Dark Sector Signals at Neutrino Experiments

Joshua Berger Colorado State University

How Do We Get Dark Stuff?

Why Neutrino Experiments?

Short Baseline:

✓ Intense Proton Beam!
⇒ Produce rare events

Long Baseline:

√ 100s kton-year exposure!

⇒ Largest DD experiments

Inelastic DM at Short Baseline

Batell, **JB**, Darmé, Frugiuele: PRD104 (2021) 7, 075026

Short Baseline Opportunities

- ► Long-lived Portal Particles
 - ▶ Higgs portal: $S \leftrightarrow h$

Batell, **JB**, Ismail: PRD100, 115039 (2019)

MicroBooNE: PRL127, 151803 (2021)

► Heavy neutral leptons: $N \leftrightarrow \nu$

Ballett, Pascoli, Ross-Lonergan: JHEP 04 (2017) 102 MicroBooNE: PRD106, 092006 (2022)

► Heavy axions: $a \leftrightarrow \pi^0, \eta$

Aloni, Soreg, Williams: PRL123, 031803 (2019)

ArgoNeuT: arXiv:2207.08448

▶ Dark Photons: $\gamma' \leftrightarrow \gamma$

Berryman et. al.: JHEP 02 (2020) 174

Light dark matter

deNiverville, Chen, Pospelov, Ritz: PRD95, 035006 (2017)

Inelastic dark matter

Batell, JB, Darmé, Frugiuele: PRD104 (2021) 7, 075026

Millicharged particles

Magill, Plestid, Pospelov, Tsai: PRL122, 071801 (2019)

The SBN Experiments

3 Liquid Argon TPC detectors:

► Can reconstruct full 3D events

Two beamlines:

- ▶ BNB: 8 GeV, on-axis
- ► NuMI: 120 GeV, off-axis
- ▶ Possible run using BNB absorber (not illustrated)?

Data-taking ongoing now

Batell, JB, Ismail: PRD 100 (2019) 11, 115039

Example: Inelastic Dark Matter

A- \sim \sim \sim ϵ

▶ Broken $U(1) \rightarrow \text{massive } V$ with vector portal

▶ Also splits charged fermions into separate Majorana states

Overview of Signals

- ▶ Both direct and decay production mechanisms
- ► Three possible signals in detector:
 - ▶ Up-scattering $\chi_1 e^- \rightarrow \chi_2 e^-$ at short lifetimes
 - ▶ Decay $\chi_2 \rightarrow e^+ e^- \chi_1$ at long lifetimes
 - ▶ Up- and down-scattering at very long lifetimes

$$\gamma$$
 v $au pprox 10^3$ m $\left(rac{\Delta_\chi}{0.1}
ight)^{-5}$ $\Delta_\chi = rac{M_{\chi_2} - M_{\chi_1}}{M_{\chi_1}}$

Simulation of Signal

Signal production using modified version of BdNMC

- Meson distributions from empirical Sanford-Wang or Geant4 as available
- ► Proton bremsstrahlung from BdNMC including interference with vector meson resonances
- ▶ DIS using MadDump

de Niverville et. al.: Phys.Rev.D 95 (2017) 3, 035006 Buonocuore et. al.: JHEP 05 (2019) 028

Large Splitting Region

Some space accessible at large splitting via up-scatter

Small Splitting Background

Backgrounds from neutrino beam and cosmic rays

 $\chi_2 \rightarrow \chi_1 \, e^+ \, e^-$ background

Missed neutron and Mismatched timing and Misreconstructed photons and

"Correct" angle/mass

Background Reduction

Background γ give $e^+ + e^-$ with small opening angle

Arbitrarily small angle not reconstructable anyway

▶ Place angular cut of 5°

Small Splitting Region

Significant improvements from ICARUS and SBND!

Includes some parts of thermal relic parameter space

Possible "Off-Target" Run

MiniBooNE steered BNB off target and into absorber Can reduce distance DM needs to travel and bkg

Mesogenesis DM at Long Baseline

JB, Elor: 2301.04165

Matter Anti-Matter Asymmetry

There's more matter than anti-matter:

$$\frac{n_{\mathcal{B}}-n_{\overline{\mathcal{B}}}}{s}\sim8\times10^{-11}$$

How? Sakharov says:

- 1. *C* and *CP* violation: *B*-meson oscillation
- Baryon-number violation:
 Store anti-baryon number in dark sector state
- Out-of-equilibrium:Late decay of a heavy scalar

Model Structure

Field	<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{B}}$	Z_2	
Y	3	1	-1/3	2/3	1	
$\psi_{\mathcal{B}}$	1	1	0	-1	1	
$\phi_{\mathcal{B}}$	1	1	0	-1	-1	Two
ξ	1	1	0	0	-1) I WC

>Two DM particles

Integrate out TeV-scale Y to get EFT:

$$\mathcal{L} = \frac{y_{u_a d_b} y_{\psi d_c}}{M_{\sim}^2} \epsilon_{ijk} \left(u_{R,a}^i d_{R,b}^j \right) \left(\psi_B d_{R,c}^k \right) - y_d \bar{\psi}_B \phi_B \xi + \text{h.c.}$$

B⁰ Mesogenesis Mechanism

Elor, Escudero, Nelson: PRD 99, 035031 (2019)

Asymmetry tied to observables:

- ▶ Need sufficient *B* CP violation
- ▶ Need sufficient branching to $\psi_{\mathcal{B}}$

Other Observables

Asymmetry given by:

$$Y_{\mathcal{B}} = \frac{n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}}{s} = 8.7 \times 10^{-11} \frac{\text{Br}(B \to \psi_{\mathcal{B}} \, \mathcal{B}_{\text{SM}})}{10^{-2}} \sum_{q=s,d} \alpha_q \, \frac{A_{SL}^q}{10^{-4}}$$

- ▶ A_{SL}^q : CP asymmetry in $B_q \to \ell^{\mp} + X$ Constrained by LHC, B factories
- ► Exotic *B* decays at *B* factories
- ▶ Indirect effects on B^0 oscillation/CP violation e.g. $\phi_{1,2}^{d,s}$, $\Delta M_{d,s}$, $\Delta \Gamma_{d,s}$
- ▶ Direct production of Y @ LHC

Can We Detect Dark Matter?

Induced Nucleon Decay!

Modeling IND

▶ Amplitude written in terms of $N \to \pi, K$ form factors

$$\mathcal{A} \propto W_0(q^2) - i \frac{\phi}{m_N} W_1(q^2)$$

lacksquare Calculated on the lattice at $q^2=0,\ 1\ {
m GeV}^2$

Yoo et. al.: PRD105, 074501 (2022)

▶ 3 choices of *udd* operator

$$(u_R d_R) d_R, \quad (u_R d_R) s_R, \quad (u_R s_R) d_R$$

Parameter Space: π Channel

Can We Simulate?

- ► Hacked together simulation in GENIE v3.06 Based on existing nucleon decay module
- Event generation of model points by request https://github.com/jberger7/Generator-IND
- ▶ Why GENIE?
 - ightharpoonup Standard tool in ν experiment
 - Includes important nuclear effects
 - Get full kinetic energy distributions!
- ▶ Allowed meson FS: π , K, D^0

Kinematic Distributions: π Channel

Kinematic Distributions: K Channel

Event Counts

Benchmark Bkg.		$y_d(C_{ud,d}/C_{ud,d}^{\max})$	Bkg.	$y_d(C_{ud,d}/C_{ud,d}^{\max})$	
and Meson	DUNE	DUNE sens.	Hyper-K	Hyper-K sens.	
$1 \pi^+$	118	0.019	9452	0.020	
2 π+	14	0.007	2323	0.0090	
3 p π^+	584	0.021	13835	0.015	
4p π^+	600	0.040	15653	0.029	
1 K ⁺	0	0.0016	0	0.00061	
2 K ⁺	0	0.00038	0	0.00014	
3k <i>K</i> ⁺	0	0.00063	0	0.00023	
4k <i>K</i> ⁺	0	0.0010	0	0.00038	

Min. solar model, 10 years running, $m_{\psi_{\mathcal{B}}} = 4 \text{ GeV}$

Outlook

Current Status

		Produ	ction			Dar	k —	→ Sta	ndard		
Process	Brem.	Direct	Promp	t LL	Flux	Decay	/ e	N EI	N Inel.	Det.	Reco.
MadDump		✓	✓		✓		✓		✓		
BdNMC	✓	\checkmark	\checkmark		✓	✓	✓	✓	\checkmark		
GENIE							✓	\checkmark	\checkmark		
Geant4			✓	✓	✓	✓				✓	
ACHILLES						✓	✓	\checkmark	✓		
FORESEE	✓	✓	✓	✓	1	√	✓	✓			

Batell, **JB**, et. al. (Snowmass): 2207.06898

Priority Challenges

- Need to simulate: beam production, propagation, detector interaction
- Complex detection topologies possible
- Experimental pipeline is ROOT-based
- Nuclear modeling uncertainty propagation
- Large full sim. event size
- No general reconstruction tools or parameterized efficiency/resolution for fast sim.

Some Take Aways

- Neutrino experiments (both near and far) are sensitive to a diverse set of dark sector models
- Event generation is challenging and is currently done by hand (or not at all)
- ➤ A comprehensive pipeline is needed if we want a broad-based program at some of the flagship particle experiments of the next decade

Backup

More on e^+e^- Background

Signal:

Single γ Bkg:

Two γ or $e + \gamma$ Bkg:

More on e^+e^- Background

Signal:

Single γ Bkg:

Run photons through Geant4

Two γ or $e + \gamma$ Bkg:

Fixed kinetic energy

▶ In nucleon rest frame: Fixed meson K.E.

$$E_{\phi_{\mathcal{B}}N
ightarrow\xi\mathcal{M}}^{\mathcal{M},\,\mathsf{kin}} = rac{m_{\mathcal{M}}^2 - m_{\xi}^2 + \left(m_N + m_{\phi_B}
ight)^2}{2\left(m_N + m_{\phi_B}
ight)} - m_{\mathcal{M}}$$

Smeared by nucleon motion:

$$p_{\mathcal{M}} \lesssim p_{F} \approx 240 \; \mathsf{MeV} \quad (\mathsf{Argon})$$

- ► Hydrogen in water: no smearing!
- ► Ideally: simulate this process!

Parameter Space

$$\checkmark \ B o \mathcal{B}_{\mathsf{SM}} \, \psi_{\mathcal{B}} \colon \qquad m_{\psi_{\mathcal{B}}} < m_{B} - m_{p} \simeq 4.34 \, \mathsf{GeV}$$
 $\checkmark \ \psi_{\mathcal{B}} o \xi + \phi_{\mathcal{B}} \colon \qquad m_{\psi_{\mathcal{B}}} > m_{\xi} + m_{\phi_{\mathcal{B}}}$
 $\times \ \phi_{\mathcal{B}} + \xi o \mathcal{B}_{\mathsf{SM}} \colon \qquad |m_{\phi_{\mathcal{B}}} - m_{\xi}| < m_{p} + m_{e} \simeq 938.8 \, \, \mathsf{MeV}$
 $\times \ \mathcal{B}_{\mathsf{SM}} o \phi_{\mathcal{B}}, \xi \colon \qquad m_{\phi_{\mathcal{B}}}, m_{\xi} < m_{p} - m_{e}$
 $\checkmark \ \phi_{\mathcal{B}} + \overline{\phi}_{\mathcal{B}} o \xi + \xi \colon \qquad m_{\phi_{\mathcal{B}}} > m_{\xi}$

Benchmarks

Benchmark	$m_{\phi_{\mathcal{B}}}$ [GeV]	m_{ξ} [GeV]
1	0.95	0.92
2	2.45	1.53
3р	2.38	1.6
3k	2.2	1.8
4p	0.95	0.17
4k	0.95	0.55

Parameter Space: K Channel

Backgrounds: Atmospheric ν

- Trickiest background: atmo ν NC with $\nu + N \rightarrow \nu + n + \pi$
- ▶ Also: CC, p FS with missed particles
- ightharpoonup Bkg: events with only π above threshold
- ▶ K background extremely tiny
- Model ν scattering in GENIE using Bartol fluxes at Soudan (DUNE) and Kamioka (Super-K/Hyper-K)

DUNE Thresholds

- ► Charged particles: cross 10 wires
- ▶ Unstable particles: energetic decay products

Water Cherenkov Thresholds

- ► Charged & heavy: require $\beta > 1/n$ for Cherenkov radiation
- e & γ: 3.5 MeV

Super-Kamiokande: PRD94, 052010 (2016)

- Unstable particles: energetic decay products
- μ^{\pm} vs. π^{\pm} : challenging to distinguish For Cherenkov: assume no distinction

A bit crude... but need experimental input for more!