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First event from O4 (kind of)

2

• Still in ER15 

• S230518h: Likely NSBH 

• FAR: 1 in 98 yr

https://gracedb.ligo.org/superevents/S230518h/view/

https://gracedb.ligo.org/superevents/S230518h/view/
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• Energy of 200 Hz GWs ~ peV

• Energy scale of 1 km ~ 200 peV

• Measure finite-size effects: response to 
spin and tides, hence equation of state

• ALPs: can produce “gravitational atoms” 

• Finite-size effects, monochromatic 
emission, population effects

4

Dark matter and compact binaries
4
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FIG. 2. Expected distribution of intrinsic (top) and measured (bottom) spins and masses of merging BHs in the absence
(left) and the presence (right) of an axion of mass 6 ⇥ 10�13 eV, normalized to 1000 events detected at aLIGO. We assume
�M/M ⇠ 10% measurement error in the mass and �a⇤ ⇠ 0.25 error in the spin [30, 31]. We have assumed that all BBHs formed
at a distance such that they take 1010 years to merge. The theoretical curves shown are boundaries of the regions where SR
had at most 1010 years to spin down the BHs, and the e↵ect of the companion BH does not significantly a↵ect the SR rate.

annihilations at distance d is [11]
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Correlating these continuous wave emission properties

with the spin and mass of the new BH will be a cross-
check on SR predictions.

The reach of aLIGO to an optimal annihilation sig-
nal can be as large as 500Mpc for an axion of mass
10�13 eV. The reach of aLIGO at design sensitivity for
a typical event is close to 30Mpc. In particular, the final
BH of GW150914 with spin of ⇠ 0.7 would have had to
be within 10 Mpc in order for axion annihilations to be
observable.

In Fig. 4, we estimate the number of BBH merger prod-
ucts emitting observable monochromatic GWs per year,
as a function of the axion mass. The expected number
of events is very sensitive to the spin and mass of the
final BH; a linearly-increasing BH spin distribution in-
creases the expected event rates by a factor of ⇠ 2 over
a flat spin distribution. We estimate the spin of the final
BH with [36], assuming equal, aligned initial spins and
equal masses. If SR spun down the initial BHs before
the merger, the final BH will generally not spin quickly
enough for SR to produce an observable signal; for exam-
ple, we estimate 10�3events/yr. at µa = 2 ⇥ 10�13 eV.
Only merging BHs for which SR was inhibited can give
rise to a signal observable at aLIGO with an apprecia-
ble rate, and Fig. 4 assumes this is the case for an O(1)
fraction of events. There is therefore complementarity
between the statistical and direct searches — either SR
spins down enough of these to give a statistical signal, or
an appreciable fraction of post-merger BHs are spinning
fast enough to give direct signals (assuming enough BHs
are born with high spin).

Fig. 4 also shows our expectations for BH-neutron star

Arvanitaki +, arXiv:1604.03958



• Energy of 200 Hz GWs ~ peV

• Energy scale of 1 km ~ 200 peV

• Measure finite-size effects: response to 
spin and tides, hence equation of state

• ALPs: can produce “gravitational atoms” 

• Finite-size effects, monochromatic 
emission, population effects

• Can detect entirely new km-scale 
compact objects
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Figure 11: Same as Fig. 10, except expressed in terms of BSM physics parameter space. (left)

Parameters of mini boson stars (BS), which couple minimally through gravity, to which our rate

constraints apply. We use kBS = 10 as the representative value for a relativistic mini boson star.

In the Newtonian non-relativistic limit, kBS ! 1149 and the vertical axis would scale mildly by a

factor of k1/10
BS

. The physically feasible regime lies in ↵BS . 0.633. (right) The parameter space

constrained for a minimally-coupled scalar gravitational atom. Here we show the constraints

applied to the |n`mi = |433i eigenstate; for other `�eigenstates the vertical axis would change

slightly by k�1/8
c,` ⇠ O(1) and the range of ↵ probed would be adjusted according to the ↵/` . 0.4

physical region (see main text for more discussion).

binary system (red region of Fig. 10). In Fig. 11 we use kBS = 10 as the representative value

for the relativistic case, though the dependence on MBSµ / k1/10
BS

is rather weak. We see that,

depending on the boson star mass, our constraints apply to ultralight bosons with masses over

the range 10�12
� 10�11 eV. This range is primarily determined by the compactness of the star,

which scales inversely with ↵BS, and the finite frequency ranges at which ground-based detectors

are capable of probing; cf. (1.3).

Superradiant Clouds/ Gravitational Atoms

Another candidate for compact objects that arise in many BSM scenarios is the gravitational

atom [134–138]. The gravitational atom is a bosonic cloud configuration which would grow spon-

taneously around a rotating black hole through a process called black hole superradiance [139–

142]. This process is triggered if i) the Compton wavelength of the boson is comparable to

the size of the black hole, and ii) the initial black hole’s spin is su�ciently high to satisfy the

superradiance inequality [139–142]. These bound states are called gravitational atoms because

they resemble the proton-electron structure of the hydrogen atom. Crucially, unlike boson stars,

they do not have regular boundary conditions at the centre but are instead characterized by the

purely-ingoing boundary condition at the black hole horizon.

Although black hole superradiance would be triggered by both minimally-coupled [134–138]

and self-interacting [143–146] boson fields, we shall focus on the minimally-coupled case as this

33
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• Energy of 200 Hz GWs ~ peV

• Energy scale of 1 km ~ 200 peV

• Measure finite-size effects: response to 
spin and tides, hence equation of state

• ALPs: can produce “gravitational atoms” 

• Finite-size effects, monochromatic 
emission, population effects

• Can detect entirely new km-scale 
compact objects

• …or focus on tests of gravity
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Waves around black holes
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Quasinormal modes of black holes and black branes 39

of a/M the rotation-induced splitting of the modes is roughly proportional to m, as
physical intuition would suggest.

The weakly damped modes of Kerr black holes In the right panel of Figure 8 we show
the first eight gravitational QNM frequencies with m = 2 (solid lines) and m = −2
(dashed lines). A general feature is that almost all modes with m > 0 cluster at the
critical frequency for superradiance, 2Mω = m, as a/M → 1. This fact was first
observed by Detweiler [262], and a thorough examination of the extremal limit can be
found in Refs. [263, 264, 265]. The mode with n = 6 (marked by an arrow) shows a
peculiar deviation from the general trend, illustrating the fact that some positive-m
modes do not tend to this critical frequency in the extremal limit.
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Figure 9. Frequencies and quality factors for the fundamental modes with
l = 2, 3, 4 and different values of m. Solid lines refer to m = l, .., l (from
top to bottom), the dotted line to m = 0, and dashed lines refer to m = −1, ..,−l
(from top to bottom). Quality factors for the higher overtones are lower than the
ones we display here.

For gravitational wave detection we are mostly interested in the frequency and
quality factor of the dominant modes, which determine whether the mode lies in the
sensitive frequency band of a given detector and the number of observable cycles.
Figure 9 shows these quantities for QNMs with l < 5. Improving on previous results
[9, 266], Ref. [10] presented accurate fits for the first three overtones with l = 2, 3, 4
and all values of m, matching the numerical results to within 5% or better over a range
of a/M ∈ [0, 0.99] (see Tables VIII-X in Ref. [10] and the numerical data available
online [47]). For instance, defining b̂ ≡ 1 − a/M , the frequency ωlm = ωR and quality
factor Qlm ≡ ωR/(2ωI) of the fundamental l = m = 2 and l = 2 , m = 0 modes are

Mω22 % 1.5251− 1.1568 b̂0.1292 , Q22 % 0.700 + 1.4187 b̂0.4990 , (96)

Mω20 % 0.4437− 0.0739 b̂0.3350 , Q20 % 4.000 − 1.9550 b̂0.1420 , (97)

The highly damped modes The intermediate- and large-damping regime of the QNM
spectrum of Kerr BHs is even more puzzling than the RN spectrum. The main
technical difficulty in pushing the calculation to higher damping is that Leaver’s
approach requires the simultaneous solution of the radial and angular continued

Q = !⌧/2
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factor Qlm ≡ ωR/(2ωI) of the fundamental l = m = 2 and l = 2 , m = 0 modes are

Mω22 % 1.5251− 1.1568 b̂0.1292 , Q22 % 0.700 + 1.4187 b̂0.4990 , (96)

Mω20 % 0.4437− 0.0739 b̂0.3350 , Q20 % 4.000 − 1.9550 b̂0.1420 , (97)

The highly damped modes The intermediate- and large-damping regime of the QNM
spectrum of Kerr BHs is even more puzzling than the RN spectrum. The main
technical difficulty in pushing the calculation to higher damping is that Leaver’s
approach requires the simultaneous solution of the radial and angular continued
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• Spectra determined by mass and spin 
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ringdown 
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a dimensionless spin magnitude of 0.63 ± 0.16, with 68%
credibility. This is the best constraint on the remnant
mass and spin obtained in this work. This measurement
agrees with the one obtained from the fundamental mode
alone beginning 3ms after the waveform peak amplitude
(Figures 1 and 3) [34]. It also agrees with the mass and
spin inferred from the full waveform using fits to numerical
relativity. The fractional di↵erence between the best-
measured combination of mass and spin1 at the peak with
one overtone and the same combination solely with the
fundamental 3ms after the peak is (0 ± 10)%. This is
evidence at the ⇠10% level that GW150914 did result in
a Kerr black hole as predicted by general relativity, and
that the postmerger signal is in agreement with the no-
hair theorem. Similarly, the fractional di↵erence between
the best-measured combination of mass and spin at the
peak with one overtone and the same combination using
the full waveform is (7 ± 7)%.

Method. Each quasinormal mode has a frequency !`mn

and a damping time ⌧`mn, where n is the ‘overtone’ index
and (`,m) are indices of spin-weighted angular harmon-
ics that describe the angular dependence of the mode.
We focus on the fundamental and overtones of the dom-
inant ` = m = 2 spin-weighted spherical harmonic of
the strain.2 For ease of notation, we generally drop the
` and m indices, retaining only the overtone index n.
The ` = m = 2 mode of the parameterized ringdown
strain (h = h+ � ih⇥) can be written as a sum of damped
sinusoids [1–4],

hN
22(t) =

NX

n=0

An exp [�i (!nt+ �n) � t/⌧n] , (1)

for times t greater than some start time t0, where �t =
t � t0. The overtone index n orders the di↵erent modes
by decreasing damping time ⌧n, so that n = 0 denotes
the longest-lived mode. N is the index of the highest
overtone included in the model, which in this work will
be N  2. Importantly, higher n does not imply a higher
frequency !n; rather, the opposite is generally true. All
frequencies and damping times are implicit functions of
the remnant mass and spin magnitude (Mf , �f ), and
can be computed from perturbation theory [39–41]. The
amplitudes An and phases �n encode the degree to which

1 That is, the measurement of the linear combination of Mf and
�f corresponding to the principal component of the posterior
distribution with the smallest associated eigenvalue.

2 The spin-weighted spheroidal harmonics form the natural basis
that arises in perturbation theory [35–37]. These functions are
equivalent to the spin-weighted spherical harmonics in the limit
of zero spin. For �f > 0, the spin-weighted spheroidal harmonics
can be written as superpositions of the spin-weighted spherical
harmonics of the same m, but di↵erent ` [37, 38]. The e↵ect of
this mixing on the dominant ` = m = 2 spin-weighted spherical
mode is negligible for a GW150914-like system [31].

50 60 70 80 90 100
Mf [M�]

0.0

0.2

0.4

0.6

0.8

1.0

�
f

�t0 = 0 ms

N = 0

N = 1

N = 2

IMRIMR

FIG. 1. Remnant parameters inferred with di↵erent number
of overtones, using data starting at peak strain amplitude.
Contours represent 90%-credible regions on the remnant mass
(Mf ) and dimensionless spin magnitude (�f ), obtained from
the Bayesian analysis of GW150914. The inference model is
that of Eq. (1), with di↵erent number of overtones N : 0 (solid
blue), 1 (solid yellow), 2 (dashed purple). In all cases, the
analysis uses data starting at peak strain (�t0 = t0�tpeak = 0).
Amplitudes and phases are marginalized over. The black
contour is the 90%-credible region obtained from the full IMR
waveform, as described in the text. The intersection of the
dotted lines marks the peak of this distribution (Mf = 68.5M�,
�f = 0.69). The top and right panels show 1D posteriors for
Mf and �f respectively. The linear quasinormal mode models
with N > 0 provide measurements of the mass and spin
consistent with the full IMR waveform, in agreement with
general relativity.

each overtone is excited as the remnant is formed and
cannot be computed within perturbation theory, so we
treat them as free parameters in our fit.

We use the model in Eq. (1) to carry out a Bayesian
analysis of LIGO Hanford and LIGO Livingston data
for GW150914 [15, 21, 42]. For any given start time
t0, we produce a posterior probability density over the
space of remnant mass and spin magnitude, as well as
the amplitudes and phases of the included overtones. We
parameterize start times via �t0 = t0 � tpeak, where
tpeak = 1126259462.423 GPS refers to the inferred signal
peak at the LIGO Hanford detector [22, 43]. We define
the likelihood in the time domain in order to explicitly
exclude all data before t0. We place uniform priors on
(Mf , �f , An, �n), with a restriction to orbit-aligned spins
(�f � 0). All overtones we consider share the same
` = m = 2 angular dependence, allowing us to simplify
the handling of antenna patterns and other subtleties.

GW150914

Capano, Cabero +, arXiv:2105.05238  
c.f. LVK arXiv:2010.14529 Figure 2. (Top) Bayes factor of models with the indicated

modes compared to a model assuming the presence of only
the (220) mode. All values are shown for five different start
times of the analysis relative to the reference time tref.
(Bottom) Median values and 90% credible intervals for the
(220) mode found when assuming a Kerr black hole
ringdown model.

ing large prior parameter volume. In this section, we assume
that the frequency and damping time of each damped sinusoid
are related as in the ringdown of a Kerr black hole. This has
the effect of reducing the prior parameter volume and focusing
in on particular modes.

The amplitudes and phases of the modes are left as free
parameters, since they depend on the specific initial state of
the remnant black hole immediately after the merger.

For this analysis, we assume that the agnostically found
dominant mode near 63Hz is the (220) mode of a Kerr black
hole and we make various choices for the identity of the
sub-dominant mode. We also consider the possibility of find-
ing more than two modes. Additionally, we make different
choices for the start time of the ringdown relative to the refer-
ence time tref, as described in section (2).

Results for various multi-mode Kerr models are shown in
Figure 2. The preferred model is the combination of the (220)
and (330) modes at 6ms after tref, with a Bayes factor of
43.4+8.1

�6.8 compared to a model with a single (220) mode.
Only moderate evidence is found for the presence of any

other modes, although at 18ms after tref the most favoured
model is one containing the (220), (330), (440) and (210)
modes.

Figure 2 also shows the (220) mode frequency, f220, mea-
sured with the preferred Kerr model –(220)+(330) modes–
at different ringdown start times. The stability of f220 indi-

Figure 3. Posterior distribution of final redshifted mass
(1+ z)Mf and dimensionless spin c f assuming the identified
modes are the (220) and (330) modes of a Kerr black hole.
Vertical dashed lines indicate the 90% credible interval. For
the Kerr+d (330) results, we use fitting formulae8 to convert
the frequency f330(1+d f330) and damping time
t330(1+dt330) into mass and spin.

cates that the black hole has reached a regime of constant
ringdown frequency. Figure 3 shows the final Kerr black hole
mass, Mf , and dimensionless spin, c f = Jf /M

2
f
, measured

with this model. We find that the remnant black hole has
redshifted mass (1+ z)Mf = 332+31

�35 M� and dimensionless
spin c f = 0.871+0.052

�0.096.
We now extend our analysis to consider deviations of the

(330) parameters from the expected Kerr values. Thus, we
extend the signal model keeping the dependence of f220 on
(M,c) as in the Kerr solution but including fractional devia-
tions d f330 and dt330 of f330 and t330, respectively. This is
the classic no-hair theorem test.6 Figure 3 shows the Kerr
black hole mass Mf and dimensionless spin c f associated
to this (330) mode frequency f330(1+ d f330) and damping
time t330(1+dt330). Posterior distributions on these param-
eters are shown in Supplemental Fig. S.4. We constrain the
fractional deviation from Kerr to d f330 =�0.010+0.073

�0.121. The
damping time is only weakly constrained, dt330 = 0.7+1.9

�1.3.
We obtain slightly better constraints when we include the
(440) and (210) modes in the analysis (see Supplemental
Fig. S.5), however, this model is only marginally favored over
the (220)+(330) at 18ms, and disfavored at all earlier times.

4 Discussion and comparison with previ-
ous results

The detection of a (330) mode indicates that the progeni-
tor black holes in GW190521 had asymmetric masses, since
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FIG. 3. Population hyperparameters for the detected BBHs. We show the posteriors for µi (left) and �i (right) for the inspiral
ppE-like parameters (top) and the merger parameters (bottom). Each of these quantities controls a specific deformation away
from the GW waveform predicted by GR (see [9] for definitions). The inset on the left panels shows the Z-score (the mean
divided by the standard deviation) for each posterior (left) and the 90% credible interval (right). Dashed vertical lines on the
right panels show the 90% upper limit for each posterior. For ease of display, we show the posteriors of 20 ⇥ �'̂�2 instead of
simply �'̂�2. Lack of evidence for nonzero µi or �i means results for all beyond-GR parameters are consistent with GR.

all �p̂i parameters from [9, 20], obtained with the IMR-
PhenomPv2 waveform model [29, 30]. This study did
not perform both sets of tests on all detected BBHs, but
rather imposed certain thresholds on the SNR of the sig-
nals to determine whether to look for deviations in the
inspiral or postinspiral regime, or both. As a result, 5
BBHs where analyzed for inspiral deviations and 9 for
postinspiral ones. See [9] for details.

Figure 3 shows posterior distributions for the hyper-
parameters µi (left panels) and �i (right panels), corre-
sponding to the inspiral parameters �'̂i (top) and the
postinspiral parameters �↵̂i and ��̂i (bottom). We find
that the population of the analyzed BBHs is consistent
with GR both in terms of µi and �i for all beyond-GR
parameters. All µi posteriors are consistent with 0 at
the 0.5� level or better, while all �i posteriors peak at
0. These results are subject to the thresholds imposed
in [9] and would thus be vulnerable to the same potential
selection e↵ects. With that caveat, we find no evidence
of any deviation from GR.

CONCLUSIONS

We use a hierarchical approach to test GR with GWs
by assuming that beyond-GR parameters in each event
are drawn from a common underlying distribution. This
approach is both flexible and powerful, since it can en-
compass generic population distributions, even if the cho-
sen parametrization inaccurate. It can trivially incor-
porate future detections and can be applied to several
tests of GR, including searches for modified dispersion
relations [7, 31] or inspiral-merger-ringdown consistency
checks [16, 18]. We apply this method to the current 10
confident BBH detections [1], measuring posterior distri-
butions for the mean and standard deviation of the pop-
ulation of ppE-like parameters �p̂i [20]. We have found
both to be consistent with GR.

Parametrized tests, such as the ones studied here, are
powerful probes of beyond-GR e↵ects. Yet, it has long
been appreciated that their interpretation demands cau-
tion: correlations between the parameters suggest that a
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FIG. 14. Left panel: The 90% credible levels of the posterior probability distribution of the fractional deviations in the frequency and damping
time of the (2,±2) QNM, (� f220, �⌧220) and their corresponding one-dimensional marginalized posterior distributions, for events from O1, O2
and O3 passing a SNR threshold of 8 in both the pre- and post-merger signal. Posteriors for GW150914 and GW200129 065458 are separately
shown. The joint constraints on (� f220, �⌧220) obtained multiplying the posteriors (given a flat prior) from individual events are given by the
filled grey contours, while the hierarchical method of combination yields the black dot dashed curves in the 1D marginalized posteriors. Right
panel: 90% credible interval on the one-dimensional marginalised posteriors on ��i = (� f220, �⌧220), colored by the median redshifted total mass
(1 + z)M, inferred assuming GR. Filled gray (unfilled black) downward triangles mark the constraints obtained when all the events are combined
by multiplying posteriors (hierarchically). For comparison, we mark the previously published bounds from [11] using filled/unfilled upward
triangles. The bounds from GW200129 065458 (square) and GW150914 (diamond) are indicated by the separate markers. See Sec. VIII A 2 for
details.

are. Follow-up investigations with synthetic signals in seg-
ments of data immediately adjacent to the event suggests the
possibility of noise systematics not accounted for. The same
study rules out, within our statistical uncertainties, any system-
atic bias due to missing physics in the SEOBNRv4HM waveform
model.

We also note that the joint posterior distribution on �⌧̂220
in the left plot of Fig. 14 does not include the GR prediction
at the 90% credible level. Although insu�cient to claim a
violation of GR, this apparent deviation definitely warrants
further investigation. The trend of overestimating the com-
bined damping time is consistent with what is observed on
an event-by-event analysis, where the posterior on �⌧̂220, al-
though consistent with 0 is biased towards positive values.
Hence a combination of information across multiple events
is expected to reduce statistical uncertainties and make this
bias more prominent. One possible reason might be a prior
on (� f̂220, �⌧̂220) which is asymmetric around 0 with greater
support for positive values. This is because, since ( f220, ⌧220)
are strictly positive quantities, the priors on (� f̂220, �⌧̂220) are
strictly greater than �1. However, the upper prior boundary

is free to be as large as is required for the posterior to not rail
against it and it usually greater than 1. For events with moder-
ately high SNRs analysed with this method, the e↵ect of the
prior on the final posterior can be non-negligible. We also note
that while the posteriors on the fractional deviation show more
support towards positive values, the frequency and damping
time reconstructed using Eqs. (16) and (17) are consistent with
those predicted using estimates of initial masses and spins from
[81] and NR fits [158]. This gives us more confidence in the
measured QNMs, while also pointing to the possibility that
correlations among the remnant parameters may be responsible
for the apparent deviation. Further, as has been argued in [11],
imperfect noise modelling can also lead to overestimation of
damping time [120]. Finally, we can not rule out the statistical
uncertainties of working with a sample of just 12 events.

B. Echoes

Mergers of certain classes of exotic compact objects that do
not have a horizon can cause ingoing gravitational waves (e.g.,

Ringdown tests from O3

12 LVK arXiv:2112.06861

Ringdown only

Full waveform, no overtones
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TABLE XI. The median, and symmetric 90%-credible intervals, of the redshifted final mass and final spin, inferred from the full IMR analysis
(IMR) and the pyRing analysis (Sec. VIII A 1) with three di↵erent waveform models (Kerr220, Kerr221, and KerrHM). A positive value of
log10 BHM

220 indicates support for HM in the data, and a positive value of log10 B221
220 shows support for the presence of the first overtone. A positive

value of log10 OmodGR
GR quantify the level of disagreement with GR. The catalog-combined (including GWTC-2 events) log odds ratio is negative

(�0.90 ± 0.45).

Event Redshifted final mass Final spin Higher Overtones
(1 + z)Mf [M�] �f modes

IMR Kerr220 Kerr221 KerrHM IMR Kerr220 Kerr221 KerrHM log10 BHM
220 log10 B221

220 log10 OmodGR
GR

GW191109 010717 132.7+21.9
�13.8 181.7+28.5

�30.6 179.0+23.7
�21.7 174.5+38.1

�30.1 0.60+0.22
�0.19 0.81+0.10

�0.24 0.81+0.08
�0.14 0.77+0.11

�0.21 �0.11 1.03 �0.27
GW191222 033537 114.2+14.3

�11.7 111.4+69.3
�29.7 110.3+36.2

�23.8 118.3+97.0
�46.2 0.67+0.08

�0.10 0.46+0.41
�0.41 0.52+0.31

�0.43 0.60+0.28
�0.66 0.08 �0.83 �0.20

GW200129 065458 71.8+4.4
�3.9 60.0+16.7

�8.9 77.0+14.4
�14.2 219.1+110.4

�140.0 0.75+0.06
�0.06 0.31+0.43

�0.28 0.74+0.17
�0.59 0.54+0.35

�0.59 �0.00 �0.47 �0.09
GW200224 222234 90.3+6.4

�6.3 84.4+23.2
�20.3 88.6+15.5

�15.2 119.4+142.6
�34.3 0.73+0.06

�0.07 0.61+0.27
�0.49 0.60+0.23

�0.42 0.64+0.27
�0.59 0.20 0.95 �0.11

GW200311 115853 72.1+5.4
�4.7 68.5+23.6

�13.5 72.2+28.6
�16.3 213.2+167.8

�141.5 0.68+0.07
�0.08 0.30+0.44

�0.28 0.58+0.30
�0.47 0.56+0.32

�0.54 0.02 �1.16 �0.15

over the same set of parameters appearing in the GR template,
with the addition of the deviation parameters on which we
impose uniform priors in the [�1, 1] range for the frequency
� f̂221 and in the [�0.9, 1] range for the damping time �⌧̂221.
The lower bound on �⌧̂221 prevents issues due to the finite time
resolution in the waveform sampling. [11]. If GR provides an
accurate description of the ringdown emission, we expect to
observe posterior distributions of the deviation parameters to
be centered around zero, together with a Bayesian evidence
disfavouring the addition of non-GR parameters.

The inferred values of the frequency deviation parameters
are consistent with GR for all events analysed, while weak con-
straints can be extracted on the damping times deviations from
single events. The damping time estimation of low-SNR events
is more sensitive to violations of the Gaussianity and station-
arity hypotheses compared to the frequency estimation [11].
Additional studies investigating this behaviour will be required
in the future to properly derive joint posteriors on this pa-
rameter when combining many weak events. The posterior
distribution of �⌧̂221 often tends to rail towards the lower prior
bound �0.9 for events with low SNR in the ringdown regime,
as the data show little evidence for the first overtone.

To combine the set of measurements for all 21 available
events we make use of a hierarchical analysis [11]. The sin-
gle events posteriors used to derive this joint bound are the
marginalised � f̂221 posteriors obtained when allowing both the
frequency and the damping time of the 221 mode to deviate
from the GR predictions. We obtain a constraint on the fre-
quency deviation equal to � f̂221 = 0.01+0.27

�0.28, overlapping with
the GR predicted value for a Kerr BH, and show its posterior
probability distribution in Fig. 13. The corresponding hyper-
parameter values are: µ = 0.01+0.18

�0.18, � < 0.22. Although
GW191109 010717 is excluded from the combined analysis,
we note that even though the mass and spin estimates coming
from this event show some tension with the ones coming from
an IMR analyses, the parametrised deviations do not indicate
preference for additional parameters required to describe the
ringdown emission. We do not allow to obtain informative
constraints on �⌧̂221.

The single event odds ratios log10 OmodGR
GR values, computed

following a procedure similar to our previous analysis [11], are
reported in Table XI. The highest log10 OmodGR

GR value among
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FIG. 13. The posterior distribution of the fractional frequency
deviation for the ` = |m| = 2, n = 1 mode, � f̂221, from the pyRing
joint hierarchical analysis (triangles and small vertical bars indicate
respectively median and 90% CLs). The measurements of � f̂221 from
individual events, and its combined value using all available 21 GW
events (red solid line), both show consistency with GR. Compared to
the corresponding GWTC-2 constraint (dashed-dotted blue line), the
hierarchically combined posterior on the frequency deviation shows a
90% CL shrinkage ratio of ⇠ 8%. See Sec. VIII A 1 for details.

O3b events, �0.09, corresponds to GW200129 065458 and
does not signal significant tension. By considering all the
GWTC-3 events that passed our selection criteria (including
previous GWTC-2 results), we find a combined log odds ratio
of �0.90 ± 0.44, at 90% uncertainty, favouring the hypothesis
that GR gives an accurate description of the observed ringdown
signals.

Finally, as an agnostic test of the consistency of the ringdown
emission with GR predictions, a single damped sinusoid (DS)
template is used to fit the data. In this case we are not assuming
an underlying Kerr metric, nor that the object emitting the
signal is a BH, thus the frequency, damping time, and complex
amplitude are considered as free parameters without imposing
any predictions from GR. We adopt uniform priors on the
frequency, damping time, log of the magnitude, and the phase
of the complex amplitude. The fit starts at 10GM̄f (1+z)/c3 after



Towards precision tests
• Test specific theories 

• Constraints mapped to theory params 

• Incorporate higher harmonics and 
overtones  

• Much work on QNMs beyond-GR, 
expansions in small spin 

• McManus et al. arXiv:1906.05155 

• Cano, Fransen, Hertog 
arXiv:2005.03671 

• But merged black holes have 
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� ⇠ 0.7
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Gravitational perts for Kerr
• Metric perts don’t separate or decouple in Kerr

<latexit sha1_base64="OS49k+7TDhjazWxAyJy5YYegLW0=">AAACDHicbVDLSsNAFJ34rPVVdelmsBQqQkmkqBuh6MZlBfuANpbJ9CYdOnkwMxFKyAe48VfcuFDErR/gzr9xmmahrQcGzj3nXube40ScSWWa38bS8srq2npho7i5tb2zW9rbb8swFhRaNOSh6DpEAmcBtBRTHLqRAOI7HDrO+Hrqdx5ASBYGd2oSge0TL2Auo0RpaVAqe4OEOCm+xN59UjWP01l5gvugCB5lle4ya2YGvEisnJRRjuag9NUfhjT2IVCUEyl7lhkpOyFCMcohLfZjCRGhY+JBT9OA+CDtJDsmxRWtDLEbCv0ChTP190RCfCknvl6y4hM1kvPeVPzP68XKvbATFkSxgoDOPnJjjlWIp8ngIRNAFZ9oQqhgeldMR0QQqnR+RR2CNX/yImmf1qyzWv22Xm5c5XEU0CE6QlVkoXPUQDeoiVqIokf0jF7Rm/FkvBjvxsesdcnIZw7QHxifP4dLmgs=</latexit>

gab = g(0)ab + ⌘hab
<latexit sha1_base64="0ja4BSNBtSXjLO8eF4p0fk6Z70k=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0Wom5JIUTdC0YUuK/QFTQk300k7dPJgZiKU0K0bf8WNC0Xc+gfu/BunaRbaeuDC4Zx7ufceL+ZMKsv6Ngorq2vrG8XN0tb2zu6euX/QllEiCG2RiEei64GknIW0pZjitBsLCoHHaccb38z8zgMVkkVhU01i2g9gGDKfEVBack1866bgTSvDU3yFnTHEMbgWdqgC3Mwc1yxbVSsDXiZ2TsooR8M1v5xBRJKAhopwkLJnW7HqpyAUI5xOS04iaQxkDEPa0zSEgMp+mn0yxSdaGWA/ErpChTP190QKgZSTwNOdAaiRXPRm4n9eL1H+ZT9lYZwoGpL5Ij/hWEV4FgseMEGJ4hNNgAimb8VkBAKI0uGVdAj24svLpH1Wtc+rtftauX6dx1FER+gYVZCNLlAd3aEGaiGCHtEzekVvxpPxYrwbH/PWgpHPHKI/MD5/ADKmmMY=</latexit>

Gab(g) = 0⌘Tab
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Gab(g) = 0⌘Tab

<latexit sha1_base64="KDwYMqQ0CXdLUx80rrpwlh+72Zw=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSLUTUmkqBuh6EKXFewD2hgm00k7dPJgZqKUmE9x40IRt36JO//GaZuFth64cDjnXu69x4s5k8qyvo2l5ZXVtfXCRnFza3tn1yzttWSUCEKbJOKR6HhYUs5C2lRMcdqJBcWBx2nbG11N/PYDFZJF4Z0ax9QJ8CBkPiNYack1S9duir2sMrhPrewYXSDLNctW1ZoCLRI7J2XI0XDNr14/IklAQ0U4lrJrW7FyUiwUI5xmxV4iaYzJCA9oV9MQB1Q66fT0DB1ppY/8SOgKFZqqvydSHEg5DjzdGWA1lPPeRPzP6ybKP3dSFsaJoiGZLfITjlSEJjmgPhOUKD7WBBPB9K2IDLHAROm0ijoEe/7lRdI6qdqn1dptrVy/zOMowAEcQgVsOIM63EADmkDgEZ7hFd6MJ+PFeDc+Zq1LRj6zD39gfP4AMomSqg==</latexit>

Gab(g
0) = 0
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Eab[h] = 0Tab
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Gravitational perts for Kerr
• Metric perts don’t separate or decouple in Kerr
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gab = g(0)ab + ⌘hab
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Eab[h] = 0Tab

• Teukolsky (1973): Use Newman-Penrose eqns to decouple scalar quantites
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�

�0, �2

 0,  4

s = 0 :

s = ±1 :

s = ±2 :
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Os[ s] = 4⇡Ts
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• Operator picture (Wald 1978)
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• Operator picture (Wald 1978)

• Metric can be reconstructed (in special gauges)
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lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [78], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [77]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤

RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

Z
d
4
x
p
�g[L# + ✏Lint + Lmatter] . (1)

Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields #A and the spacetime curvature, and we assume
that it enters first at linear order in the fields #A. The
parameter ✏ can be viewed as a small coupling term which
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lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [78], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [77]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤

RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

Z
d
4
x
p
�g[L# + ✏Lint + Lmatter] . (1)

Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields #A and the spacetime curvature, and we assume
that it enters first at linear order in the fields #A. The
parameter ✏ can be viewed as a small coupling term which

3

governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [78], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [77]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤

RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

Z
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4
x
p
�g[L# + ✏Lint + Lmatter] . (1)

Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields #A and the spacetime curvature, and we assume
that it enters first at linear order in the fields #A. The
parameter ✏ can be viewed as a small coupling term which

3

governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
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p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
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Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0
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matter
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with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write
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Meanwhile, V
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can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
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= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#
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or interaction term V

int
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by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.
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The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
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+ ✏
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Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that
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(0,k)
A
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T
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= T
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Our assumption that Lint is at least linear in the fields
means that
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but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the

3

governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.
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The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [78], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [77]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤

RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

Z
d
4
x
p
�g[L# + ✏Lint + Lmatter] . (1)

Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields #A and the spacetime curvature, and we assume
that it enters first at linear order in the fields #A. The
parameter ✏ can be viewed as a small coupling term which

3

governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the

3

governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra
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. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
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2
p
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p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.
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The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [78], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [77]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤

RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

Z
d
4
x
p
�g[L# + ✏Lint + Lmatter] . (1)

Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields #A and the spacetime curvature, and we assume
that it enters first at linear order in the fields #A. The
parameter ✏ can be viewed as a small coupling term which

3

governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.
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j
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,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F
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+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at
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= 0 means that
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means that
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but, for example, ⇢(0,0)
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need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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The notation is a bit ungainly, but we only need the
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2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab
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= 0 , (14)

but, for example, ⇢(0,0)
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need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the

• Solve order by order for equilibrium solution
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interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�

1q
� det g(0)

cd

@a

✓q
� det g(0)

cd
h
ab
@b'

◆

+
1

2
g
ab

0 (@ah
c
c)@b' , (17)

with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j

����
#=0

'
j
R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
= @a#@b#�

1

2
gabg

cd
@c#@d# . (20)

In this case we have

T
#(2,0)
ab

['1,'2] = @(a'1@b)'2 �
1

2
g
(0)
ab

g
cd

(0)@c'1@d'2 ,

(21)

and

T
#(2,1)
ab

['1,'2, h] =@(a'1@b)'2

+
1

2
(g(0)

ab
h
cd

� habg
cd

(0))@c'1@d'2 .

(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
d �r

c
r

d
hcd)

i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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0(#)R, and sources the
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There are no source terms for g
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at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
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= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have
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(2)] = T
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(1)] + V
int(1,0)
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The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
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A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

Hussain, AZ arXiv: 2206.10653



Black holes beyond GR
• Focus on theories which perturb off GR in decoupling limit

17

2

lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [73]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [74], to understand parametric instabilities
near the horizons of rapidly rotating black holes [75], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [76].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [77], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR e↵ects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [78] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [79]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [80–83] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [78], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [77]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [84]. In such
theories a scalar field # is coupled to terms quadratic in
the curvature, for example the Pontryagin density ⇤

RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

Z
d
4
x
p
�g[L# + ✏Lint + Lmatter] . (1)

Here L# is the Lagrange density for a collection of fields
we denote #A, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that L# is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields #A and the spacetime curvature, and we assume
that it enters first at linear order in the fields #A. The
parameter ✏ can be viewed as a small coupling term which

3

governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ✏. Finally, the Einstein Hilbert action is

SEH =
1

20

Z
d
4
x
p
�gR , (2)

with 0 = 8⇡G.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(#, g) = ✏⇢A(#, g) , (3)

WA(#, g) :=
@L#

@#A

�ra

@L#

@ra#A

, (4)

⇢A(#, g) := �
@Lint

@#A

+ra

@Lint

@ra#A

. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ⇢A. For brevity, here and else-
where we leave o↵ the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = 0

⇥
T

#

ab
(#, g) + T

matter
ab

+ ✏V
int
ab

(#, g)
⇤
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

T
#

ab
:= �

2
p
�g

�(
p
�gL#)

�gab
. (7)

Meanwhile, V
int
ab

can similarly be derived by varying
p
�gLint with respect to the (inverse) metric; since this

term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of #A and the
metric, see Sec. III A for an example. From here we re-
strict to the case T

matter
ab

= 0. Further, for convenience,
we take the nonstandard convention of setting 0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor T#

ab
or interaction term V

int
ab

by 0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values #A = #
(0)
A

= 0 and gab = g
(0)
ab

, and use single par-
enthetical superscripts (j) to indicate orders in ✏. For a
given, generally nonlinear, operator F(#, g) we define

F
(j,k)['1, . . . ,'j , h1, . . . hk] :=

1
This assumes the equations of motion are second order in the field

derivatives; these expressions can be extended to other cases.

1

j!k!

@
j
@
k
F(#(0) +

P
j

i=1 ✏i'i, g
(0)
ab

+
P

k

i=1 ihi)

@✏1 . . . @✏j@1 . . . @k

�����
✏1,···!0
1,···!0

,

(8)

The operators F
(j,k) are multilinear in their arguments,

with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µ⌫ [h] for

the leading expansion of the Einstein tensor around a
perturbed background.
The notation is a bit ungainly, but we only need the

expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(#) = #

2, using a single
scalar field for the #A. Then

F
(2,0)['1,'2] = '1'2 . (9)

Meanwhile, if F(#) = #@a#, we have

F
(2,0)['1,'2] =

1

2
('1@a'2 + '2@a'1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(#) = #@a#, then

F(✏1'1 + ✏2'2) =✏
2
1F

(2,0)['1,'1] + 2✏1✏2F
(2,0)['1,'2]

+ ✏
2
2F

(2,0)['2,'2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
(0)
A

= 0 means that

W
(0,k)
A

= 0 , (12)

T
#(0,k)
ab

= T
#(1,k)
ab

= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab

= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the
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operator expansions, we have used ✏j and k as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations 'i and hi, indexed by i.
We have also assumed that the operators we use admit
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that depend only on the metric, for example when ex-
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1F
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Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).
In terms of this notation, the assumption that L# is at

least quadratic in the fields and #
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= 0 means that
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= 0 , (12)
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= T
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= 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
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= 0 , (14)

but, for example, ⇢(0,0)
A

need not be zero. In fact, we are

interested in the case where ⇢
(0,0)
A

is nonzero, requiring
terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field # and the

• Solve order by order for equilibrium solution

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�

1q
� det g(0)

cd

@a

✓q
� det g(0)

cd
h
ab
@b'

◆

+
1

2
g
ab

0 (@ah
c
c)@b' , (17)

with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j

����
#=0

'
j
R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
= @a#@b#�

1

2
gabg

cd
@c#@d# . (20)

In this case we have

T
#(2,0)
ab

['1,'2] = @(a'1@b)'2 �
1

2
g
(0)
ab

g
cd

(0)@c'1@d'2 ,

(21)

and

T
#(2,1)
ab

['1,'2, h] =@(a'1@b)'2

+
1

2
(g(0)

ab
h
cd

� habg
cd

(0))@c'1@d'2 .

(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
d �r

c
r

d
hcd)

i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab
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(1)]� V
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['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
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+ ✏
2
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+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
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+O(✏2). (35)

In this case, we find
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A

['(1)] =
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(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
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['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
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2G(2)

ab
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(1)]� V
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['(1)]
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2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have

W
(1,0)['] =⇤g(0)' , (16)

W
(1,1)[', h] =�

1q
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cd
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✓q
� det g(0)

cd
h
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@b'

◆

+
1

2
g
ab

0 (@ah
c
c)@b' , (17)

with indices raised and lowered using the background
metric. Meanwhile,

⇢
(0,0) = f

0(0)R , (18)

⇢
(j,0)[',', . . . ] =

1

j!

d
j
f

d#j

����
#=0

'
j
R . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

T
#

ab
= @a#@b#�

1

2
gabg

cd
@c#@d# . (20)

In this case we have

T
#(2,0)
ab

['1,'2] = @(a'1@b)'2 �
1

2
g
(0)
ab

g
cd

(0)@c'1@d'2 ,

(21)

and

T
#(2,1)
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['1,'2, h] =@(a'1@b)'2

+
1

2
(g(0)

ab
h
cd

� habg
cd

(0))@c'1@d'2 .

(22)

The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,
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d
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i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
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,#

(1)] + V
int(1,0)
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[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
(0)
ab

+ ✏hab, we
have
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with indices raised and lowered using the background
metric. Meanwhile,
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These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,
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The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
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2
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+O(✏3) , (23)

#A = 0 + ✏#
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+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
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[#(1)] = ⇢
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, (26)

which are sourced wave equations that we must solve for
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. Similarly at O(✏) we have
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where we have noted that our G
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linearized Einstein operator on the background,
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Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
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= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
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The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further

4

interaction term separates as Lint = f(#)R[g] for some
curvature operator R. Then ⇢ = f

0(#)R, and sources the
fields at O(✏) when f

0(0) 6= 0. The power counting pro-
vided below only holds if f 0(0) 6= 0, in which case any f

is essentially equivalent at leading order; only the Taylor
expansion of f around # = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(#) = ⇤g# , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W

(j,k)[#, g] = 0 for j � 2. Ex-

panding around # = 0 + ✏' and gab = g
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ab

+ ✏hab, we
have
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metric. Meanwhile,
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These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,
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The interactions terms V
int
ab

can be similarly expanded,
but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ✏, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.
We are interested in cases where as ✏ ! 0, we re-

cover the Kerr solution, which means that we require
that #A = 0 should solve WA[#] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ✏ ! 0. With this in mind, we expand our
fields in powers of ✏,

gab = g
(0)
ab

+ ✏g
(1)
ab

+ ✏
2
g
(2)
ab

+O(✏3) , (23)

#A = 0 + ✏#
(1)
A

+O(✏2) , (24)

where we know that #A enters first at O(✏), consistent
with our requirement that #A = 0 in the limit ✏ ! 0. At
leading order we find that for the metric

Gab(g
(0)
cd

) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W
(1,0)
A

[#(1)] = ⇢
(0,0)
A

, (26)

which are sourced wave equations that we must solve for

#
(1)
A

. Similarly at O(✏) we have

G
(1)
ab

[g(1)] = Eab[g
(1)] = 0 , (27)

where we have noted that our G
(1) is just the standard

linearized Einstein operator on the background,

Eab[h] :=
1

2

⇥
2rc

r(ahb)c �r
c
rchab �rarbh

c
c

+ g
(0)
ab

(rc
rch

d
d �r

c
r

d
hcd)

i
. (28)

Here all covariant derivatives are with respect to g
(0)
ab

.

There are no source terms for g
(1)
ab

at this order, recall-
ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g(1)
ab

= 0 and the metric is only
deformed away from Kerr at O(✏2).
At O(✏2) we have

Eab[g
(2)] = T

#(2,0)
ab

[#(1)
,#

(1)] + V
int(1,0)
ab

[#(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab

to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
(1,0)
A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏

h
2T#(2,0)

ab
[#(1)

,'] + V
int(1,0)
ab

[']
i

+ ✏
2
h
2T#(2,0)

ab
[#(2)

,'] + T
#(2,1)
ab

[#(1)
,#

(1)
, h]

+3T#(3,0)
ab

[#(1)
,#

(1)
,'] + V

int(1,1)
ab

[#(1)
, h]

+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving

W
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A

['(1)] +W
(1,1)
A

[#(1)
, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
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ab
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+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =

✏
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For the field degrees of freedom, we find to O(✏)

W
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A
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+O(✏2) , (34)
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In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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A

and g
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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+ ✏
2
h
(2)
ab
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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as before, Eqs. (26) and (29). At
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For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,
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+O(✏2) , (34)
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In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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and g
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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A
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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2
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(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =
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For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)
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A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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2
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(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
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(2)
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+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
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ab

+O(✏2) , (37)
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+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
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+ ⌘hab + . . . , (30)
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+ ✏
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
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2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
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ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
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ab

+ ✏
2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)
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+ ✏
2
#
(2)
A
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
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2
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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A

and g
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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as before, Eqs. (26) and (29). At
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,
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+O(✏2) , (34)
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In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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and g
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find

W
(1,0)
A

['(0)] + 2✏W(2,0)
A

[#(1)
,'

(0)] + ✏W
(1,0)
A

['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
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as before, Eqs. (26) and (29). At
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included
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in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
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and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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S
ab[Eab[h] + ✏2(�Eab[h]� �T#

ab[h] + Cab[h])] = O[ s] + ✏2V [h] + ✏2C[h]
<latexit sha1_base64="0c1DrKow3jWqxWKJWZQCoyvEn9U=">AAACBHicbZDLSsNAFIYn9VbrLeqym8FScCElkaIui25cVrAXSEI4mU7aoZMLMxOhhC7c+CpuXCji1odw59s4bbPQ1h8GPv4zh3POH6ScSWVZ30ZpbX1jc6u8XdnZ3ds/MA+PujLJBKEdkvBE9AOQlLOYdhRTnPZTQSEKOO0F45tZvfdAhWRJfK8mKfUiGMYsZASUtnyzOvJzCKbYcVPJfHnmBiDwgj3frFkNay68CnYBNVSo7Ztf7iAhWURjRThI6dhWqrwchGKE02nFzSRNgYxhSB2NMURUevn8iCmua2eAw0ToFys8d3935BBJOYn0rvUI1Egu12bmfzUnU+GVl7M4zRSNyWJQmHGsEjxLBA+YoETxiQYgguldMRmBAKJ0bhUdgr188ip0zxv2RaN516y1ros4yqiKTtApstElaqFb1EYdRNAjekav6M14Ml6Md+Nj8bVkFD3H6I+Mzx9dB5ft</latexit>

hab[ s,  ̄s]

See also Li +  
arXiv: 2206.10652

<latexit sha1_base64="yDUsjAAhfynudlMYjm/KhSA/j+U="></latexit>

S
ab[Eab[h] + ✏2(�Eab[h]� �T#

ab[h] + Cab[h])] = O[ s] + ✏2V [h] + ✏2C[h]



Modified Teukolsky equation

19

• First solve 

• Deriving modified Teukolsky equation very involved

• Operator approach provides shortcut:

• View as perturbed eigenvalue problem

<latexit sha1_base64="JbOm98fGgWq5qzkvKLw0+hle8Ow=">AAACHXicbVDLSsNAFJ3UV62vqks3g0VoF5ZEiroRWt24rGAfkKRhMp20QycPZiaFEvIjbvwVNy4UceFG/BsnbRFtPTDM4Zx7ufceN2JUSF3/0nIrq2vrG/nNwtb2zu5ecf+gLcKYY9LCIQt510WCMBqQlqSSkW7ECfJdRjru6CbzO2PCBQ2DezmJiO2jQUA9ipFUklOsWWPEoyF1Gr2kbFRSc6h+vZLa8MrykRxixGCnl5waqdP48ZxiSa/qU8BlYsxJCczRdIofVj/EsU8CiRkSwjT0SNoJ4pJiRtKCFQsSITxCA2IqGiCfCDuZXpfCE6X0oRdy9QIJp+rvjgT5Qkx8V1VmG4tFLxP/88xYepd2QoMoliTAs0FezKAMYRYV7FNOsGQTRRDmVO0K8RBxhKUKtKBCMBZPXibts6pxXq3d1Ur163kceXAEjkEZGOAC1MEtaIIWwOABPIEX8Ko9as/am/Y+K81p855D8Afa5zenuqBm</latexit>

'(1)
A [h(0)] = W�1

A [h(0)]

<latexit sha1_base64="yDUsjAAhfynudlMYjm/KhSA/j+U="></latexit>

S
ab[Eab[h] + ✏2(�Eab[h]� �T#

ab[h] + Cab[h])] = O[ s] + ✏2V [h] + ✏2C[h]
<latexit sha1_base64="0c1DrKow3jWqxWKJWZQCoyvEn9U=">AAACBHicbZDLSsNAFIYn9VbrLeqym8FScCElkaIui25cVrAXSEI4mU7aoZMLMxOhhC7c+CpuXCji1odw59s4bbPQ1h8GPv4zh3POH6ScSWVZ30ZpbX1jc6u8XdnZ3ds/MA+PujLJBKEdkvBE9AOQlLOYdhRTnPZTQSEKOO0F45tZvfdAhWRJfK8mKfUiGMYsZASUtnyzOvJzCKbYcVPJfHnmBiDwgj3frFkNay68CnYBNVSo7Ztf7iAhWURjRThI6dhWqrwchGKE02nFzSRNgYxhSB2NMURUevn8iCmua2eAw0ToFys8d3935BBJOYn0rvUI1Egu12bmfzUnU+GVl7M4zRSNyWJQmHGsEjxLBA+YoETxiQYgguldMRmBAKJ0bhUdgr188ip0zxv2RaN516y1ros4yqiKTtApstElaqFb1EYdRNAjekav6M14Ml6Md+Nj8bVkFD3H6I+Mzx9dB5ft</latexit>

hab[ s,  ̄s]

See also Li +  
arXiv: 2206.10652

<latexit sha1_base64="yDUsjAAhfynudlMYjm/KhSA/j+U="></latexit>

S
ab[Eab[h] + ✏2(�Eab[h]� �T#

ab[h] + Cab[h])] = O[ s] + ✏2V [h] + ✏2C[h]



Eigenvalue perturbations
• For a spacetime deformed from Kerr, can apply perturbative approach

20
Mark, Yang, AZ, Chen, arXiv:1409.5800 
AZ +, arXiv:1406.4206   

<latexit sha1_base64="Na6064+s12GLwMBmlSiZItPY/Yk="></latexit>

H|ni = En|ni ! (H + �H)|ni = (En + �En|ni)



Eigenvalue perturbations
• For a spacetime deformed from Kerr, can apply perturbative approach

20
Mark, Yang, AZ, Chen, arXiv:1409.5800 
AZ +, arXiv:1406.4206   

<latexit sha1_base64="Na6064+s12GLwMBmlSiZItPY/Yk="></latexit>

H|ni = En|ni ! (H + �H)|ni = (En + �En|ni)

<latexit sha1_base64="tC5i6GS1IBxrs10zs2ZYR5EWB10=">AAACNXicbVDLSsNAFJ3UV62vqEs3g0Wom5JIUTdCUYQuXFSwD2himEyn7dDJJMxMhJL2p9z4H6504UIRt/6CkzYLbb0wcO4553LnHj9iVCrLejVyS8srq2v59cLG5tb2jrm715RhLDBp4JCFou0jSRjlpKGoYqQdCYICn5GWP7xK9dYDEZKG/E6NIuIGqM9pj2KkNOWZNw5DvM8I5PdJyTqewDGswXHa2LpxxEy8gNceh/PWBZ9nFq2yNS24COwMFEFWdc98drohjgPCFWZIyo5tRcpNkFAUMzIpOLEkEcJD1CcdDTkKiHST6dUTeKSZLuyFQj+u4JT9PZGgQMpR4GtngNRAzmsp+Z/WiVXv3E0oj2JFOJ4t6sUMqhCmEcIuFQQrNtIAYUH1XyEeIIGw0kEXdAj2/MmLoHlStk/LldtKsXqZxZEHB+AQlIANzkAV1EAdNAAGj+AFvIMP48l4Mz6Nr5k1Z2Qz++BPGd8//0iolQ==</latexit>

hn(0)|H|n(1)i = Enhn(0)|n(1)i



Eigenvalue perturbations
• For a spacetime deformed from Kerr, can apply perturbative approach

20
Mark, Yang, AZ, Chen, arXiv:1409.5800 
AZ +, arXiv:1406.4206   

<latexit sha1_base64="Na6064+s12GLwMBmlSiZItPY/Yk="></latexit>

H|ni = En|ni ! (H + �H)|ni = (En + �En|ni)

<latexit sha1_base64="tC5i6GS1IBxrs10zs2ZYR5EWB10=">AAACNXicbVDLSsNAFJ3UV62vqEs3g0Wom5JIUTdCUYQuXFSwD2himEyn7dDJJMxMhJL2p9z4H6504UIRt/6CkzYLbb0wcO4553LnHj9iVCrLejVyS8srq2v59cLG5tb2jrm715RhLDBp4JCFou0jSRjlpKGoYqQdCYICn5GWP7xK9dYDEZKG/E6NIuIGqM9pj2KkNOWZNw5DvM8I5PdJyTqewDGswXHa2LpxxEy8gNceh/PWBZ9nFq2yNS24COwMFEFWdc98drohjgPCFWZIyo5tRcpNkFAUMzIpOLEkEcJD1CcdDTkKiHST6dUTeKSZLuyFQj+u4JT9PZGgQMpR4GtngNRAzmsp+Z/WiVXv3E0oj2JFOJ4t6sUMqhCmEcIuFQQrNtIAYUH1XyEeIIGw0kEXdAj2/MmLoHlStk/LldtKsXqZxZEHB+AQlIANzkAV1EAdNAAGj+AFvIMP48l4Mz6Nr5k1Z2Qz++BPGd8//0iolQ==</latexit>

hn(0)|H|n(1)i = Enhn(0)|n(1)i
<latexit sha1_base64="8KLtsm+O/MEwOM/9pX1sthI2cuA=">AAACTXicbVHNS8MwHE3nx+b8qnr0EhzCvIxWhnoRhiLsOMF9wFpHmqZbWJqWJBVG3T/oRfDmf+HFgyJitlXQbQ8Cj/feLx8vXsyoVJb1auRWVtfW84WN4ubW9s6uubffklEiMGniiEWi4yFJGOWkqahipBMLgkKPkbY3vJ747QciJI34nRrFxA1Rn9OAYqS01DN9xydMIXjT4/ASOoFAOHUY4n1GIL9Py9bJGD7CLFTX9Fd0xCw0XhKfy4x7ZsmqWFPARWJnpAQyNHrmi+NHOAkJV5ghKbu2FSs3RUJRrPcrOokkMcJD1CddTTkKiXTTaRtjeKwVHwaR0IsrOFX/TqQolHIUejoZIjWQ895EXOZ1ExVcuCnlcaIIx7ODgoRBFcFJtdCngmDFRpogLKi+K8QDpBtV+gOKugR7/smLpHVasc8q1dtqqXaV1VEAh+AIlIENzkEN1EEDNAEGT+ANfIBP49l4N76M71k0Z2QzB+AfcvkfMDKxmA==</latexit>

�En =
hn(0)|�H|n(0)i
hn(0)|n(0)i



Eigenvalue perturbations
• For a spacetime deformed from Kerr, can apply perturbative approach

• Scalar wave equation straightforward:

20
Mark, Yang, AZ, Chen, arXiv:1409.5800 
AZ +, arXiv:1406.4206   

<latexit sha1_base64="Na6064+s12GLwMBmlSiZItPY/Yk="></latexit>

H|ni = En|ni ! (H + �H)|ni = (En + �En|ni)

<latexit sha1_base64="tC5i6GS1IBxrs10zs2ZYR5EWB10=">AAACNXicbVDLSsNAFJ3UV62vqEs3g0Wom5JIUTdCUYQuXFSwD2himEyn7dDJJMxMhJL2p9z4H6504UIRt/6CkzYLbb0wcO4553LnHj9iVCrLejVyS8srq2v59cLG5tb2jrm715RhLDBp4JCFou0jSRjlpKGoYqQdCYICn5GWP7xK9dYDEZKG/E6NIuIGqM9pj2KkNOWZNw5DvM8I5PdJyTqewDGswXHa2LpxxEy8gNceh/PWBZ9nFq2yNS24COwMFEFWdc98drohjgPCFWZIyo5tRcpNkFAUMzIpOLEkEcJD1CcdDTkKiHST6dUTeKSZLuyFQj+u4JT9PZGgQMpR4GtngNRAzmsp+Z/WiVXv3E0oj2JFOJ4t6sUMqhCmEcIuFQQrNtIAYUH1XyEeIIGw0kEXdAj2/MmLoHlStk/LldtKsXqZxZEHB+AQlIANzkAV1EAdNAAGj+AFvIMP48l4Mz6Nr5k1Z2Qz++BPGd8//0iolQ==</latexit>

hn(0)|H|n(1)i = Enhn(0)|n(1)i
<latexit sha1_base64="8KLtsm+O/MEwOM/9pX1sthI2cuA="></latexit>

�En =
hn(0)|�H|n(0)i
hn(0)|n(0)i

<latexit sha1_base64="TM+fOUcXZ7qU3Ef8IltLNxWxVvk=">AAACFnicbZBNS8MwGMfT+TbnW9Wjl+AYTMTRylAvwtCLxwnuBbZa0izdwtK0JKkwSj+FF7+KFw+KeBVvfhuzrgfdfCDwz++fhzzP34sYlcqyvo3C0vLK6lpxvbSxubW9Y+7utWUYC0xaOGSh6HpIEkY5aSmqGOlGgqDAY6Tjja+nfueBCElDfqcmEXECNOTUpxgpjVzzZOgmyEvhJRzeJ1XrKJ1dj2GfRJKykGfczrlrlq2alRVcFHYuyiCvpmt+9QchjgPCFWZIyp5tRcpJkFAUM5KW+rEkEcJjNCQ9LTkKiHSSbK0UVjQZQD8U+nAFM/q7I0GBlJNAj1sJkBrJeW8K//N6sfIvnITyKFaE49lHfsygCuE0IziggmDFJlogLKieFeIREggrnWRJh2DPr7wo2qc1+6xWv62XG1d5HEVwAA5BFdjgHDTADWiCFsDgETyDV/BmPBkvxrvxMXtaMPKeffCnjM8f9a6eBg==</latexit>

gab = g(0)ab + ✏g(1)ab

<latexit sha1_base64="y5R7cW3Hxl21fJonMvcZRxT+FSE="></latexit>

⇤g(0)+✏g(1)� = [⇤(0) + ✏ �⇤]�



Eigenvalue perturbations
• For a spacetime deformed from Kerr, can apply perturbative approach

• Scalar wave equation straightforward:

20
Mark, Yang, AZ, Chen, arXiv:1409.5800 
AZ +, arXiv:1406.4206   

<latexit sha1_base64="Na6064+s12GLwMBmlSiZItPY/Yk="></latexit>

H|ni = En|ni ! (H + �H)|ni = (En + �En|ni)

<latexit sha1_base64="tC5i6GS1IBxrs10zs2ZYR5EWB10=">AAACNXicbVDLSsNAFJ3UV62vqEs3g0Wom5JIUTdCUYQuXFSwD2himEyn7dDJJMxMhJL2p9z4H6504UIRt/6CkzYLbb0wcO4553LnHj9iVCrLejVyS8srq2v59cLG5tb2jrm715RhLDBp4JCFou0jSRjlpKGoYqQdCYICn5GWP7xK9dYDEZKG/E6NIuIGqM9pj2KkNOWZNw5DvM8I5PdJyTqewDGswXHa2LpxxEy8gNceh/PWBZ9nFq2yNS24COwMFEFWdc98drohjgPCFWZIyo5tRcpNkFAUMzIpOLEkEcJD1CcdDTkKiHST6dUTeKSZLuyFQj+u4JT9PZGgQMpR4GtngNRAzmsp+Z/WiVXv3E0oj2JFOJ4t6sUMqhCmEcIuFQQrNtIAYUH1XyEeIIGw0kEXdAj2/MmLoHlStk/LldtKsXqZxZEHB+AQlIANzkAV1EAdNAAGj+AFvIMP48l4Mz6Nr5k1Z2Qz++BPGd8//0iolQ==</latexit>

hn(0)|H|n(1)i = Enhn(0)|n(1)i
<latexit sha1_base64="8KLtsm+O/MEwOM/9pX1sthI2cuA="></latexit>

�En =
hn(0)|�H|n(0)i
hn(0)|n(0)i

<latexit sha1_base64="TM+fOUcXZ7qU3Ef8IltLNxWxVvk=">AAACFnicbZBNS8MwGMfT+TbnW9Wjl+AYTMTRylAvwtCLxwnuBbZa0izdwtK0JKkwSj+FF7+KFw+KeBVvfhuzrgfdfCDwz++fhzzP34sYlcqyvo3C0vLK6lpxvbSxubW9Y+7utWUYC0xaOGSh6HpIEkY5aSmqGOlGgqDAY6Tjja+nfueBCElDfqcmEXECNOTUpxgpjVzzZOgmyEvhJRzeJ1XrKJ1dj2GfRJKykGfczrlrlq2alRVcFHYuyiCvpmt+9QchjgPCFWZIyp5tRcpJkFAUM5KW+rEkEcJjNCQ9LTkKiHSSbK0UVjQZQD8U+nAFM/q7I0GBlJNAj1sJkBrJeW8K//N6sfIvnITyKFaE49lHfsygCuE0IziggmDFJlogLKieFeIREggrnWRJh2DPr7wo2qc1+6xWv62XG1d5HEVwAA5BFdjgHDTADWiCFsDgETyDV/BmPBkvxrvxMXtaMPKeffCnjM8f9a6eBg==</latexit>

gab = g(0)ab + ✏g(1)ab

<latexit sha1_base64="y5R7cW3Hxl21fJonMvcZRxT+FSE="></latexit>

⇤g(0)+✏g(1)� = [⇤(0) + ✏ �⇤]�

<latexit sha1_base64="GCFW0i9QUMhYKxylgHKLjYlTTPc="></latexit>

�! = � h�(0)|�⇤|�(0)i
h�(0)|@!⇤(0)|�(0)i



Eigenvalue perturbations

21
Yang, AZ, Lehner, arXiv:1402.4859

Transient “turbulence” of scalar perts

Mark, Yang, AZ, Chen, arXiv:1409.5800

Weakly charged Kerr-Newman



Roadmap

22

Ringdown inference

New physics?

Modified Teukolsky eqn

<latexit sha1_base64="g/uZLhjX/6k+PkvMOvcbyKgGWFA=">AAACMnicdZDLSsNAFIYnXmu9RV26GSyCIJSkFHVZ7EZXVrAXSGKYTKft0MkkzEyEEvpMbnwSwYUuFHHrQzhpg2irBwY+/v8c5pw/iBmVyrKejYXFpeWV1cJacX1jc2vb3NltySgRmDRxxCLRCZAkjHLSVFQx0okFQWHASDsY1jO/fUeEpBG/UaOYeCHqc9qjGCkt+ealGyI1wIjBK8eNJfWlB4+hSzSyiN9W4Lffcgb/WfXM8s2SVbYmBefBzqEE8mr45qPbjXASEq4wQ1I6thUrL0VCUczIuOgmksQID1GfOBo5Con00snJY3iolS7sRUI/ruBE/TmRolDKURjozmxLOetl4l+ek6jemZdSHieKcDz9qJcwqCKY5Qe7VBCs2EgDwoLqXSEeIIGw0ikXdQj27Mnz0KqU7ZNy9bpaqp3ncRTAPjgAR8AGp6AGLkADNAEG9+AJvII348F4Md6Nj2nrgpHP7IFfZXx+AT8sqOw=</latexit>

O[ s] + ✏2V[h] + ✏2C[h]

Reconstruct metric

<latexit sha1_base64="+8fzy8vm9lTLkLGnVUXDzsYKpec=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRoi6LblxWsA9IYphMJ+3QySTMTIQSsnbjr7hxoYhbv8Cdf+O0zUJbD1w4c869zL0nSBiVyrK+jdLS8srqWnm9srG5tb1j7u51ZJwKTNo4ZrHoBUgSRjlpK6oY6SWCoChgpBuMrid+94EISWN+p8YJ8SI04DSkGCkt+ebh8D6rWSe5n6Egd9xEUl+eQjdAAs4enm9Wrbo1BVwkdkGqoEDLN7/cfozTiHCFGZLSsa1EeRkSimJG8oqbSpIgPEID4mjKUUSkl01PyeGxVvowjIUuruBU/T2RoUjKcRTozgipoZz3JuJ/npOq8NLLKE9SRTiefRSmDKoYTnKBfSoIVmysCcKC6l0hHiKBsNLpVXQI9vzJi6RzVrfP643bRrV5VcRRBgfgCNSADS5AE9yAFmgDDB7BM3gFb8aT8WK8Gx+z1pJRzOyDPzA+fwA/kZoA</latexit>

h(0)
ab [ s,  ̄s]

Stationary deformation

<latexit sha1_base64="35Oa3WvwdJYIDkAqXrydyc7POFo=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9ktRT0WvXisYD+gXUs2zbah2WRJskJZ9m948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wuZ35nSeqNJPiwUxj6kd4JFjICDZW6o8e00rtIhukOMgGpbJbdedAq8TLSRlyNAelr/5QkiSiwhCOte55bmz8FCvDCKdZsZ9oGmMywSPas1TgiGo/nd+coXOrDFEolS1h0Fz9PZHiSOtpFNjOCJuxXvZm4n9eLzHhtZ8yESeGCrJYFCYcGYlmAaAhU5QYPrUEE8XsrYiMscLE2JiKNgRv+eVV0q5Vvctq/b5ebtzkcRTgFM6gAh5cQQPuoAktIBDDM7zCm5M4L86787FoXXPymRP4A+fzB3jjkVU=</latexit>

g(2)ab

<latexit sha1_base64="pw6w+oXI6ngTyux73b0D5baIOR0=">AAAB+nicbVDLTgIxFO34RHwNunTTSExwQ2YMUZeoG5eYyCOBcdIpBRo6nUl7B0NGPsWNC41x65e4828sMAsFT3KTk3Pube89QSy4Bsf5tlZW19Y3NnNb+e2d3b19u3DQ0FGiKKvTSESqFRDNBJesDhwEa8WKkTAQrBkMb6Z+c8SU5pG8h3HMvJD0Je9xSsBIvl3ojIiCAQPykJbc04l/5dtFp+zMgJeJm5EiylDz7a9ON6JJyCRQQbRuu04MXmqe5VSwSb6TaBYTOiR91jZUkpBpL52tPsEnRuniXqRMScAz9fdESkKtx2FgOkMCA73oTcX/vHYCvUsv5TJOgEk6/6iXCAwRnuaAu1wxCmJsCKGKm10xHRBFKJi08iYEd/HkZdI4K7vn5cpdpVi9zuLIoSN0jErIRReoim5RDdURRY/oGb2iN+vJerHerY9564qVzRyiP7A+fwCV9pOR</latexit>

#(1)
A

Coupled dynamical  
fields

<latexit sha1_base64="si8ed2khYVMS8vSuj+04nqHkAew=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyWRoi6rblxWsA9IY5hMJ83QySTMTIol5FfcuFDErT/izr9x2mahrQcuHM65l3vv8RNGpbKsb6O0tr6xuVXeruzs7u0fmIfVroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88e3M702IkDTmD2qaEDdCI04DipHSkmdWBxMkkpA+ZnX7LPeundD1zJrVsOaAq8QuSA0UaHvm12AY4zQiXGGGpHRsK1FuhoSimJG8MkglSRAeoxFxNOUoItLN5rfn8FQrQxjEQhdXcK7+nshQJOU08nVnhFQol72Z+J/npCq4cjPKk1QRjheLgpRBFcNZEHBIBcGKTTVBWFB9K8QhEggrHVdFh2Avv7xKuucN+6LRvG/WWjdFHGVwDE5AHdjgErTAHWiDDsDgCTyDV/Bm5MaL8W58LFpLRjFzBP7A+PwBMRyT5g==</latexit>

'(1)
A [h]

EVP

<latexit sha1_base64="fFy3juP67EU3dx/Pr2lS2+v7QaQ=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBHqpiSlqMuiG5cV7APaGCbTaTt0HmFmIpaQX3HjQhG3/og7/8Zpm4W2HrhwOOde7r0nihnVxvO+nbX1jc2t7cJOcXdv/+DQPSq1tUwUJi0smVTdCGnCqCAtQw0j3VgRxCNGOtHkZuZ3HonSVIp7M41JwNFI0CHFyFgpdEt9yckIPaSV2nkWpoyLLHTLXtWbA64SPydlkKMZul/9gcQJJ8JghrTu+V5sghQpQzEjWbGfaBIjPEEj0rNUIE50kM5vz+CZVQZwKJUtYeBc/T2RIq71lEe2kyMz1sveTPzP6yVmeBWkVMSJIQIvFg0TBo2EsyDggCqCDZtagrCi9laIx0ghbGxcRRuCv/zyKmnXqv5FtX5XLzeu8zgK4AScggrwwSVogFvQBC2AwRN4Bq/gzcmcF+fd+Vi0rjn5zDH4A+fzB76slEQ=</latexit>

!(2)
lmn

<latexit sha1_base64="+qIox0dfVxIxrgIcAcgLVg/Mw2c=">AAACHXicbVDLSgNBEJz1GeMr6tHLYBAEIexKUI9BLx48RDAPyIYwO+kkQ2Znl5neQFjyI178FS8eFPHgRfwbJ49DTCxoKKq66e4KYikMuu6Ps7K6tr6xmdnKbu/s7u3nDg6rJko0hwqPZKTrATMghYIKCpRQjzWwMJBQC/q3Y782AG1EpB5xGEMzZF0lOoIztFIrV/RDhj3OJL1v+QOmsQfI6Dn1ITZCRorO+amvQyoUjlq5vFtwJ6DLxJuRPJmh3Mp9+e2IJyEo5JIZ0/DcGJupXSe4hFHWTwzEjPdZFxqWKhaCaaaT70b01Cpt2om0LYV0os5PpCw0ZhgGtnN8q1n0xuJ/XiPBznUzFSpOEBSfLuokkmJEx1HRttDAUQ4tYVwLeyvlPaYZRxto1obgLb68TKoXBe+yUHwo5ks3szgy5JickDPikStSInekTCqEkyfyQt7Iu/PsvDofzue0dcWZzRyRP3C+fwEj2KH4</latexit>

L# + ✏Lint

Choose theory

<latexit sha1_base64="h3tVti9FVhCOEiIG3iHrPaOHHIE=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0Wol5JIUY9FLx4r2A9oY9hst+3SzSbsbpQS81O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOZMacf5tlZW19Y3Ngtbxe2d3b19u3TQUlEiCW2SiEeyE2BFORO0qZnmtBNLisOA03Ywvp767QcqFYvEnZ7E1AvxULABI1gbybdLvVgxP1U8FNl9WnFOM98uO1VnBrRM3JyUIUfDt796/YgkIRWacKxU13Vi7aVYakY4zYq9RNEYkzEe0q6hAodUeens9AydGKWPBpE0JTSaqb8nUhwqNQkD0xliPVKL3lT8z+smenDppUzEiaaCzBcNEo50hKY5oD6TlGg+MQQTycytiIywxESbtIomBHfx5WXSOqu659Xaba1cv8rjKMARHEMFXLiAOtxAA5pA4BGe4RXerCfrxXq3PuatK1Y+cwh/YH3+ACV+k+4=</latexit>
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Ringdown inference

New physics?

Modified Teukolsky eqn

<latexit sha1_base64="g/uZLhjX/6k+PkvMOvcbyKgGWFA=">AAACMnicdZDLSsNAFIYnXmu9RV26GSyCIJSkFHVZ7EZXVrAXSGKYTKft0MkkzEyEEvpMbnwSwYUuFHHrQzhpg2irBwY+/v8c5pw/iBmVyrKejYXFpeWV1cJacX1jc2vb3NltySgRmDRxxCLRCZAkjHLSVFQx0okFQWHASDsY1jO/fUeEpBG/UaOYeCHqc9qjGCkt+ealGyI1wIjBK8eNJfWlB4+hSzSyiN9W4Lffcgb/WfXM8s2SVbYmBefBzqEE8mr45qPbjXASEq4wQ1I6thUrL0VCUczIuOgmksQID1GfOBo5Con00snJY3iolS7sRUI/ruBE/TmRolDKURjozmxLOetl4l+ek6jemZdSHieKcDz9qJcwqCKY5Qe7VBCs2EgDwoLqXSEeIIGw0ikXdQj27Mnz0KqU7ZNy9bpaqp3ncRTAPjgAR8AGp6AGLkADNAEG9+AJvII348F4Md6Nj2nrgpHP7IFfZXx+AT8sqOw=</latexit>

O[ s] + ✏2V[h] + ✏2C[h]

Reconstruct metric

<latexit sha1_base64="+8fzy8vm9lTLkLGnVUXDzsYKpec=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRoi6LblxWsA9IYphMJ+3QySTMTIQSsnbjr7hxoYhbv8Cdf+O0zUJbD1w4c869zL0nSBiVyrK+jdLS8srqWnm9srG5tb1j7u51ZJwKTNo4ZrHoBUgSRjlpK6oY6SWCoChgpBuMrid+94EISWN+p8YJ8SI04DSkGCkt+ebh8D6rWSe5n6Egd9xEUl+eQjdAAs4enm9Wrbo1BVwkdkGqoEDLN7/cfozTiHCFGZLSsa1EeRkSimJG8oqbSpIgPEID4mjKUUSkl01PyeGxVvowjIUuruBU/T2RoUjKcRTozgipoZz3JuJ/npOq8NLLKE9SRTiefRSmDKoYTnKBfSoIVmysCcKC6l0hHiKBsNLpVXQI9vzJi6RzVrfP643bRrV5VcRRBgfgCNSADS5AE9yAFmgDDB7BM3gFb8aT8WK8Gx+z1pJRzOyDPzA+fwA/kZoA</latexit>

h(0)
ab [ s,  ̄s]

Stationary deformation

<latexit sha1_base64="35Oa3WvwdJYIDkAqXrydyc7POFo=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9ktRT0WvXisYD+gXUs2zbah2WRJskJZ9m948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wuZ35nSeqNJPiwUxj6kd4JFjICDZW6o8e00rtIhukOMgGpbJbdedAq8TLSRlyNAelr/5QkiSiwhCOte55bmz8FCvDCKdZsZ9oGmMywSPas1TgiGo/nd+coXOrDFEolS1h0Fz9PZHiSOtpFNjOCJuxXvZm4n9eLzHhtZ8yESeGCrJYFCYcGYlmAaAhU5QYPrUEE8XsrYiMscLE2JiKNgRv+eVV0q5Vvctq/b5ebtzkcRTgFM6gAh5cQQPuoAktIBDDM7zCm5M4L86787FoXXPymRP4A+fzB3jjkVU=</latexit>

g(2)ab

<latexit sha1_base64="pw6w+oXI6ngTyux73b0D5baIOR0=">AAAB+nicbVDLTgIxFO34RHwNunTTSExwQ2YMUZeoG5eYyCOBcdIpBRo6nUl7B0NGPsWNC41x65e4828sMAsFT3KTk3Pube89QSy4Bsf5tlZW19Y3NnNb+e2d3b19u3DQ0FGiKKvTSESqFRDNBJesDhwEa8WKkTAQrBkMb6Z+c8SU5pG8h3HMvJD0Je9xSsBIvl3ojIiCAQPykJbc04l/5dtFp+zMgJeJm5EiylDz7a9ON6JJyCRQQbRuu04MXmqe5VSwSb6TaBYTOiR91jZUkpBpL52tPsEnRuniXqRMScAz9fdESkKtx2FgOkMCA73oTcX/vHYCvUsv5TJOgEk6/6iXCAwRnuaAu1wxCmJsCKGKm10xHRBFKJi08iYEd/HkZdI4K7vn5cpdpVi9zuLIoSN0jErIRReoim5RDdURRY/oGb2iN+vJerHerY9564qVzRyiP7A+fwCV9pOR</latexit>

#(1)
A

Coupled dynamical  
fields

<latexit sha1_base64="si8ed2khYVMS8vSuj+04nqHkAew=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyWRoi6rblxWsA9IY5hMJ83QySTMTIol5FfcuFDErT/izr9x2mahrQcuHM65l3vv8RNGpbKsb6O0tr6xuVXeruzs7u0fmIfVroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88e3M702IkDTmD2qaEDdCI04DipHSkmdWBxMkkpA+ZnX7LPeundD1zJrVsOaAq8QuSA0UaHvm12AY4zQiXGGGpHRsK1FuhoSimJG8MkglSRAeoxFxNOUoItLN5rfn8FQrQxjEQhdXcK7+nshQJOU08nVnhFQol72Z+J/npCq4cjPKk1QRjheLgpRBFcNZEHBIBcGKTTVBWFB9K8QhEggrHVdFh2Avv7xKuucN+6LRvG/WWjdFHGVwDE5AHdjgErTAHWiDDsDgCTyDV/Bm5MaL8W58LFpLRjFzBP7A+PwBMRyT5g==</latexit>

'(1)
A [h]

EVP

<latexit sha1_base64="fFy3juP67EU3dx/Pr2lS2+v7QaQ=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBHqpiSlqMuiG5cV7APaGCbTaTt0HmFmIpaQX3HjQhG3/og7/8Zpm4W2HrhwOOde7r0nihnVxvO+nbX1jc2t7cJOcXdv/+DQPSq1tUwUJi0smVTdCGnCqCAtQw0j3VgRxCNGOtHkZuZ3HonSVIp7M41JwNFI0CHFyFgpdEt9yckIPaSV2nkWpoyLLHTLXtWbA64SPydlkKMZul/9gcQJJ8JghrTu+V5sghQpQzEjWbGfaBIjPEEj0rNUIE50kM5vz+CZVQZwKJUtYeBc/T2RIq71lEe2kyMz1sveTPzP6yVmeBWkVMSJIQIvFg0TBo2EsyDggCqCDZtagrCi9laIx0ghbGxcRRuCv/zyKmnXqv5FtX5XLzeu8zgK4AScggrwwSVogFvQBC2AwRN4Bq/gzcmcF+fd+Vi0rjn5zDH4A+fzB76slEQ=</latexit>

!(2)
lmn

<latexit sha1_base64="+qIox0dfVxIxrgIcAcgLVg/Mw2c=">AAACHXicbVDLSgNBEJz1GeMr6tHLYBAEIexKUI9BLx48RDAPyIYwO+kkQ2Znl5neQFjyI178FS8eFPHgRfwbJ49DTCxoKKq66e4KYikMuu6Ps7K6tr6xmdnKbu/s7u3nDg6rJko0hwqPZKTrATMghYIKCpRQjzWwMJBQC/q3Y782AG1EpB5xGEMzZF0lOoIztFIrV/RDhj3OJL1v+QOmsQfI6Dn1ITZCRorO+amvQyoUjlq5vFtwJ6DLxJuRPJmh3Mp9+e2IJyEo5JIZ0/DcGJupXSe4hFHWTwzEjPdZFxqWKhaCaaaT70b01Cpt2om0LYV0os5PpCw0ZhgGtnN8q1n0xuJ/XiPBznUzFSpOEBSfLuokkmJEx1HRttDAUQ4tYVwLeyvlPaYZRxto1obgLb68TKoXBe+yUHwo5ks3szgy5JickDPikStSInekTCqEkyfyQt7Iu/PsvDofzue0dcWZzRyRP3C+fwEj2KH4</latexit>

L# + ✏Lint

Choose theory

<latexit sha1_base64="h3tVti9FVhCOEiIG3iHrPaOHHIE=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0Wol5JIUY9FLx4r2A9oY9hst+3SzSbsbpQS81O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOZMacf5tlZW19Y3Ngtbxe2d3b19u3TQUlEiCW2SiEeyE2BFORO0qZnmtBNLisOA03Ywvp767QcqFYvEnZ7E1AvxULABI1gbybdLvVgxP1U8FNl9WnFOM98uO1VnBrRM3JyUIUfDt796/YgkIRWacKxU13Vi7aVYakY4zYq9RNEYkzEe0q6hAodUeens9AydGKWPBpE0JTSaqb8nUhwqNQkD0xliPVKL3lT8z+smenDppUzEiaaCzBcNEo50hKY5oD6TlGg+MQQTycytiIywxESbtIomBHfx5WXSOqu659Xaba1cv8rjKMARHEMFXLiAOtxAA5pA4BGe4RXerCfrxXq3PuatK1Y+cwh/YH3+ACV+k+4=</latexit>
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Ringdown inference

New physics?

Modified Teukolsky eqn

<latexit sha1_base64="g/uZLhjX/6k+PkvMOvcbyKgGWFA=">AAACMnicdZDLSsNAFIYnXmu9RV26GSyCIJSkFHVZ7EZXVrAXSGKYTKft0MkkzEyEEvpMbnwSwYUuFHHrQzhpg2irBwY+/v8c5pw/iBmVyrKejYXFpeWV1cJacX1jc2vb3NltySgRmDRxxCLRCZAkjHLSVFQx0okFQWHASDsY1jO/fUeEpBG/UaOYeCHqc9qjGCkt+ealGyI1wIjBK8eNJfWlB4+hSzSyiN9W4Lffcgb/WfXM8s2SVbYmBefBzqEE8mr45qPbjXASEq4wQ1I6thUrL0VCUczIuOgmksQID1GfOBo5Con00snJY3iolS7sRUI/ruBE/TmRolDKURjozmxLOetl4l+ek6jemZdSHieKcDz9qJcwqCKY5Qe7VBCs2EgDwoLqXSEeIIGw0ikXdQj27Mnz0KqU7ZNy9bpaqp3ncRTAPjgAR8AGp6AGLkADNAEG9+AJvII348F4Md6Nj2nrgpHP7IFfZXx+AT8sqOw=</latexit>

O[ s] + ✏2V[h] + ✏2C[h]

Reconstruct metric

<latexit sha1_base64="+8fzy8vm9lTLkLGnVUXDzsYKpec=">AAACCnicbVDLSsNAFJ3UV62vqEs3o0WoICWRoi6LblxWsA9IYphMJ+3QySTMTIQSsnbjr7hxoYhbv8Cdf+O0zUJbD1w4c869zL0nSBiVyrK+jdLS8srqWnm9srG5tb1j7u51ZJwKTNo4ZrHoBUgSRjlpK6oY6SWCoChgpBuMrid+94EISWN+p8YJ8SI04DSkGCkt+ebh8D6rWSe5n6Egd9xEUl+eQjdAAs4enm9Wrbo1BVwkdkGqoEDLN7/cfozTiHCFGZLSsa1EeRkSimJG8oqbSpIgPEID4mjKUUSkl01PyeGxVvowjIUuruBU/T2RoUjKcRTozgipoZz3JuJ/npOq8NLLKE9SRTiefRSmDKoYTnKBfSoIVmysCcKC6l0hHiKBsNLpVXQI9vzJi6RzVrfP643bRrV5VcRRBgfgCNSADS5AE9yAFmgDDB7BM3gFb8aT8WK8Gx+z1pJRzOyDPzA+fwA/kZoA</latexit>

h(0)
ab [ s,  ̄s]

Stationary deformation

<latexit sha1_base64="35Oa3WvwdJYIDkAqXrydyc7POFo=">AAAB83icbVBNSwMxEJ31s9avqkcvwSLUS9ktRT0WvXisYD+gXUs2zbah2WRJskJZ9m948aCIV/+MN/+NabsHbX0w8Hhvhpl5QcyZNq777aytb2xubRd2irt7+weHpaPjtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wuZ35nSeqNJPiwUxj6kd4JFjICDZW6o8e00rtIhukOMgGpbJbdedAq8TLSRlyNAelr/5QkiSiwhCOte55bmz8FCvDCKdZsZ9oGmMywSPas1TgiGo/nd+coXOrDFEolS1h0Fz9PZHiSOtpFNjOCJuxXvZm4n9eLzHhtZ8yESeGCrJYFCYcGYlmAaAhU5QYPrUEE8XsrYiMscLE2JiKNgRv+eVV0q5Vvctq/b5ebtzkcRTgFM6gAh5cQQPuoAktIBDDM7zCm5M4L86787FoXXPymRP4A+fzB3jjkVU=</latexit>

g(2)ab

<latexit sha1_base64="pw6w+oXI6ngTyux73b0D5baIOR0=">AAAB+nicbVDLTgIxFO34RHwNunTTSExwQ2YMUZeoG5eYyCOBcdIpBRo6nUl7B0NGPsWNC41x65e4828sMAsFT3KTk3Pube89QSy4Bsf5tlZW19Y3NnNb+e2d3b19u3DQ0FGiKKvTSESqFRDNBJesDhwEa8WKkTAQrBkMb6Z+c8SU5pG8h3HMvJD0Je9xSsBIvl3ojIiCAQPykJbc04l/5dtFp+zMgJeJm5EiylDz7a9ON6JJyCRQQbRuu04MXmqe5VSwSb6TaBYTOiR91jZUkpBpL52tPsEnRuniXqRMScAz9fdESkKtx2FgOkMCA73oTcX/vHYCvUsv5TJOgEk6/6iXCAwRnuaAu1wxCmJsCKGKm10xHRBFKJi08iYEd/HkZdI4K7vn5cpdpVi9zuLIoSN0jErIRReoim5RDdURRY/oGb2iN+vJerHerY9564qVzRyiP7A+fwCV9pOR</latexit>

#(1)
A

Coupled dynamical  
fields

<latexit sha1_base64="si8ed2khYVMS8vSuj+04nqHkAew=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQNyWRoi6rblxWsA9IY5hMJ83QySTMTIol5FfcuFDErT/izr9x2mahrQcuHM65l3vv8RNGpbKsb6O0tr6xuVXeruzs7u0fmIfVroxTgUkHxywWfR9JwignHUUVI/1EEBT5jPT88e3M702IkDTmD2qaEDdCI04DipHSkmdWBxMkkpA+ZnX7LPeundD1zJrVsOaAq8QuSA0UaHvm12AY4zQiXGGGpHRsK1FuhoSimJG8MkglSRAeoxFxNOUoItLN5rfn8FQrQxjEQhdXcK7+nshQJOU08nVnhFQol72Z+J/npCq4cjPKk1QRjheLgpRBFcNZEHBIBcGKTTVBWFB9K8QhEggrHVdFh2Avv7xKuucN+6LRvG/WWjdFHGVwDE5AHdjgErTAHWiDDsDgCTyDV/Bm5MaL8W58LFpLRjFzBP7A+PwBMRyT5g==</latexit>

'(1)
A [h]

EVP

<latexit sha1_base64="fFy3juP67EU3dx/Pr2lS2+v7QaQ=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBHqpiSlqMuiG5cV7APaGCbTaTt0HmFmIpaQX3HjQhG3/og7/8Zpm4W2HrhwOOde7r0nihnVxvO+nbX1jc2t7cJOcXdv/+DQPSq1tUwUJi0smVTdCGnCqCAtQw0j3VgRxCNGOtHkZuZ3HonSVIp7M41JwNFI0CHFyFgpdEt9yckIPaSV2nkWpoyLLHTLXtWbA64SPydlkKMZul/9gcQJJ8JghrTu+V5sghQpQzEjWbGfaBIjPEEj0rNUIE50kM5vz+CZVQZwKJUtYeBc/T2RIq71lEe2kyMz1sveTPzP6yVmeBWkVMSJIQIvFg0TBo2EsyDggCqCDZtagrCi9laIx0ghbGxcRRuCv/zyKmnXqv5FtX5XLzeu8zgK4AScggrwwSVogFvQBC2AwRN4Bq/gzcmcF+fd+Vi0rjn5zDH4A+fzB76slEQ=</latexit>

!(2)
lmn

<latexit sha1_base64="+qIox0dfVxIxrgIcAcgLVg/Mw2c=">AAACHXicbVDLSgNBEJz1GeMr6tHLYBAEIexKUI9BLx48RDAPyIYwO+kkQ2Znl5neQFjyI178FS8eFPHgRfwbJ49DTCxoKKq66e4KYikMuu6Ps7K6tr6xmdnKbu/s7u3nDg6rJko0hwqPZKTrATMghYIKCpRQjzWwMJBQC/q3Y782AG1EpB5xGEMzZF0lOoIztFIrV/RDhj3OJL1v+QOmsQfI6Dn1ITZCRorO+amvQyoUjlq5vFtwJ6DLxJuRPJmh3Mp9+e2IJyEo5JIZ0/DcGJupXSe4hFHWTwzEjPdZFxqWKhaCaaaT70b01Cpt2om0LYV0os5PpCw0ZhgGtnN8q1n0xuJ/XiPBznUzFSpOEBSfLuokkmJEx1HRttDAUQ4tYVwLeyvlPaYZRxto1obgLb68TKoXBe+yUHwo5ks3szgy5JickDPikStSInekTCqEkyfyQt7Iu/PsvDofzue0dcWZzRyRP3C+fwEj2KH4</latexit>

L# + ✏Lint

Choose theory

<latexit sha1_base64="h3tVti9FVhCOEiIG3iHrPaOHHIE=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0Wol5JIUY9FLx4r2A9oY9hst+3SzSbsbpQS81O8eFDEq7/Em//GbZuDtj4YeLw3w8y8IOZMacf5tlZW19Y3Ngtbxe2d3b19u3TQUlEiCW2SiEeyE2BFORO0qZnmtBNLisOA03Ywvp767QcqFYvEnZ7E1AvxULABI1gbybdLvVgxP1U8FNl9WnFOM98uO1VnBrRM3JyUIUfDt796/YgkIRWacKxU13Vi7aVYakY4zYq9RNEYkzEe0q6hAodUeens9AydGKWPBpE0JTSaqb8nUhwqNQkD0xliPVKL3lT8z+smenDppUzEiaaCzBcNEo50hKY5oD6TlGg+MQQTycytiIywxESbtIomBHfx5WXSOqu659Xaba1cv8rjKMARHEMFXLiAOtxAA5pA4BGe4RXerCfrxXq3PuatK1Y+cwh/YH3+ACV+k+4=</latexit>
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Summary and future
• Predicting QNMs allow for multi-mode 

ringdown tests of Kerr 

• Modified Teukolsky eqn  

• EVP method: allows for high spins 

• Several challenges ahead in 
implementation 

• Many detections in the coming years 

• Combine constraints 

• 3rd gen and LISA: precision 
predictions needed
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ral range, which quantifies the average distance at which
a fiducial 1.4M� + 1.4M� BNS could be detected with a
signal-to-noise ratio (SNR) of 8 [20–22]. During O3b the
median BNS inspiral range for LIGO Livingston, LIGO
Hanford and Virgo was 133 Mpc, 115 Mpc and 51 Mpc,
respectively. In Fig. 1 we show the growth in the num-
ber of candidates in the LVK catalog across observing
runs. Here, the search sensitivity is quantified by the
BNS time–volume, which should be approximately pro-
portional to the number of detections [3]. This is defined
as the observing time multiplied by the Euclidean sen-
sitive volume for the detector network [22]. For O1 and
O2, the observing time includes periods when at least
two detectors were observing, and the Euclidean sensi-
tive volume is the volume of a sphere with a radius equal
to the BNS inspiral range of the second most sensitive
detector in the network. For O3, to account for the po-
tential of single-detector triggers, the observing time also
includes periods when only one detector was observing,
and the radius of the Euclidean sensitive volume is the
greater of either (i) the BNS inspiral range of the second
most sensitive detector, or (ii) the BNS inspiral range of
the most sensitive detector divided by 1.5 (correspond-
ing to a SNR threshold of 12) [3]. As the sensitivity of
the detector network improves [23], the rate of discovery
increases.

Further searches for GW transients in O3b data have
been conducted focusing on: intermediate-mass black
hole (IMBH) binaries (with a component & 65M� and a
final BH & 100M�) [24], signals coincident with gamma-
ray bursts [25], cosmic strings [26], and both minimally
modeled short-duration (. O(1) s, such as from super-
novae explosions) [27] and long-duration (& O(1) s, such
as from deformed magnetars or from accretion-disk insta-
bilities) [28] signals. However, no high-significance can-
didates for types of signals other than the CBCs reported
here have yet been found.

We begin with an overview of the status of the Ad-
vanced LIGO and Advanced Virgo detectors during O3b
(Sec. II), and the properties and quality of the data used
in the analyses (Sec. III). We report the significance of
the candidates identified by template-based and mini-
mally modeled search analyses, and compare this set of
candidates to the low-latency public GW alerts issued
during O3b (Sec. IV). We describe the inferred astro-
physical parameters for the O3b candidates (Sec. V). Fi-
nally, we show the consistency of reconstructed wave-
forms with those expected for CBCs (Sec. VI). In the
Appendices, we review public alerts and their multimes-
senger follow-up (Appendix A); we describe commission-
ing of the observatories for O3b (Appendix B); we de-
tail data-analysis methods used to assess data quality
(Appendix C), search for signals (Appendix D) and in-
fer source properties (Appendix E), and we discuss the
di�culties in assuming a source type when performing a
minimally modeled search analyses (Appendix F). A data
release associated with this catalog is available from the
Gravitational Wave Open Science Center (GWOSC) [29];
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Figure 1. The number of CBC detection candidates with
a probability of astrophysical origin pastro > 0.5 versus the
detector network’s e↵ective surveyed time–volume for BNS
coalescences [3]. The colored bands indicate the di↵erent ob-
serving runs. The final data sets for O1, O2, O3a and O3b
consist of 49.4 days, 124.4 days, 149.8 days (177.2 days) and
125.5 days (142.0 days) with at least two detectors (one de-
tector) observing, respectively. The cumulative number of
probable candidates is indicated by the solid black line, while
the blue line, dark blue band and light blue band are the me-
dian, 50% confidence interval and 90% confidence interval for
a Poisson distribution fit to the number of candidates at the
end of O3b.

this includes calibrated strain time-series around signif-
icant candidates, detection-pipeline results, parameter-
estimation posterior samples, source localizations, and
tables of inferred source parameters.

II. INSTRUMENTS

The Advanced LIGO [1] and Advanced Virgo [2] in-
struments are kilometer-scale laser interferometers [30–
32]. The advanced generation of interferometers be-
gan operations in 2015, and observing periods have
been alternated with commissioning periods [23]. After
O1 [13, 33] and O2 [14], the sensitivity of the interfer-
ometers has improved significantly [3, 34]. The main im-
provements were the adjustment of in-vacuum squeezed-
light sources, or squeezers, for the LIGO Hanford and
LIGO Livingston interferometers and the increase of the
laser power in the Virgo interferometer. The instrumen-
tal changes leading to improved sensitivities during O3b
are discussed in Appendix B.

Figure 2 shows representative sensitivities during O3b
for LIGO Hanford, LIGO Livingston and Virgo, as char-
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Breaking isospectrality
• One conceptual issue: metric reconstruction couples         and 
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• Couples two families of modes:              and 

• Equality of modes: even and odd parity modes have same spectrum 
(Nichols et al. 2012)

<latexit sha1_base64="lHihz/P97v7DUWKfAgsC85vwRM4=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOyS5idzCZD5rHMzAphyW948aCIV3/Gm3/jJNmDJhY0FFXddHfFKWfG+v63V1pb39jcKm9Xdnb39g+qh0dtozJNaIsornQ3xoZyJmnLMstpN9UUi5jTTjy+m/mdJ6oNU/LRTlIaCTyULGEEWyeFoRJ0iPs5F3Lar9b8uj8HWiVBQWpQoNmvfoUDRTJBpSUcG9ML/NRGOdaWEU6nlTAzNMVkjIe056jEgpoon988RWdOGaBEaVfSorn6eyLHwpiJiF2nwHZklr2Z+J/Xy2xyE+VMppmlkiwWJRlHVqFZAGjANCWWTxzBRDN3KyIjrDGxLqaKCyFYfnmVtC/qwVX98uGy1rgt4ijDCZzCOQRwDQ24hya0gEAKz/AKb17mvXjv3seiteQVM8fwB97nD31Fkf4=</latexit>!lmn
<latexit sha1_base64="ep8W1bLgGUXmdotn4nwPu/CXulo=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgxpJIUZdFNy4r2Ac0IUym03boPMLMRCwhv+LGhSJu/RF3/o3TNgttPXDhcM693HtPnDCqjed9O6W19Y3NrfJ2ZWd3b//APax2tEwVJm0smVS9GGnCqCBtQw0jvUQRxGNGuvHkduZ3H4nSVIoHM01IyNFI0CHFyFgpcqvnQYwUDCQnIxRljIs8cmte3ZsDrhK/IDVQoBW5X8FA4pQTYTBDWvd9LzFhhpShmJG8EqSaJAhP0Ij0LRWIEx1m89tzeGqVARxKZUsYOFd/T2SIaz3lse3kyIz1sjcT//P6qRlehxkVSWqIwItFw5RBI+EsCDigimDDppYgrKi9FeIxUggbG1fFhuAvv7xKOhd1/7LeuG/UmjdFHGVwDE7AGfDBFWiCO9ACbYDBE3gGr+DNyZ0X5935WLSWnGLmCPyB8/kDwxiUSQ==</latexit>�!̄lmn

• Really degenerate perturbation 
theory 

• Ongoing work on parity breaking: 
Li et al.
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Degenerate EVP
• Formally write metric reconstruction as
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Combining events
• Beyond-GR parameter common to all events 

• Beyond-GR parameter varies 

• Need population modeling (hierarchical modeling) to 
combine events 

• Modeling needs to account for degeneracies 

• Example: charged black holes 

• Use ringdown package (Isi, Farr) 

• Use multiple tones, infer 

• Start from peak of full IMR waveform

27Hussain, Isi, AZ in prep
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Overtones in ringdown 2

a dimensionless spin magnitude of 0.63 ± 0.16, with 68%
credibility. This is the best constraint on the remnant
mass and spin obtained in this work. This measurement
agrees with the one obtained from the fundamental mode
alone beginning 3ms after the waveform peak amplitude
(Figures 1 and 3) [34]. It also agrees with the mass and
spin inferred from the full waveform using fits to numerical
relativity. The fractional di↵erence between the best-
measured combination of mass and spin1 at the peak with
one overtone and the same combination solely with the
fundamental 3ms after the peak is (0 ± 10)%. This is
evidence at the ⇠10% level that GW150914 did result in
a Kerr black hole as predicted by general relativity, and
that the postmerger signal is in agreement with the no-
hair theorem. Similarly, the fractional di↵erence between
the best-measured combination of mass and spin at the
peak with one overtone and the same combination using
the full waveform is (7 ± 7)%.

Method. Each quasinormal mode has a frequency !`mn

and a damping time ⌧`mn, where n is the ‘overtone’ index
and (`,m) are indices of spin-weighted angular harmon-
ics that describe the angular dependence of the mode.
We focus on the fundamental and overtones of the dom-
inant ` = m = 2 spin-weighted spherical harmonic of
the strain.2 For ease of notation, we generally drop the
` and m indices, retaining only the overtone index n.
The ` = m = 2 mode of the parameterized ringdown
strain (h = h+ � ih⇥) can be written as a sum of damped
sinusoids [1–4],

hN
22(t) =

NX

n=0

An exp [�i (!nt+ �n) � t/⌧n] , (1)

for times t greater than some start time t0, where �t =
t � t0. The overtone index n orders the di↵erent modes
by decreasing damping time ⌧n, so that n = 0 denotes
the longest-lived mode. N is the index of the highest
overtone included in the model, which in this work will
be N  2. Importantly, higher n does not imply a higher
frequency !n; rather, the opposite is generally true. All
frequencies and damping times are implicit functions of
the remnant mass and spin magnitude (Mf , �f ), and
can be computed from perturbation theory [39–41]. The
amplitudes An and phases �n encode the degree to which

1 That is, the measurement of the linear combination of Mf and
�f corresponding to the principal component of the posterior
distribution with the smallest associated eigenvalue.

2 The spin-weighted spheroidal harmonics form the natural basis
that arises in perturbation theory [35–37]. These functions are
equivalent to the spin-weighted spherical harmonics in the limit
of zero spin. For �f > 0, the spin-weighted spheroidal harmonics
can be written as superpositions of the spin-weighted spherical
harmonics of the same m, but di↵erent ` [37, 38]. The e↵ect of
this mixing on the dominant ` = m = 2 spin-weighted spherical
mode is negligible for a GW150914-like system [31].
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FIG. 1. Remnant parameters inferred with di↵erent number
of overtones, using data starting at peak strain amplitude.
Contours represent 90%-credible regions on the remnant mass
(Mf ) and dimensionless spin magnitude (�f ), obtained from
the Bayesian analysis of GW150914. The inference model is
that of Eq. (1), with di↵erent number of overtones N : 0 (solid
blue), 1 (solid yellow), 2 (dashed purple). In all cases, the
analysis uses data starting at peak strain (�t0 = t0�tpeak = 0).
Amplitudes and phases are marginalized over. The black
contour is the 90%-credible region obtained from the full IMR
waveform, as described in the text. The intersection of the
dotted lines marks the peak of this distribution (Mf = 68.5M�,
�f = 0.69). The top and right panels show 1D posteriors for
Mf and �f respectively. The linear quasinormal mode models
with N > 0 provide measurements of the mass and spin
consistent with the full IMR waveform, in agreement with
general relativity.

each overtone is excited as the remnant is formed and
cannot be computed within perturbation theory, so we
treat them as free parameters in our fit.

We use the model in Eq. (1) to carry out a Bayesian
analysis of LIGO Hanford and LIGO Livingston data
for GW150914 [15, 21, 42]. For any given start time
t0, we produce a posterior probability density over the
space of remnant mass and spin magnitude, as well as
the amplitudes and phases of the included overtones. We
parameterize start times via �t0 = t0 � tpeak, where
tpeak = 1126259462.423 GPS refers to the inferred signal
peak at the LIGO Hanford detector [22, 43]. We define
the likelihood in the time domain in order to explicitly
exclude all data before t0. We place uniform priors on
(Mf , �f , An, �n), with a restriction to orbit-aligned spins
(�f � 0). All overtones we consider share the same
` = m = 2 angular dependence, allowing us to simplify
the handling of antenna patterns and other subtleties.

Isi, Gielser et al. arXiv:1905.00869
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FIG. 1. Mismatches as a function of time for the eight mod-
els, each including up to N QNM overtones. The mismatch
associated with each model at a given t0 corresponds to the
mismatch computed using Eq. (2), between the model and the
NR waveform for t � t0, where t0 specifies the lower limit used
in Eq. (3). Each additional overtone decreases the minimum
achievable mismatch, with the minimum consistently shifting
to earlier times.

roughly 15M after the peak of h. This di↵erence is signif-
icantly smaller at the peak. The mixing is small because
higher (`,m) harmonics are subdominant for this wave-
form, but in a more general case, these higher harmonics
may play a more important role.

IV. RESULTS

A. QNM overtone fits

The linear superposition of the fundamental QNM and
N overtones is an excellent description of the waveform
around and before the peak strain. To demonstrate this,
we begin by fixing the remnant properties to the final
values provided by the NR simulation. With the mass Mf

and dimensionless spin �f fixed, the set of frequencies
!22n(Mf ,�f ) is fully specified by perturbation theory.
The only remaining free parameters in Eq. (1) are the
complex coe�cients C22n and the model start time t0.
For N included overtones, and a given choice of t0, we
determine the (N+1) complex C22n’s using a least-squares
fit, thus obtaining a model waveform given by Eq. (1). We
construct such a model waveform for t � t0 at many start
times beginning at t0 = tpeak � 25M and extending to
times t0 = tpeak+60M , where tpeak is the peak amplitude
of the complex strain. For each start time t0, we compute
the mismatch M between our model waveform, hN

22, and

FIG. 2. Comparison between the plus polarization of the
` = m = 2 mode of the NR waveform and the N = 7 linear
QNM model. The QNM model begins at t0 = tpeak. The
upper panel shows both waveforms, and the lower panel shows
the residual for t � tpeak.

the NR waveform, hNR
22 , through

M = 1 � hhNR
22 , hN

22ip
hhNR

22 , hNR
22 ihhN

22, h
N
22i

. (2)

In the above, the inner product between two complex
waveforms, say x(t) and y(t), is defined by

hx(t), y(t)i =
Z T

t0

x(t)y(t) dt , (3)

where the bar denotes the complex conjugate, the lower
limit of the integral is the start time parameter t0 in Eq. 1,
and the upper limit of the integral T is chosen to be a
time before the NR waveform has decayed to numerical
noise. For the aforementioned NR simulation, we set
T = tpeak + 90M .

The result of this procedure produces mismatches as a
function of t0 for each set of overtones; these are presented
in Fig. 1. The figure shows that N = 7 overtones provides
the minimum mismatch and at the earliest of times, as
compared to the other overtone models. The waveform
corresponding to the N = 7 overtone model and t0 =
tpeak is visualized in Fig. 2, where the model waveform is
compared to the NR waveform along with the fit residual.
At face value, Fig. 1 provides us with a guide for de-

termining the times where a linear ringdown model with
N QNM overtones is applicable. However, relying on the
mismatch alone can be deceiving. The n = 7 overtone
decays away very quickly, yet Fig. 1 shows that retaining
this overtone still produces small mismatches at times
beyond when this mode should no longer be numerically
resolvable. This is due to overfitting to numerical noise
after the higher overtones in each model have su�ciently
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Gravitational perts for Kerr
• Angular equation: (spin-weighted) spheroidal harmonics 

• Standard Sturm-Liouville eigenvalue problem
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Gravitational perts for Kerr
• Radial equation: Schroedinger-like with complex potential
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Gravitational perts for Kerr
• Radial equation: Schroedinger-like with complex potential
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Perturbed black holes beyond Kerr

32

• Now add dynamical perturbations to all fields

Hussain, AZ arXiv: 2206.10653

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
#
(2)
A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)

Eab[h] + 2✏2G(2)[h, g(2)] =
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h
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ab
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+2V int(2,0)[#(1)
,']

i
. (32)

For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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,'
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(1,0)
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['(1)] =

✏⇢
(1,0)
A

['(0)] , (36)

neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)

' = 0 + ✏'
(1)
A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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, h

(0)]� ⇢
(0,1)
A

[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
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2
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(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A
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+O(✏2) , (34)
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes

Eab[h
(0)] + ✏

2
h
2G(2)

ab
[h(0)

, g
(2)]� T

#(2,1)
ab

[#(1)
,#

(1)
, h

(0)]

�V
int(1,1)
ab

[#(1)
, h

(0)]� 2T#(2,0)
ab

[#(1)
,'

(1)]� V
int(1,0)
ab

['(1)]
i

+ ✏
2
Eab[h

(2)] = 0 , (40)

neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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as before, Eqs. (26) and (29). At
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included
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in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
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and due to the coupling of the
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Here 'A represent wave degrees of freedom in the fields.
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)
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+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)

#A = ✏#
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+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
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+ ✏
2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
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+ ⌘hab + . . . , (30)

#A = ✏#
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+ ✏
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,
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A

+ ✏'
(1)
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+O(✏2) , (34)
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In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
(2)
ab

+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab

+ ✏
2
g
(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
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+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
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+ ✏
2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
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ab

+ ✏
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+ ⌘hab + . . . , (30)

#A = ✏#
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+ ✏
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
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2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)
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+ ✏
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
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ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab
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2
h
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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[h(0)] = 0 (39)

when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
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+ ✏
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
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ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
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ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab
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2
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(2)
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+ ⌘hab + . . . , (30)

#A = ✏#
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A

+ ✏
2
#
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+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
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+ ✏
2
h
(2)
ab

+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
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+ ✏
2
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(2)
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+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
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+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
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2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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A

and g
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ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
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+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
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2
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
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and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
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as before, Eqs. (26) and (29). At
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
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A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab

+ ✏
2
h
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ab

+O(✏2) , (37)
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A

+O(✏2) . (38)

First we apply this ansatz to Eq. (33), giving
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A
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as
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+ ⌘hab + . . . , (30)

#A = ✏#
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2
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A

+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)
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Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
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2
h
(2)
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+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation

5

perturb g
(0)
ab

by hab, and we introduce a second small
parameter ⌘ to track these perturbations. We consider
our solutions only up to the leading corrections in ✏, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields #A, requiring in general
a simultaneous treatment of further, O(⌘) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and e↵ec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab

and due to the coupling of the

equilibrium fields #(1)
A

to these waves.
With this in mind we write our field expansions as

gab = g
(0)
ab
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2
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(2)
ab

+ ⌘hab + . . . , (30)

#A = ✏#
(1)
A

+ ✏
2
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(2)
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+ ⌘'A + . . . . (31)

Here 'A represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(⌘0) expressions used

to derive #
(1)
A

and g
(2)
ab

as before, Eqs. (26) and (29). At
O(⌘), we find up to O(✏2)
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For the field degrees of freedom, we find to O(✏)

W
(1,0)
A

[']+2✏W(2,0)
A

[#(1)
,'] + ✏W

(1,1)
A

[#(1)
, h] =

✏⇢
(1,0)
A

['] + ✏⇢
(0,1)
A

[h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(⌘) matter sources for the
gravitational waves, and similarly no O(⌘) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields #
(1)
A

and the presence of the
interaction term in the Lagrangian Lint which is respon-
sible for V

int
ab

and ⇢A. To proceed, we ideally decouple
this linear system of equations for hab and 'A.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ✏ ! 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where 'A = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and 'A satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [74]. In the class of field equations
treated here the problem is more complicated.
We start with the simpler case, where we seek a solu-

tion perturbing around the scalar QNMs,

'A = '
(0)
A

+ ✏'
(1)
A

+O(✏2) , (34)

hab = 0 + ✏h
(1)
ab

+O(✏2). (35)

In this case, we find
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neglecting terms of O(✏2). Meanwhile, assuming ' ⇠

O(1) and neglecting terms of O(✏2), we see that Eq. (32)

admits solutions hab = ✏h
(1)
ab

, consistent with our ansatz.
This means that the equations for the fields 'A have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(✏) shifts to the QNM frequencies
associated with the fields 'A in Sec. IVA below. Physi-
cally, this is the case where the beyond-GR e↵ects modify
the free QNM ringing of the fields #A at O(✏), while at
the same time the ringdown of #A sources gravitational
modes at O(✏).
The gravitational case is of greater interest but unfor-

tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab
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2
h
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ab

+O(✏2) , (37)
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First we apply this ansatz to Eq. (33), giving
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when neglecting terms of O(✏2). We see that in this case,
we consistently source a solution 'A ⇠ O(✏) from a grav-
itational ringdown starting at O(1) in ✏-counting. Mean-
while, Eq. (32) becomes
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neglecting O(✏3) terms. We can see that had we included

a term ✏h
(1)
ab

in our ansatz, we would have had an equa-
tion Eab[h(1)] = 0 which is no di↵erent than the equation
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• Perturb eigenvalue and eigenstate
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• Need finite product where wave operator is self-adjoint
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• Perturb eigenvalue and eigenstate

<latexit sha1_base64="lT/WmHI4Taj8yD9IvFD4V+Pu/Zc=">AAACCHicbVDLSsNAFL3xWesr6tKFg0VwVZIi6kYoduOygn1AE8pkOmmHTiZhZiKU2KUbf8WNC0Xc+gnu/BunbRbaeuByD+fcy8w9QcKZ0o7zbS0tr6yurRc2iptb2zu79t5+U8WpJLRBYh7LdoAV5UzQhmaa03YiKY4CTlvBsDbxW/dUKhaLOz1KqB/hvmAhI1gbqWsfeRyLPqfIqyuGHkwbMOTJmXaFal275JSdKdAicXNSghz1rv3l9WKSRlRowrFSHddJtJ9hqRnhdFz0UkUTTIa4TzuGChxR5WfTQ8boxCg9FMbSlNBoqv7eyHCk1CgKzGSE9UDNexPxP6+T6vDSz5hIUk0FmT0UphzpGE1SQT0mKdF8ZAgmkpm/IjLAEhNtsiuaENz5kxdJs1J2z8uV27NS9TqPowCHcAyn4MIFVOEG6tAAAo/wDK/wZj1ZL9a79TEbXbLynQP4A+vzB2kUmE0=</latexit>

h |�i = C
<latexit sha1_base64="bMnuPqv4wWKMeSh6vRSMjVGy404=">AAACOHicbVDLSsNAFJ34rPUVdelmsAh1UxIp6kYodePOCvYBTSyT6aQdOpmEmYlYYj/LjZ/hTty4UMStX+C0CVJbDwwczjmXO/d4EaNSWdaLsbC4tLyymlvLr29sbm2bO7sNGcYCkzoOWShaHpKEUU7qiipGWpEgKPAYaXqDi7HfvCNC0pDfqGFE3AD1OPUpRkpLHfPKYYj3GIFOTVL4AJ1qeH+bFK2jkVb6FDoitc/hb3A6kc5MBTtmwSpZE8B5YmekADLUOuaz0w1xHBCuMENStm0rUm6ChKKYkVHeiSWJEB6gHmlrylFApJtMDh/BQ610oR8K/biCE3V6IkGBlMPA08kAqb6c9cbif147Vv6Zm1AexYpwnC7yYwZVCMctwi4VBCs21ARhQfVfIe4jgbDSXed1CfbsyfOkcVyyT0rl63KhUs3qyIF9cACKwAanoAIuQQ3UAQaP4BW8gw/jyXgzPo2vNLpgZDN74A+M7x+nZqqJ</latexit>

h |⇤(0)�i = h⇤(0) |�i

<latexit sha1_base64="HIbruOI0jbGgdXY49/BpkJzqZ0Y=">AAACbHicbVHLihNBFK1uX2N8THwslEG4GJSEcUK3DOpGGHTjMoKZGUhnQnXlJimmHk3VbSE0vfIP3fkJbvwGq5NejBkvFHU499xHncoLJT0lya8ovnHz1u07e3c79+4/eLjfffT41NvSCRwLq6w7z7lHJQ2OSZLC88Ih17nCs/zyc5M/+47OS2u+0brAqeZLIxdScArUrPsjG60kfIR+c88qnVmNS15fVP1kUONFdSQhw8JLZQ1kbyCboyIOW1VDUA2HVxS7TdJBDYPQRoKGrAiTjkC21dsRQFDPur1kmGwCroO0BT3WxmjW/ZnNrSg1GhKKez9Jk4KmFXckhcK6k5UeCy4u+RInARqu0U+rjVk1vArMHBbWhWMINuzViopr79c6D0rNaeV3cw35v9ykpMWHaSVNURIasR20KBWQhcZ5mEuHgtQ6AC6cDLuCWHHHBYX/6QQT0t0nXwenb4fpu+Hx1+PeyafWjj12wF6yPkvZe3bCvrARGzPBfkf70bPoefQnfhofxC+20jhqa56wfyJ+/Rdiorcq</latexit>

� = (�(0)
m!e

�i✏ �! t + ✏�(1)
m!)e

im��i!(0)t

Mark, Yang, AZ, Chen, arXiv:1409.5800 
AZ +, arXiv:1406.4206   



3

and ! = !(0)), we can derive a formula for !(1) by actingD
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2

��� on both sides of Eq. (3):
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An identical expression for the frequency correction to
the electromagnetic QNM frequencies can be obtained
from the same analysis with the s = 2 subscript replaced
by s = 1. However, the stable Kerr QNM wave functions
(!I < 0) are not square-integrable along the real r-axis,
since the radiative boundary conditions cause them to
diverge at

 (0)
s ⇠ ei!r⇤ , r ! 1 ) r⇤ ! 1, (6)

with r⇤ satisfying dr⇤/dr = (r2 + a2)/((r� r+)(r� r�)),
where r± are the horizon locations in Boyer-Lindquist co-
ordinates. To derive a finite product, we observe that the
outgoing boundary condition implies that the Teukolsky

wave function  (0)
2 exponentially decays as r ! +i1,

if we choose to examine modes with !R > 0, which we
can do without loss of generality because !R + i!I is a
QNM frequency i↵ �!R + i!I is a QNM frequency. By
analytically continuing the QNM wave functions into the
complex r-plane, we can define a finite product on two
functions with the asymptotic behavior of Kerr QNM’s:

h� |�i ⌘
Z

C

(r � r+)
s(r � r�)

sdr

⇡Z

0

�� sin ✓d✓ , (7)

where C is a contour that is displayed in Fig. 1. One
might expect this contour integral to be zero by Cauchy’s
integral theorem; however, the functions in Eq. (3) are
not analytic in the the enclosed region. This is be-
cause the radial Teukolsky function has a branch point
at r+, and we use a branch cut that runs parallel to
the imaginary axis emanating from r+. The weights
(r�r+)s(r�r�)s and sin ✓ are chosen to make the Teukol-
sky operator self-adjoint.

C. Numerical calculations

The spin-s QNMs of a Kerr black hole are indexed by
spheroidal harmonic indices ` and m, and an overtone
number n. For a given s, a, ` and m, the least damped
QNM is assigned n = 0 (at least when there is no mode
branching, see [27]). We label the frequency corrections
!(1) with the same indices as the corresponding back-
ground Kerr frequency !(0), grouping them as `mn. We
only discuss the modes with m � 0 because of the sym-
metry !(a,m) = !(�a,�m).

We explore the weakly charged KN QNM frequency
spectrum by numerically evaluating Eq. (5) for !(1). We
use Leaver’s continued fraction method to calculate the
Kerr QNM frequencies !(0) and a truncated version of

Figure 1: The contour C used in the definition of the product
(7). The Kerr wave functions  (0)

s are analytic everywhere
except for two branch cuts emerging from the horizons r±
and shooting o↵ to positive infinity.

Leaver’s expansion [9] to represent the Teukolsky wave

function  (0)
s . We estimate the error in our method

by performing the numerical integration twice for each
mode, the second time keeping more terms in the wave
function expansions and continued fractions, and also
more points in the angular integral. We find that the

fractional di↵erence |!(1)
run 2 � !(1)

run 1|/|!
(1)
run 2| is roughly

10�6. We test the EVP method by applying it to the DF
equation (i.e. we replace Hs with Fs). The “true” DF
QNM frequencies ! can be obtained via Leaver’s method
[21], allowing !(1) to be computed independently of the
EVP method via a numerical evaluation of (! � !(0))/q
as q ! 0. In this way we find that the fractional er-
ror in !(1) is approximately 10�5. The possible sources
for these small errors are the truncation of the QNM
wave functions, numerical imprecision in implementing
the contour integral, and error in the root finding step of
Leaver’s method.

In the top panel of Fig. 2, we parametrically plot

!(1)
R /!(0)

R + i!(1)
I /!(0)

I in the complex plane as a func-
tion of a/M , for eight low-` modes. We compute both
!(1) as predicted by the linearized KN equations (solid
lines), using Eq. (5), and as predicted by the correspond-
ing EVP analysis for DF equation (dashed lines). We
observe that in general there is a significant di↵erence
between the DF frequency corrections and the KN fre-
quency corrections. The bottom panel of Fig. 2 focuses
on the frequency corrections for rapidly-rotating black

holes. We plot !(1)
R /!(0)

R and !(1)
I /!(0)

I versus a/M for
large values of a/M . Notice that as a ! M , the DF equa-
tion predicts an increasingly accurate frequency correc-
tion !(1) for the s = 2, 220 mode, but not for the s = 1,
100 mode. We only plot two modes for clarity, but we
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and ! = !(0)), we can derive a formula for !(1) by actingD
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2

��� on both sides of Eq. (3):

!(1) = �
⌧
 (0)
2

����
@H2

@q
 (0)
2

��⌧
 (0)
2

����
@H2

@!
 (0)
2

�
. (5)

An identical expression for the frequency correction to
the electromagnetic QNM frequencies can be obtained
from the same analysis with the s = 2 subscript replaced
by s = 1. However, the stable Kerr QNM wave functions
(!I < 0) are not square-integrable along the real r-axis,
since the radiative boundary conditions cause them to
diverge at

 (0)
s ⇠ ei!r⇤ , r ! 1 ) r⇤ ! 1, (6)

with r⇤ satisfying dr⇤/dr = (r2 + a2)/((r� r+)(r� r�)),
where r± are the horizon locations in Boyer-Lindquist co-
ordinates. To derive a finite product, we observe that the
outgoing boundary condition implies that the Teukolsky

wave function  (0)
2 exponentially decays as r ! +i1,

if we choose to examine modes with !R > 0, which we
can do without loss of generality because !R + i!I is a
QNM frequency i↵ �!R + i!I is a QNM frequency. By
analytically continuing the QNM wave functions into the
complex r-plane, we can define a finite product on two
functions with the asymptotic behavior of Kerr QNM’s:

h� |�i ⌘
Z

C

(r � r+)
s(r � r�)

sdr

⇡Z

0

�� sin ✓d✓ , (7)

where C is a contour that is displayed in Fig. 1. One
might expect this contour integral to be zero by Cauchy’s
integral theorem; however, the functions in Eq. (3) are
not analytic in the the enclosed region. This is be-
cause the radial Teukolsky function has a branch point
at r+, and we use a branch cut that runs parallel to
the imaginary axis emanating from r+. The weights
(r�r+)s(r�r�)s and sin ✓ are chosen to make the Teukol-
sky operator self-adjoint.

C. Numerical calculations

The spin-s QNMs of a Kerr black hole are indexed by
spheroidal harmonic indices ` and m, and an overtone
number n. For a given s, a, ` and m, the least damped
QNM is assigned n = 0 (at least when there is no mode
branching, see [27]). We label the frequency corrections
!(1) with the same indices as the corresponding back-
ground Kerr frequency !(0), grouping them as `mn. We
only discuss the modes with m � 0 because of the sym-
metry !(a,m) = !(�a,�m).

We explore the weakly charged KN QNM frequency
spectrum by numerically evaluating Eq. (5) for !(1). We
use Leaver’s continued fraction method to calculate the
Kerr QNM frequencies !(0) and a truncated version of

Figure 1: The contour C used in the definition of the product
(7). The Kerr wave functions  (0)

s are analytic everywhere
except for two branch cuts emerging from the horizons r±
and shooting o↵ to positive infinity.

Leaver’s expansion [9] to represent the Teukolsky wave

function  (0)
s . We estimate the error in our method

by performing the numerical integration twice for each
mode, the second time keeping more terms in the wave
function expansions and continued fractions, and also
more points in the angular integral. We find that the

fractional di↵erence |!(1)
run 2 � !(1)

run 1|/|!
(1)
run 2| is roughly

10�6. We test the EVP method by applying it to the DF
equation (i.e. we replace Hs with Fs). The “true” DF
QNM frequencies ! can be obtained via Leaver’s method
[21], allowing !(1) to be computed independently of the
EVP method via a numerical evaluation of (! � !(0))/q
as q ! 0. In this way we find that the fractional er-
ror in !(1) is approximately 10�5. The possible sources
for these small errors are the truncation of the QNM
wave functions, numerical imprecision in implementing
the contour integral, and error in the root finding step of
Leaver’s method.

In the top panel of Fig. 2, we parametrically plot

!(1)
R /!(0)

R + i!(1)
I /!(0)

I in the complex plane as a func-
tion of a/M , for eight low-` modes. We compute both
!(1) as predicted by the linearized KN equations (solid
lines), using Eq. (5), and as predicted by the correspond-
ing EVP analysis for DF equation (dashed lines). We
observe that in general there is a significant di↵erence
between the DF frequency corrections and the KN fre-
quency corrections. The bottom panel of Fig. 2 focuses
on the frequency corrections for rapidly-rotating black

holes. We plot !(1)
R /!(0)

R and !(1)
I /!(0)

I versus a/M for
large values of a/M . Notice that as a ! M , the DF equa-
tion predicts an increasingly accurate frequency correc-
tion !(1) for the s = 2, 220 mode, but not for the s = 1,
100 mode. We only plot two modes for clarity, but we
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obeyed by h
(0)
ab

, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
1

8
⇤
RR := �

1

8
⇤
R

abcd
Rabcd , (43)

⇤
R

abcd :=
1

2
✏
abef

Ref
cd
. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
int(1,0)
ab

[#(1)] = �C
(0)
ab

[#(1)] , (46)

Cab[#
(1)] := (✏(a

cde
r|d|Rb)c)re#

(1) + ⇤
R(a

c
b)

d
rcrd#

(1)
.

(47)

In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
ab

[#(1)] = �G
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The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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obeyed by h
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, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
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is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
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ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.
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Pontryagin-Chern density ⇤
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Lint = #RdCS , (42)

RdCS = �
1

8
⇤
RR := �

1

8
⇤
R

abcd
Rabcd , (43)

⇤
R

abcd :=
1

2
✏
abef

Ref
cd
. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
int(1,0)
ab

[#(1)] = �C
(0)
ab

[#(1)] , (46)

Cab[#
(1)] := (✏(a

cde
r|d|Rb)c)re#

(1) + ⇤
R(a

c
b)

d
rcrd#

(1)
.

(47)
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Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
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all these are evaluated
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tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
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the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
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In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the
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The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
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. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V
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at this order and Eqs. (21) and (22), together
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FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.
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obeyed by h
(0)
ab

, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
1

8
⇤
RR := �

1

8
⇤
R

abcd
Rabcd , (43)

⇤
R

abcd :=
1

2
✏
abef

Ref
cd
. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
int(1,0)
ab

[#(1)] = �C
(0)
ab

[#(1)] , (46)

Cab[#
(1)] := (✏(a

cde
r|d|Rb)c)re#

(1) + ⇤
R(a

c
b)

d
rcrd#

(1)
.

(47)

In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
ab

[#(1)] = �G
(0)
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[#(1)] , (51)

Gab[#
(1)] := 2gc(agb)d✏
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(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab
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Eq. (39), which is then solved for '
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. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.
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In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],
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⇤g(0)#
(1) =
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and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
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solves Eq. (29) with the interaction
term given in terms of the C-tensor,
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
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[#(1)
, h
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[#(1)
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(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
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Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
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Rabcd � 4Rab
Rab +R
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. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
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ab

are [57]
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The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V
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at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
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(0)]. Again, we omit this lengthy expres-
sion.
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FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.

Stein arXiv:1407.2350

<latexit sha1_base64="Wr+nW1Gts73QYUdSLFpwt6RQZ/M=">AAACAXicbVBNS8NAEN34WetX1IvgZbEInmpSinosevEiVLAf0KRls520SzebsLsRSqkX/4oXD4p49V9489+4bXPQ1gcDj/dmmJkXJJwp7Tjf1tLyyuraem4jv7m1vbNr7+3XVZxKCjUa81g2A6KAMwE1zTSHZiKBRAGHRjC4nviNB5CKxeJeDxPwI9ITLGSUaCN17EMPEsV4LLCnWIQ94LxdOrttlzp2wSk6U+BF4makgDJUO/aX141pGoHQlBOlWq6TaH9EpGaUwzjvpQoSQgekBy1DBYlA+aPpB2N8YpQuDmNpSmg8VX9PjEik1DAKTGdEdF/NexPxP6+V6vDSHzGRpBoEnS0KU451jCdx4C6TQDUfGkKoZOZWTPtEEqpNaHkTgjv/8iKpl4ruebF8Vy5UrrI4cugIHaNT5KILVEE3qIpqiKJH9Ixe0Zv1ZL1Y79bHrHXJymYO0B9Ynz8xpZYU</latexit>

✏ ⇠ `2/M2

• Stationary BH solutions



Quadratic gravity example: dCS
• Dynamical Chern-Simons: couple total derivative to scalar 

field, new length scale

35

6

obeyed by h
(0)
ab

, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
1

8
⇤
RR := �

1

8
⇤
R

abcd
Rabcd , (43)

⇤
R

abcd :=
1

2
✏
abef

Ref
cd
. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
int(1,0)
ab

[#(1)] = �C
(0)
ab

[#(1)] , (46)

Cab[#
(1)] := (✏(a

cde
r|d|Rb)c)re#

(1) + ⇤
R(a

c
b)

d
rcrd#

(1)
.

(47)

In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
ab

[#(1)] = �G
(0)
ab

[#(1)] , (51)

Gab[#
(1)] := 2gc(agb)d✏

edfg
rh(

⇤
R

ch
fgre#

(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.

6

obeyed by h
(0)
ab
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the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
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. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1
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g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.
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Pontryagin-Chern density ⇤

RR [43],
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and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
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solves Eq. (29) with the interaction
term given in terms of the C-tensor,
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
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[#(1)] = �G
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Gab[#
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(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.
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obeyed by h
(0)
ab

, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
1

8
⇤
RR := �

1

8
⇤
R

abcd
Rabcd , (43)

⇤
R

abcd :=
1

2
✏
abef

Ref
cd
. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
int(1,0)
ab

[#(1)] = �C
(0)
ab

[#(1)] , (46)

Cab[#
(1)] := (✏(a

cde
r|d|Rb)c)re#

(1) + ⇤
R(a

c
b)

d
rcrd#

(1)
.

(47)

In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
ab

[#(1)] = �G
(0)
ab

[#(1)] , (51)

Gab[#
(1)] := 2gc(agb)d✏

edfg
rh(

⇤
R

ch
fgre#

(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
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is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],
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and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
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solves Eq. (29) with the interaction
term given in terms of the C-tensor,
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
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(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
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[#(1)] , (51)
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(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.
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• Stationary BH solutions

• Post-Newtonian predictions (Yagi et al. 2012)

• Binary black hole simulations (Okounkova et al. 2019)
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obeyed by h
(0)
ab

, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
1

8
⇤
RR := �

1

8
⇤
R

abcd
Rabcd , (43)

⇤
R

abcd :=
1

2
✏
abef

Ref
cd
. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
int(1,0)
ab

[#(1)] = �C
(0)
ab

[#(1)] , (46)

Cab[#
(1)] := (✏(a

cde
r|d|Rb)c)re#

(1) + ⇤
R(a

c
b)

d
rcrd#

(1)
.

(47)

In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
ab

[#(1)] = �G
(0)
ab

[#(1)] , (51)

Gab[#
(1)] := 2gc(agb)d✏

edfg
rh(

⇤
R

ch
fgre#

(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-
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is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
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. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
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The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
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[#(1)] = �C
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Cab[#
(1)] := (✏(a
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
ab

[#(1)] = �G
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[#(1)] , (51)
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(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.
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• Stationary BH solutions

• Post-Newtonian predictions (Yagi et al. 2012)

• Binary black hole simulations (Okounkova et al. 2019)
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obeyed by h
(0)
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, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
1
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⇤
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abcd
Rabcd , (43)
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. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1
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Z
d
4
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p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
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(1)] := 2gc(agb)d✏

edfg
rh(

⇤
R

ch
fgre#
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The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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obeyed by h
(0)
ab

, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)
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The static field #
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and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
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solves Eq. (29) with the interaction
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20
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4
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�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
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Rabcd � 4Rab
Rab +R
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. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
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[#(1)] = �G
(0)
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[#(1)] , (51)

Gab[#
(1)] := 2gc(agb)d✏
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(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

2

3

ré sin q

ré c
os
q

q
é Haé=0.1L

-0.02

-0.01

0

0.01

0.02

-6-4-20246

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

2

3

ré sin q

ré c
os
q

q
é Haé=0.85L

-0.1

0

0.1

-6-4-20246

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

2

3

ré sin q

ré c
os
q

q
é Haé=0.999L

-0.2

-0.1

0

0.1

0.2

-6-4-20246

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

2

3

ré sin q

ré c
os
q

h
é Haé=0.1L

0.0002

0.0003

0.0004

-6-4-20246

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

2

3

ré sin q

ré c
os
q

h
é Haé=0.85L

0.02

0.04

0.06

0.08

-6-4-20246

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

2

3

ré sin q

ré c
os
q

h
é Haé=0.999L

0.25

0.50

0.75

1.00

1.25

-6-4-20246

FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.
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obeyed by h
(0)
ab

, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)

RdCS = �
1

8
⇤
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1

8
⇤
R

abcd
Rabcd , (43)

⇤
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abcd :=
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2
✏
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. (44)

The static field #
(1) solves to leading order

⇤g(0)#
(1) =

1

8
(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab

solves Eq. (29) with the interaction
term given in terms of the C-tensor,

V
int(1,0)
ab

[#(1)] = �C
(0)
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d
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
ab

[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
d
4
x
p
�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
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The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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obeyed by h
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, so this correction can be absorbed into

the definition of h(0)
ab

. The beyond-GR e↵ects only source
modifications to the QNMs at O(✏2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab

is selected, and input into the source term in

Eq. (39), which is then solved for '
(1)
A

. With this, the
O(✏2) part of Eq. (40) can be solved.

In Sec. IV we describe a practical approach to compute
the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [74] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a di↵er-
ent ✏-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field # coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

L# = �
1

2
g
ab(@a#)(@b#) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ⇤

RR [43],

Lint = #RdCS , (42)
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The static field #
(1) solves to leading order
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(1) =
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(⇤RR)(0,0) . (45)

and (⇤RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
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solves Eq. (29) with the interaction
term given in terms of the C-tensor,
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In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab

all these are evaluated
on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 85] and numerically explored in the rapidly ro-
tating case [84]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab

[#(1)
, h

(0)] = �C
(1)
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[#(1)
, h

(0)], which we
omit here for brevity.
The second case of interest is sGB gravity. We choose

our conventions to conform to those of [57], where #

is made dimensionless by drawing an overall factor of
1/(20) out of L# and Lint, so that the action is

SGB =
1

20

Z
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�g [R+ L# + ✏Lint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(#)RGB , (49)

RGB = R
abcd

Rabcd � 4Rab
Rab +R

2
. (50)

In addition, we must select a potential f(#). As men-
tioned previously, all choices where f 0

6= 0 are equivalent
to leading order, up to rescaling of ✏, and so we select the
simple shift-symmetric case f = #. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ⇢

(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ✏ is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].
For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab

are [57]

V
int(1,0)
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[#(1)] , (51)

Gab[#
(1)] := 2gc(agb)d✏
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(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G
(0)
ab

. The solutions to these equations have been
found in a slow-spin expansion [67, 86, 87]. As with
dCS, the dynamical field equations (40) directly follow
from V

int
ab

at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab

[#(1)
, h

(0)]. Again, we omit this lengthy expres-
sion.
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FIG. 3. (Color online) Profiles of solutions for #̃ (top) and h̃ (bottom) in a longitudinal (� = const.) section of the space. From
left to right, the profiles are at low spin (ã = 0.1), intermediate (ã = 0.85), and high spin (ã = 0.999). Color represents the value
of the field. Note the different color bar scale for each panel. Contours of constant field value are spaced linearly. The dashed
line represents the horizon. At low spin, the #̃ solution is almost a pure dipole solution, / P1(cos ✓). At intermediate and higher
spin, the solutions develop more multipole structure. h̃ is always highly peaked on the horizon at the equator, cos ✓ = 0. This is
seen more easily in Fig. 4.

rapidly with ã. It is then simple to convert this to the
separatrix between the regime of validity and breakdown
through |`/GM |

4 = 1/max |h̃(a/GM)|.

These results are presented in Fig. 1. As expected,
larger values of ã induce a larger Chern-Simons modifica-
tion, and thus the range of `/GM where the perturbation

scheme is valid is smaller. The small-ã behaviour can be
easily understood analytically. Recall that for small spin,
#̃ / ã, and then h̃ / ã2. Taking the �1/4 power to con-
vert to the `-separatrix, we have that |`/GM |sep / ã�1/2

for small ã.
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increasingly accurate frequency correction ωð1Þ for the
s ¼ 2, 220 mode, but not for the s ¼ 1, 100 mode. We
only plot two modes for clarity, but we also found that the
DF equation becomes increasingly accurate as a → M for
the s ¼ 1, 110 mode, but not for the s ¼ 2, 210 or the
s ¼ 2, 200 modes.
Using Eq. (5), we can understand this phenomenon

analytically. In the nearly extremal Kerr spacetime, there
are two branches of QNMs [27,28]; the zero damping
modes (ZDMs), which have zero decay in the extremal
limit a → M [29,30], and the damped modes (DMs), which
retain a finite decay in this limit. The s ¼ 2, 220 mode and
the s ¼ 1, 110 mode are both ZDMs, while the s ¼ 2, 210;
s ¼ 2, 200; and the s ¼ 1, 110 modes are all DMs. By
expanding the Teukolsky equation in powers of ϵ≡
1 − a=M, one can show that near the horizon (r − rþ <ffiffiffi
ϵ

p
), the Kerr ZDMs depend on ϵ only through the

conformal variable x≡ ðr − 1Þ=
ffiffiffi
ϵ

p
[17,28], while DMs

do not vary much with ϵ in the ϵ → 0 limit. Further, when

analytically continued onto the contour C, the ZDM wave
function is concentrated in the near horizon region,
allowing the integral (7) to be performed only over the
near horizon region x ≪ 1. Thus, we can figure out how the
different terms in the formula for ωð1Þ scale with ϵ, if we
write F s andHs in terms of the variable x and then pick off
the leading order ϵ-dependence. The scalings are

∂F s

∂q ¼ Oðϵ−1Þ; ∂ðHs − F sÞ
∂q ¼ Oð1Þ;

∂Hs

∂ω ¼ Oðϵ−1=2Þ: ð8Þ

The DF equation predicts increasingly accurate frequency
corrections as ϵ → 0 for modes which correspond to Kerr
ZDMs because the term that it neglects in Eq. (5) isOð

ffiffiffi
ϵ

p
Þ,

which is of subleading order.
If we assume that our first order analysis in q is accurate

all the way up to qmax, none of the eight modes that we
consider become unstable before they reach extremality. To
estimate how large Q can get before higher order con-
tributions (in q) become important, we use the EVP method
to calculate the leading order correction ωð1Þ to the QNM
frequencies of the DF equation. We then calculate the
residual error in the first order analysis δω ¼ ω−
ωð0Þ − qωð1Þ, where ω is the DF frequency calculated using
Leaver’s method, and compare it to qωð1Þ. Figure 3 plots
the comparison versus Q=Qmax for the s ¼ 2, 220 mode
and selected values of a. We see that the importance of the
higher order contributions varies greatly with a. Figure 3
also reveals that for most modes the first order analysis
begins to fail long before Q ¼ Qmax, indicating that going
beyond linear analysis is likely necessary for NEKN
QNMs. However, there are some modes, such as the
a ¼ −0.8M, s ¼ 2, 220 mode, where the first order
analysis is reasonably accurate, even when Q ¼ Qmax.
While we have focused on the fundamental l ¼ 1 (dipolar

FIG. 2 (color online). The frequency corrections ωð1Þ as
predicted by the KN equations (1) (solid lines) and by the DF
equation (dashed lines). Top panel: scaled frequency corrections
ωð1Þ
R =ωð0Þ

R þ iωð1Þ
I =ωð0Þ

I as a function of a=M. Only the modes
with m ≥ 0 are plotted, and each subsequent data point increases
by 0.15 in a=M (left to right), beginning with a=M ¼ −0.95 for
the m ¼ 1; 2 modes and with a=M ¼ 0 for the m ¼ 0 modes.
Bottom panels: The s ¼ 2, 220 and s ¼ 1, 100 QNM frequencies
plotted versus a=M in the rapidly-rotating regime.

FIG. 3 (color online). Estimate of the size of higher order
corrections in q, based on the EVP method applied to the DF
equation. The residual error in the first order analysis is
δω ¼ ω − ωð0Þ − qωð1Þ, where ω is the true DF frequency
calculated using Leaver’s method.

MARK et al. PHYSICAL REVIEW D 91, 044025 (2015)

044025-4
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