ds
2 =

✓
R

z

◆2

⌘MN dx
M
dx

N
, (3.1)

where x
M = (xµ, z) with µ=0, 1, 2, 3 represent the familiar four-dimensional (4D) coordi-

nates and the fifth coordinate z is confined to the interval between the two branes. The
branes are located at z ⌘R and z ⌘R

0, i.e. R  z  R
0. The AdS/CFT correspondence

relates the location in the fifth dimension in the AdS space to the energy scale in the dual
CFT. The locations of the two branes correspond to the UV and IR scales, MUV ⇠ 1/R

and ⇤IR ⌘ ⇤ ⇠ 1/R0, and so the two branes will be referred to as the UV-brane and the IR-
brane. The presence of the UV-brane is associated with the 4D theory being defined with
a cutoff, while the presence of the IR-brane is associated with the spontaneous breaking of
conformal dynamics. The singlet neutrinos and the states that constitute DM arise as com-
posites of the hidden sector, and therefore arise from bulk fields in the higher-dimensional
construction. On the other hand, since the SM fields are elementary, they are localized on
the UV-brane.

We introduce Dirac fermions b N and  N in the bulk of the extra dimension. The
Dirac fermion b N is the holographic dual of the operator bON in the CFT, and will give
rise to the right-handed composite singlet neutrino NR in the low-energy theory. Similarly,
NL arises from the bulk Dirac fermion  N , which is assumed to be dual to an operator
ON of dimension �N in the CFT. In addition, we introduce bulk Dirac fermions b � and
 �, which will give rise to the right- and left-handed chiralities of the Dirac fermion DM
particle �. These are assumed to be dual to operators bO� and O� of dimension �b� and ��

in the CFT. These bulk fields can be written out in terms of two-component spinors that
transform as Weyl fermions under the Lorentz group in four spacetime dimensions.

 N =

 
NL

N
0
R

!
, b N =

 
N

0
L

NR

!
,  � =

 
�L

�
0
R

!
, b � =

 
�
0
L

�R

!
. (3.2)

The CFT operators ON and bON transform as two-component Weyl fermions under the
Lorentz group. In contrast, the bulk fermions  N and b N transform as four-component
Dirac fermions. Therefore, to realize the duality we must impose boundary conditions on
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Boundary conditions: Primed fields and mediator vanish on the 
UV brane, unprimed fields vanish on the IR brane.

the UV-brane such that only one of the two Weyl fermions contained in each bulk Dirac
fermion is sourced by the fields on that brane. Accordingly, on the UV-brane we impose
the boundary conditions

 
0
L,  

0
R

��
UV

= 0 , (3.3)

where we have employed the notation ( = N,�) to denote the bulk fermions. Furthermore,
since we wish to consider a theory without any light states below the compositeness scale,
on the IR-brane we impose the boundary conditions,

 L,  R|IR = 0 . (3.4)

The action for the bulk fermions includes kinetic terms and mass terms,

Sbulk �

Z
d
4
x

Z
dz

p
g


i

2

⇣
 ̄Ne

M
a �

a
rM N � rM  ̄Ne

M
q �

a N

⌘
�

cN

R
 ̄N N

+
i

2

⇣
 ̄�e

M
a �

a
rM � � rM  ̄�e

M
q �

a �
⌘

�
c�

R
 ̄� � +

�
 ! b , c ! bc

 �
. (3.5)

Here rM ⌘ @M + !M where !M represents the spin connection and e
a
M ⌘ (R/z)�aM is the

vierbein that relates the locally flat 5D coordinates x
a to the warped 5D coordinates x

M .
The bulk mass parameters c and bc with  = (N,�) are related to the scaling dimensions
of the corresponding CFT operators [56, 57]

� = 2 + c � b = 2 � bc . (3.6)

The scaling dimensions of primary fermionic operators are bounded by unitarity to be
� ,� b � 3/2, where the limiting case corresponds to a free fermion. Furthermore, it
was noted earlier that fermionic scaling dimensions larger than 5/2 render the theory UV
sensitive. Therefore, in this work we consider scaling dimensions of the fermion fields in
the range 3/2 < � ,� b < 5/2. For the bulk mass parameters this translates to the
range �1/2 < c ,bc < 1/2. Given that the bulk fields corresponding to N and � satisfy
similar equations of motion and boundary conditions, the desired mass ordering mN > m�

can be obtained from an appropriate choice of the scaling dimensions, i.e. the bulk mass
parameters.

In the higher-dimensional framework, the SM is localized on the UV-brane. Then
the interaction of the SM neutrinos with the hidden sector in the 4D theory, Eq. (2.3),
corresponds to the following brane-localized interaction in the higher-dimensional theory,

SUV �

Z
d
4
x

Z
dz

✓
R

z

◆4

�(z � R) �̂
p

R L̄ eHNR + h.c. (3.7)

Here �̂ is a dimensionless coupling constant. To generate a Majorana mass term for N as
required by the inverse seesaw mechanism, we add a brane-localized term

SUV �

Z
d
4
x

Z
dz

✓
R

z

◆4

� (z � R) µ̂ NLNL + h.c. , (3.8)

where µ̂ parametrizes the strength of lepton number violation. This term is the dual of
Eq. (2.8) in the 4D theory, with the role of the holographic dual to the operator O2N being
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R L̄ eHNR + h.c. (3.7)

Here �̂ is a dimensionless coupling constant. To generate a Majorana mass term for N as
required by the inverse seesaw mechanism, we add a brane-localized term

SUV �

Z
d
4
x

Z
dz

✓
R

z

◆4

� (z � R) µ̂ NLNL + h.c. , (3.8)

where µ̂ parametrizes the strength of lepton number violation. This term is the dual of
Eq. (2.8) in the 4D theory, with the role of the holographic dual to the operator O2N being
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played by NLNL. In order to generate the Dirac mass terms between NR and NL in the
low energy theory, Eq. (2.2), and between �L and �R, Eq. (2.6), we introduce Dirac mass
terms for  = (N,�) on the IR-brane,

SIR �

Z
d
4
x

Z
dz

✓
R

z

◆4

�
�
z � R

0�
 

�
 ̄L R +  ̄

0
L 

0
R + h.c.

�
, (3.9)

The value of the parameter  determines the size of the resulting mass term. Note that
the boundary conditions for the fermions NL and NR are modified on both the UV- and
IR-branes because of the brane-localized terms Eq. (3.7), Eq. (3.8) and Eq. (3.9). However,
the boundary conditions for the DM fields �L,�R are only modified on the IR-brane due
to the brane-localized term in Eq. (3.9).

In order to mediate interactions between the DM candidate and the neutrinos, we
introduce a complex scalar field � in the bulk. In addition to the kinetic term and mass
term, the action for the scalar contains a Yukawa interaction,

Sbulk �

Z
d
4
x

Z
dz

p
g

⇢
g
MN

@M�@N�
⇤
�

a
2

R2
|�|

2 +
⇣
ŷ

p

R� ̄�b N + h.c.
⌘�

. (3.10)

Here a is the mass parameter for the bulk scalar which is related to the scaling dimension
�� of the corresponding primary operator O� as,

↵ ⌘

p
4 + a2 = �� � 2. (3.11)

Naive dimensional analysis leads to an estimate for the dimensionless Yukawa coupling,
ŷ ⇠

p

24⇡3. We choose the following boundary conditions for the scalar field,

�|UV = 0, and @z�|IR = 0. (3.12)

These boundary conditions ensure that the bulk scalar does not give rise to any light states
below the compositeness scale.

The interactions in Eq. (3.7) and Eq. (3.10) respect an overall lepton number symmetry
under which b N and � carry charges of +1 and �1, respectively. This symmetry is violated
by the term in Eq. (3.8), giving rise to masses for the light neutrinos. All the interactions
respect a discrete Z2 symmetry under which the DM fields  � and b � and the scalar �
are odd, while the remaining fields are even. This discrete symmetry ensures the stability
of DM.

3.1 Kaluza-Klein Decomposition and Mass Spectrum

In this subsection, we perform a Kaluza-Klein (KK) decomposition of the bulk fields and
obtain the profiles of the various modes and their mass spectra. In what follows we will
use the notation  n to denote the nth-KK mode (n=1 being the lowest mode) of the bulk
fermion field  ( = N,�). We will employ the analogous convention for all other bulk
fields. The bulk fermion fields give rise to a tower of Dirac states,

 L(x, z) =
X

n

g
 
n (z) n,L(x),  

0
L(x, z) =

X

n

g
 0
n (z) 0

n,L(x), (3.13)
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