The Mitchell Conference on Collider, Dark Matter, and Neutrino Physics 2023

HNL at Muon Colliders

Zhen Liu University of Minnesota 05/17/2023

The Mitchell Conference on Collider, Dark Matter, and Neutrino Physics 2023

HNL at Muon Colliders

Zhen Liu University of Minnesota 05/17/2023

Mainly based upon Peiran Li, ZL, Kun-Feng Lyu, 2301.07117,

High Energy Rules

HNL @ MuC

TAMU Mitchell

The forefront of tech & ambitions leads to discoveries.

The dream for high energy machines persists in our field

Zhen Liu 05/17/2023

High Energy Rules

HNL @ MuC

TAMU Mitchell

Zhen Liu

The forefront of tech & ambitions leads to discoveries.

The dream for high energy machines persists in our field

People's perspectives change over time, now:

- there are excitement/call for future high energy muon collider from theory, accelerator and experimental community.
- Interesting aspects of physics to be examined.

05/17/2023

Neutrino is a puzzling sector

- In SM, neutrino is massless. While the experiments have confirmed its tiny mass < 0.1 eV.
- Seesaw mechanism
 - Simple Type I
 - Inverse seesaw model
 - Linear seesaw model
- We choose to work in a simple scenario. Suppose there is a heavy neutral lepton. We can parametrize

its mass m_N and mixing angle with SM neutrino $U_\ell = sin\theta_\ell$.

$$\mathcal{L}_W = rac{gU_l}{\sqrt{2}} \left(W_\mu ar{l}_L \gamma^\mu N + h.c.
ight)$$
 $\mathcal{L}_Z = -rac{gU_l}{2\cos heta_w} Z_\mu \left(ar{
u}_L \gamma^\mu N + ar{N} \gamma^\mu ar{
u}_L
ight)$ $\mathcal{L}_H = -rac{U_l m_N}{v} h \left(ar{
u}_L N + ar{N}
u_L
ight)$

 $\mathcal{L} = \mathcal{L}_W + \mathcal{L}_Z + \mathcal{L}_H$

The physics is rich

- Direct Particle Probes:
 - Production
 - Meson decay, heavy lepton decay
 - (On-shell/Off-shell) Gauge/Higgs boson decay
 - Decay
 - Short-lived
 - Long-lived
- Cosmo and astrophysical probe: BBN, CMB, etc (see in B. Dev's talk.)
- Indirect constraints: branching ratio of SM particles decays, oscillations, etc.

S-channel production (e/ μ / τ flavored)

- 1/s suppressed;
- Flat rate until near the threshold s/2
- O(fb) cross section;

Muon Flavor

Production dominated by t-channel

$$\mu^+ + \mu^- \to N_{\mu} + \bar{\nu}_{\mu}$$

Type	Signal process	$\sigma/ U_{\mu} ^2$ (w. conj. channel) $m_N = 1 \text{ TeV}$
t-channel	$\mu^+\mu^- \longrightarrow N_\mu \bar{\nu}_\mu$	20.28 pb
VBF	$\mu^+\mu^- \longrightarrow \mu^+\mu^- N_\mu \bar{\nu}_\mu$	$\sim 1~\mathrm{pb}$
VBF	$\mu^+\mu^- \longrightarrow \bar{\nu}_\mu \nu_\mu N_\mu \bar{\nu}_\mu$	$\sim 0.1 \text{ pb}$

Decay selection $m_N > O(100)$ GeV

•
$$N_{\mu} \rightarrow W^+ + \mu^-$$

- $N_{\mu} \rightarrow Z + \nu_{\mu}$
- $N_{\mu} \rightarrow H + \nu_{\mu}$

$$N_{\mu} \rightarrow W^+ + \mu^-, \qquad W \rightarrow jj$$

$$\mu^+ + \mu^- \rightarrow N_\mu + \bar{\nu}_\mu \rightarrow jj + \mu^- + \bar{\nu}_\mu$$

The dijets almost come from onshell W/Z boson.

We focus on the final states of W and μ and reconstruct its invariant mass distribution.

Including the charge conjugation process

10TeV Background

Type	Background process	σ (w. conj. channel)	Pre-selection cut (PSC)
t-channel	$\mu^+\mu^- \longrightarrow W^+\mu^-\bar{\nu}_{\mu}$	0.214 pb	PSC
t-channel	$\mu^+\mu^- \longrightarrow Z\mu^+\mu^-$	0.464 pb	PSC & missing μ^+
VBF	$\mu^+\mu^- \longrightarrow \mu^+\mu^-W^+\mu^-\bar{\nu}_{\mu}$	0.401 pb	PSC & missing $\mu^+\mu^-$
VBF	$\mu^+\mu^- \longrightarrow \bar{\nu}_{\mu}\nu_{\mu}W^+\mu^-\bar{\nu}_{\mu}$	0.0686 pb	PSC

- Using EVA in MadGraph, especially photon PDF (EVA: Effective Vector-Boson Approximation)
- Including Z boson: Dijets can come from either W or Z boson.

Kinematics

Cutflow Analysis

 $\mu^+ + \mu^- \rightarrow N_\mu + \bar{\nu}_\mu \rightarrow jj + \mu^- + \bar{\nu}_\mu$

- Pre-selection: require single visible charged lepton
 - $|\eta(\mu)| < 2.5$ and $p_T(\mu) > 20 \text{ GeV}$
- Central hadronic W selection: require visible on-shell W boson
 - $|\eta(W)| < 2.5$ and $p_T(W) > 20 \text{ GeV}$

•	Mass window: reconstructed mass
	$m_{W\mu}$ within $m_N \pm 5\% m_N$

- Optimization cuts:
 - Customized cut on missing p_T , E(W), $p_T(W)$ for each m_N benchmark

Background process		Central W	Mass window 150/1000/5000/9000 GeV	Optimization
$\mu^+\mu^- \longrightarrow W^+\mu^-\bar{\nu}_\mu$		89.14%	0.28/2.4/3.2/1.6%	0.28/0.42/1.1/0.80%
	$\mu^+\mu^- \longrightarrow Z\mu^+\mu^-$	1.60%	0/0.085/0.039/0.016%	0/0.051/0/0%
$\mu^{+}\mu^{-} \longrightarrow \mu^{+}\mu^{-}W^{+}\mu^{-}\bar{\nu}_{\mu}$		43.39%	1.6/0.75/0.011/0%	0/0.73/0.0083/0%
re	$\mu^+\mu^- \longrightarrow N_\mu \bar{\nu}_\mu$	Central W	Mass window	Optimization
	$m_N = 150 \text{ GeV}$	55.04%	55.04%	55.04%
	$m_N = 1000 \text{ GeV}$	54.75%	54.75%	51.63%
	$m_N = 5000 \text{ GeV}$	99.93%	99.93%	97.46%
	$m_N = 9000 \text{ GeV}$	99.99%	99.99%	98.27%

Projected sensitivity

Sensitivity to e and τ flavor is moderate

Muon Collider features the strong direct probe of the μ flavored HNL

10 TeV muon collider can probe the $\left|U_{\mu}\right|^2$ to a few 10⁻⁷ for TeV scale HNLs.

The VBF background increases for high energy muon colliders and renders the 3 TeV muon collider competitive in sub TeV scale.

Projections w. others

Focusing on the muon-flavored case:

LHC and EWPD probe $O(10^{-3})$

Muon Collider has unique roles in probing the parameter space (thanks to the t-channel enhancement).

BDT-based projections

TAMU Mitchell

T.H. Kwok, L. Li, T. Liu and A. Rock, arXiv:2301.05177 K. Mekała, J. Reuter and A.F. Zarnecki, <u>arXiv:2301.02602</u>

05/17/2023

15

A few other aspects

Same-sign muon collider

 $\mu^{+}\mu^{+}$ collider, KEK muon program motivated, see, Kitano et al, 2304.14020, 2210.11083, 2201.06664

Same-sign muon collider

 $\mu^{+}\mu^{+}$ collider, KEK muon program motivated, see, Kitano et al, 2304.14020, 2210.11083, 2201.06664

Same-sign muon collider

 $\mu^{+}\mu^{+}$ collider, KEK muon program motivated, see, Kitano et al, 2304.14020, 2210.11083, 2201.06664

Jiang, Yang, Qian, Ban, Li, You, Li, 2304.04483

displaced lepton for HNL

Digging hard and use the control region studies to propose new searches on sterile neutrinos.

ZL, J. Liu, L.-T. Wang, X. Wang, 1904.01020

HNL @ MuC TAMU Mitchell

Zhen Liu

← Single displaced leptons not from the same vertex; focused on e-mu state

Current LHC

Further motivating Inverse Seesaw

$$L_{IR} \ni -m_N \overline{N}N - (\lambda \overline{L}\widetilde{H}N_R + \mu N_L^2 + h.c.)$$

$$m_{\nu} pprox \mu \left(\frac{\lambda v_{EW}}{M_N} \right)^2$$

Further motivating Inverse Seesaw

Arkani-Hamed, Grossman, hep-ph/9806223, Okui, hep-ph/0405083, Grossman, Tsai, o811.0871, Grossman, Robinson, Tsai, 1009.2781, McDonald, 1010.2659, Robinson, Tsai, 1205.0569, 1404.7118...

HNL @ MuC

TAMU Mitchell

Zhen Liu

05/17/2023

Further motivating Inverse Seesaw

Arkani-Hamed, Grossman, hep-ph/9806223, Okui, hep-ph/0405083, Grossman, Tsai, o811.0871, Grossman, Robinson, Tsai, 1009.2781, McDonald, 1010.2659, Robinson, Tsai, 1205.0569, 1404.7118...

HNL @ MuC

TAMU Mitchell

Zhen Liu

05/17/2023

Conclusion

• Muon Collider is a good platform to probe the TeV scale HNL.

We can open a new region in the parameter space.

- For the muon flavor case, we can probe the $\left|U_{\mu}\right|^2$ down to 10^{-7} .
- There are t-channel singularity cases one should be careful to deal with.
- Many more interesting pheno in the HNL sector.

HNL @ MuC TAMU Mitchell Zhen Liu 05/17/2023

23

