GRAVITATIONAL WAVE SIGNATURES OF REHEATING

Based on arXiv:2305.09712

with Manuel A. Buen-Abad and Anson Hook

Jae Hyeok Chang

Johns Hopkins University and University of Maryland

5/18/2023 The Mitchell Conference

We have observational data only after BBN

We have observational data only after BBN

- We have observational data only after BBN
- How do we probe earlier Universe?

 Universe is transparent to GW for all time

 We can probe earlier time if GW are produced from some early-time events

Gravitational Waves!

 Universe is transparent to GW for all time

 We can probe earlier time if GW are produced from some early-time events

 e.g. 1st order phase transitions

GW from 1st order PT

GW from 1st order PT

 GW are produced from bubble dynamics (bubble collisions, sound waves, and turbulences)

If we have a 1st order PT at T_c , it must occur twice:

If we have a 1st order PT at T_c , it must occur twice: once during the reheating period and once again during the subsequent cooling period

Toy Model for Reheating

• A non-relativistic reheaton χ decays to a radiation r, which has 1st order phase transition

$$\dot{\rho}_{\chi} + 3H\rho_{\chi} = -\Gamma_{\chi}\rho_{\chi}$$
$$\dot{\rho}_{r} + 4H\rho_{r} = \Gamma_{\chi}\rho_{\chi}$$

- Γ_{χ} is the reheaton decay rate
- Radiation r thermalizes with SM sector later
- χ can be an inflaton, but not necessarily

Ist order PT during the reheating

GW from PT during the reheating

GW are produced from the same way,
 but there're several differences

Heating PT and Cooling PT

- To distinguish, we define
 - hPT as phase transition during the reheating
 - hGW as gravitational waves from hPT
 - cPT as Phase transition during the cooling
 - cGW as gravitational waves from cPT

Difference between hGW and cGW

- hGW redshift more than cGW
 - hGW are produced early, and GW redshift $\propto a^{-4}$
 - This is why hGW is not considered normally
 - We can avoid this redshift factor by having $T_c \lesssim T_{\rm max}$

Difference between hGW and cGW

- Different bubble dynamics
 - The bubble wall in cPT feels friction,
 while the wall in hPT feels anti-friction
 - Thus, normally the wall speed in cPT $(v_{w,cPT})$ saturates at a constant value, while $v_{w,hPT}$ enters a runaway regime
 - The bubble wall in hPT gets energy from the radiation, which eventually converts to GW

Toy Model for PT

$$V(\Phi) = \frac{\mu^2}{2} (T - T_0)^2 \Phi^2 + \frac{A}{3} T \Phi^3 + \frac{\lambda}{4!} \Phi^4$$

- Φ : A scalar in the radiation r that drives PT
- $\mu^2 = \frac{1}{12} \sum_i c_i N_i y_i^2$, $A = \frac{1}{4\pi} \sum_B N_B y_B^3$
- We define $\Delta \equiv \frac{4A^2}{3\lambda \mu^2}$, which controls physics of PT
- T_0 : Binodal temperature
- $T_c = T_0/\sqrt{1-\Delta}$: Critical temperature
- $T_1 = T_0 \sqrt{8/(8-9\Delta)}$: Spinodal temperature

Free Parameters

$$T_c$$
,

$$\Gamma_{\chi}$$
,

$$\Gamma_{\chi}$$
, $T_c/T_{\rm max}$, $\{\mu,A,\lambda\}$, g_* ,

$$\{\mu, A, \lambda\},$$

$$g_*$$
,

$$v_{w, \mathrm{cPT}}$$

- We choose
 - $T_c \sim 1 \text{ TeV}$
 - $\circ \Gamma_{\chi} \sim H_i$
 - $\cdot \mu = \lambda = 1$
 - $g_* = 10$
 - $v_{w,cPT} = 0.05$
- Vary $T_c/T_{\rm max}$ and $\Delta \equiv \frac{4A^2}{3\lambda u^2}$

Gravitation Waves from PT

 The dominant contribution for hGW comes from bubble collisions as it's in the runaway regime

 The bubble wall for cPT has a constant wall velocity, thus sound waves dominates for cGW

• We calculate SNR in BBO by using Ω_{PIS}

Gravitation Waves from PT

Results

Results: different T_c

Results: different Γ_{χ}/H_i

Results: varying Γ_{χ}/H_i for fixed Δ

Conclusions

- Ist order phase transition may occur twice during the reheating and during the cooling
- If we can measure GW from both PTs, we can learn physics of reheating
- In this work, we study the properties of GW production during the reheating

THANKYOU

BACK UP

Bubble Nucleation Rate

$$\frac{\Gamma}{\mathcal{V}} \approx T^4 \left(\frac{S}{2\pi}\right)^{3/2} e^{-S}$$

$$h(t) = \exp\left[-\int_{t_c}^t dt' \frac{\Gamma}{\mathcal{V}}(t') \frac{4\pi}{3} v_w^3 (t - t')^3\right]$$

- h is the fraction of the volume of the Universe found in the metastable phase
- Define $t_{\rm PT}$ at which $h(t_{\rm PT})=1/e$

Bubble Nucleation Rate

Temperature history according to γ

Daisy, runaway, and κ_{Φ}

