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How Do We Get Dark Stuff?

Fermilab Beams

Neutrino Detectors

Astrophysical Sources
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Why Neutrino Experiments?

Short Baseline: Long Baseline:

✓ Intense Proton Beam!

=⇒ Produce rare events

✓ 100s kton-year exposure!

=⇒ Largest DD experiments
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Inelastic DM at Short Baseline

Batell, JB, Darmé, Frugiuele: PRD104 (2021) 7, 075026
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Short Baseline Opportunities

▶ Long-lived Portal Particles

▶ Higgs portal: S ↔ h

▶ Heavy neutral leptons: N ↔ ν

▶ Heavy axions: a ↔ π0, η

▶ Dark Photons: γ′ ↔ γ

▶ Light dark matter

▶ Inelastic dark matter

▶ Millicharged particles

Batell, JB, Ismail: PRD100, 115039 (2019)
MicroBooNE: PRL127, 151803 (2021)

Ballett, Pascoli, Ross-Lonergan: JHEP 04 (2017) 102
MicroBooNE: PRD106, 092006 (2022)

Aloni, Soreq, Williams: PRL123, 031803 (2019)
ArgoNeuT: arXiv:2207.08448

Berryman et. al.: JHEP 02 (2020) 174

deNiverville, Chen, Pospelov, Ritz: PRD95, 035006 (2017)

Batell, JB, Darmé, Frugiuele: PRD104 (2021) 7, 075026

Magill, Plestid, Pospelov, Tsai: PRL122, 071801 (2019)
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The SBN Experiments

3 Liquid Argon TPC detectors:

▶ Can reconstruct full 3D events

Two beamlines:

▶ BNB: 8 GeV, on-axis

▶ NuMI: 120 GeV, off-axis

▶ Possible run using BNB

absorber (not illustrated)?

Data-taking ongoing now

Batell, JB, Ismail: PRD 100 (2019) 11, 115039
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Example: Inelastic Dark Matter

A V ∝ ϵ

▶ Broken U(1) → massive V with vector portal

V

χ

χ

V

χ2

χ1

= i gD γ
µ

▶ Also splits charged fermions into separate Majorana states
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Overview of Signals

▶ Both direct and decay production mechanisms

▶ Three possible signals in detector:

▶ Up-scattering χ1 e
− → χ2 e

− at short lifetimes

▶ Decay χ2 → e+ e− χ1 at long lifetimes

▶ Up- and down-scattering at very long lifetimes

γ v τ ≈ 103 m

(
∆χ

0.1

)−5

∆χ =
Mχ2 −Mχ1

Mχ1
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Simulation of Signal

Signal production using modified version of BdNMC

▶ Meson distributions from empirical Sanford-Wang or

Geant4 as available

▶ Proton bremsstrahlung from BdNMC including interference

with vector meson resonances

▶ DIS using MadDump

de Niverville et. al.: Phys.Rev.D 95 (2017) 3, 035006

Buonocuore et. al.: JHEP 05 (2019) 028
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Large Splitting Region

Some space accessible at large splitting via up-scatter
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Small Splitting Background

Backgrounds from neutrino beam and cosmic rays

ν

ν

n

n (missed)

π0

Z
γ (“e”)

γ (“e”)

χ2 → χ1 e
+ e− background

Missed neutron

and

Mismatched timing

and

Misreconstructed photons

and

“Correct” angle/mass
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Background Reduction

Background γ give e+ + e− with small opening angle
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Arbitrarily small angle not

reconstructable anyway

▶ Place angular cut of 5◦
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Small Splitting Region

Significant improvements from ICARUS and SBND!

Includes some parts of thermal relic parameter space
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Possible “Off-Target” Run

MiniBooNE steered BNB off target and into absorber

Can reduce distance DM needs to travel and bkg
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Mesogenesis DM at Long Baseline

JB, Elor: 2301.04165
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Matter Anti-Matter Asymmetry

There’s more matter than anti-matter:
nB − nB

s
∼ 8× 10−11

How? Sakharov says:

1. C and CP violation:

B-meson oscillation

2. Baryon-number violation:

Store anti-baryon number in dark sector state

3. Out-of-equilibrium:

Late decay of a heavy scalar

Elor, Escudero, Nelson: PRD 99, 035031 (2019)
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Model Structure

Field SU(3)C SU(2)L U(1)Y U(1)B Z2

Y 3 1 −1/3 2/3 1

ψB 1 1 0 −1 1

ϕB 1 1 0 −1 −1

ξ 1 1 0 0 −1
Two DM particles

Integrate out TeV-scale Y to get EFT:

L =
yuadb yψdc

M2
Y

ϵijk

(
ui
R,ad

j
R,b

) (
ψBd

k
R,c

)
− yd ψ̄BϕBξ + h.c.
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B0 Mesogenesis Mechanism

Elor, Escudero, Nelson: PRD 99, 035031 (2019)

Asymmetry tied to observables:

▶ Need sufficient B CP violation

▶ Need sufficient branching to ψB
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Other Observables

Asymmetry given by:

YB =
nB − nB

s
= 8.7× 10−11 Br(B → ψB BSM)

10−2

∑
q=s,d

αq
Aq
SL

10−4

▶ Aq
SL: CP asymmetry in

(−)

B q → ℓ∓ + X

Constrained by LHC, B factories

▶ Exotic B decays at B factories

▶ Indirect effects on B0 oscillation/CP violation

e.g. ϕd ,s
1,2 , ∆Md ,s , ∆Γd ,s

▶ Direct production of Y @ LHC
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Can We Detect Dark Matter?

Induced Nucleon Decay!

See also: Huang, Zhao: JHEP 02(2014)077
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Modeling IND

▶ Amplitude written in terms of N → π,K form factors

A ∝ W0(q
2)− i

/q

mN
W1(q

2)

▶ Calculated on the lattice at q2 = 0, 1 GeV2

▶ 3 choices of udd operator

(uR dR) dR , (uR dR) sR , (uR sR) dR

Yoo et. al.: PRD105, 074501 (2022)
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Parameter Space: π Channel

��� ��� ��� ��� ���

���

���

���

���

��� ��� ��� ��� ���

���

���

���

���

22Joshua Berger



Can We Simulate?

▶ Hacked together simulation in GENIE v3.06

Based on existing nucleon decay module

▶ Event generation of model points by request

https://github.com/jberger7/Generator-IND

▶ Why GENIE?

▶ Standard tool in ν experiment

▶ Includes important nuclear effects

▶ Get full kinetic energy distributions!

▶ Allowed meson FS: π, K , D0
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Kinematic Distributions: π Channel
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Kinematic Distributions: K Channel
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Event Counts

Benchmark Bkg. yd(Cud ,d/C
max
ud ,d ) Bkg. yd(Cud ,d/C

max
ud ,d )

and Meson DUNE DUNE sens. Hyper-K Hyper-K sens.

1 π+ 118 0.019 9452 0.020

2 π+ 14 0.007 2323 0.0090

3p π+ 584 0.021 13835 0.015

4p π+ 600 0.040 15653 0.029

1 K+ 0 0.0016 0 0.00061

2 K+ 0 0.00038 0 0.00014

3k K+ 0 0.00063 0 0.00023

4k K+ 0 0.0010 0 0.00038

Min. solar model, 10 years running, mψB = 4 GeV
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Outlook
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Current Status

Production Dark → Standard

Process Brem.DirectPromptLL Flux Decay e N El.N Inel. Det. Reco.

MadDump ✓ ✓ ✓ ✓ ✓

BdNMC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GENIE ✓ ✓ ✓

Geant4 ✓ ✓ ✓ ✓ ✓

ACHILLES ✓ ✓ ✓ ✓

FORESEE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Batell, JB, et. al. (Snowmass): 2207.06898
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Priority Challenges

▶ Need to simulate: beam production, propagation,

detector interaction

▶ Complex detection topologies possible

▶ Experimental pipeline is ROOT-based

▶ Nuclear modeling uncertainty propagation

▶ Large full sim. event size

▶ No general reconstruction tools or parameterized

efficiency/resolution for fast sim.
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Some Take Aways

▶ Neutrino experiments (both near and far) are sensitive to

a diverse set of dark sector models

▶ Event generation is challenging and is currently done by

hand (or not at all)

▶ A comprehensive pipeline is needed if we want a

broad-based program at some of the flagship particle

experiments of the next decade
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Backup
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More on e+e− Background

Signal:

Single γ Bkg:

Two γ or e + γ Bkg:
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More on e+e− Background

Signal:

Single γ Bkg:

Two γ or e + γ Bkg:

Run photons through Geant4
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Fixed kinetic energy

▶ In nucleon rest frame: Fixed meson K.E.

EM, kin
ϕBN→ξM =

m2
M −m2

ξ + (mN +mϕB )
2

2(mN +mϕB )
−mM

▶ Smeared by nucleon motion:

pM ≲ pF ≈ 240 MeV (Argon)

▶ Hydrogen in water: no smearing!

▶ Ideally: simulate this process!
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Parameter Space

✓ B → BSM ψB: mψB < mB −mp ≃ 4.34GeV

✓ ψB → ξ + ϕB: mψB > mξ +mϕB

× ϕB + ξ → BSM: |mϕB −mξ| < mp +me ≃ 938.8 MeV

× BSM → ϕB, ξ: mϕB ,mξ < mp −me

✓ ϕB + ϕB → ξ + ξ: mϕB > mξ
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Benchmarks

Benchmark mϕB [GeV] mξ [GeV]

1 0.95 0.92

2 2.45 1.53

3p 2.38 1.6

3k 2.2 1.8

4p 0.95 0.17

4k 0.95 0.55
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Parameter Space: K Channel
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Backgrounds: Atmospheric ν

▶ Trickiest background: atmo ν NC

with ν + N → ν + n + π

▶ Also: CC, p FS with missed particles

▶ Bkg: events with only π above threshold

▶ K background extremely tiny

▶ Model ν scattering in GENIE using Bartol fluxes at

Soudan (DUNE) and Kamioka (Super-K/Hyper-K)

Barr et. al.: PRD70:023006,2004
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DUNE Thresholds

4 mm

▶ Charged particles: cross 10 wires

▶ Unstable particles: energetic decay products
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Water Cherenkov Thresholds

▶ Charged & heavy: require β > 1/n for Cherenkov

radiation

▶ e & γ: 3.5 MeV
Super-Kamiokande: PRD94, 052010 (2016)

▶ Unstable particles: energetic decay products

▶ µ± vs. π±: challenging to distinguish
For Cherenkov: assume no distinction

A bit crude... but need experimental input for more!
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