Ringdown beyond Kerr

Aaron Zimmerman (UT Austin), Asad Hussain (UT Austin) arXiv:2206:10653

Mitchell Conference

May 18, 202

Colliding dark matter

First event from O4 (kind of)

Binary black hole merger

Transition-Plunge-
Inspiral
Merger
Ringdown

Dark matter and compact binaries

- Energy of 200 Hz GWs ~ peV
- Energy scale of $1 \mathrm{~km} \sim 200 \mathrm{peV}$
- Measure finite-size effects: response to spin and tides, hence equation of state
- ALPs: can produce "gravitational atoms"
- Finite-size effects, monochromatic emission, population effects

Dark matter and compact binaries

- Energy of 200 Hz GWs ~ peV
- Energy scale of 1 km ~ 200 peV
- Measure finite-size effects: response to spin and tides, hence equation of state
- ALPs: can produce "gravitational atoms"
- Finite-size effects, monochromatic emission, population effects
- Can detect entirely new km-scale compact objects

Dark matter and compact binaries

- Energy of 200 Hz GWs ~ peV
- Energy scale of 1 km ~ 200 peV
- Measure finite-size effects: response to spin and tides, hence equation of state
- ALPs: can produce "gravitational atoms"
- Finite-size effects, monochromatic emission, population effects
- Can detect entirely new km-scale compact objects
- ...or focus on tests of gravity

Black hole ringdown

Binary black hole merger

Transition-Plunge-
Inspiral
Merger
Ringdown

Binary black hole merger

Transition-Plunge-

Inspiral

Waves around black holes

$$
\square_{g} \Phi=0
$$

- Schw: separation of variables:

$$
\Phi_{\omega l m} \sim e^{-i \omega t} \frac{u_{\omega l m}(r)}{r} Y_{l m}(\theta, \phi)
$$

Waves around black holes

$$
\square_{g} \Phi=0
$$

- Schw: separation of variables:

$$
\Phi_{\omega l m} \sim e^{-i \omega t} \frac{u_{\omega l m}(r)}{r} Y_{l m}(\theta, \phi)
$$

- Radial wave equation

$$
\begin{aligned}
& \frac{d^{2} u_{\omega l m}}{d r_{*}^{2}}+\left(\omega^{2}-V\right) u_{\omega l m}=0 \\
& V=\left(1-\frac{2 M}{r}\right)\left(\frac{l(l+1)}{r^{2}}+\frac{2 M}{r^{3}}\right)
\end{aligned}
$$

Waves around black holes

$$
\square_{g} \Phi=0
$$

- Schw: separation of variables:

$$
\Phi_{\omega l m} \sim e^{-i \omega t} \frac{u_{\omega l m}(r)}{r} Y_{l m}(\theta, \phi)
$$

- Radial wave equation

$$
\begin{aligned}
& \frac{d^{2} u_{\omega l m}}{d r_{*}^{2}}+\left(\omega^{2}-V\right) u_{\omega l m}=0 \\
& V=\left(1-\frac{2 M}{r}\right)\left(\frac{l(l+1)}{r^{2}}+\frac{2 M}{r^{3}}\right)
\end{aligned}
$$

Quasinormal modes

Quasinormal modes

Black hole spectroscopy

- Spectra determined by mass and spin
- Mass sets overall frequency scale

$$
f \approx 16\left(\frac{M_{\odot}}{M}\right) \mathrm{kHz}
$$

- Low quality oscillator: hard to measure ringdown
- One mode: mass and spin
- Two modes: clean test of Kerr spacetime

Multiple modes in ringdown

TEXAS
The University of Texas at Austin
Isi, Gielser +, arXiv:1905.00869
c.f. Cotesta + , arXiv:2201.00822

Capano, Cabero +, arXiv:2105.05238 c.f. LVK arXiv:2010.14529

Constraining deviations

- Primarily null tests

$$
h(t)=\sum A_{l m n} e^{-t / \tau_{l m n}} \cos \left(2 \pi f_{l m n} t+\phi_{l m n}\right)
$$

$$
\begin{aligned}
& f \rightarrow f(1+\delta \hat{f}) \\
& \tau \rightarrow \tau(1+\delta \hat{\tau})
\end{aligned}
$$

- How to combine multiple constraints?
- Need specific theory
- Hierarchical analysis

Constraining deviations

- Primarily null tests
$h(t)=\sum A_{l m n} e^{-t / \tau_{l m n}} \cos \left(2 \pi f_{l m n} t+\phi_{l m n}\right)$

$$
\begin{aligned}
& f \rightarrow f(1+\delta \hat{f}) \\
& \tau \rightarrow \tau(1+\delta \hat{\tau})
\end{aligned}
$$

- How to combine multiple constraints?
- Need specific theory
- Hierarchical analysis

Ringdown tests from O3

Full waveform, no overtones

Ringdown only

Towards precision tests

- Test specific theories
- Constraints mapped to theory params
- Incorporate higher harmonics and overtones
- Much work on QNMs beyond-GR, expansions in small spin
- McManus et al. arXiv:1906.05155
- Cano, Fransen, Hertog arXiv:2005.03671

- But merged black holes have $\chi \sim 0.7$

Ringdown beyond Kerr

Gravitational perts for Kerr

- Metric perts don't separate or decouple in Kerr

$$
G_{a b}(g)=\kappa_{0} \eta T_{a b} \quad g_{a b}=g_{a b}^{(0)}+\eta h_{a b}
$$

Gravitational perts for Kerr

- Metric perts don't separate or decouple in Kerr

$$
\begin{array}{cc}
G_{a b}(g)=\kappa_{0} \eta T_{a b} & g_{a b}=g_{a b}^{(0)}+\eta h_{a b} \\
G_{a b}\left(g^{0}\right)=0 & \mathcal{E}_{a b}[h]=\kappa_{0} T_{a b}
\end{array}
$$

Gravitational perts for Kerr

- Metric perts don't separate or decouple in Kerr

$$
\begin{array}{cc}
G_{a b}(g)=\kappa_{0} \eta T_{a b} & g_{a b}=g_{a b}^{(0)}+\eta h_{a b} \\
G_{a b}\left(g^{0}\right)=0 & \mathcal{E}_{a b}[h]=\kappa_{0} T_{a b}
\end{array}
$$

- Teukolsky (1973): Use Newman-Penrose eqns to decouple scalar quantites

$$
\begin{array}{lll}
s=0: & \Phi & \Phi \\
s= \pm 1: & F_{\mu \nu} & \longrightarrow \\
\phi_{0}, \phi_{2} \\
s= \pm 2: & C_{\mu \nu \rho \sigma} & \Psi_{0}, \Psi_{4}
\end{array} \longrightarrow \mathcal{O}_{s}\left[\psi_{s}\right]=4 \pi T_{s}
$$

Gravitational perts for Kerr

- Master eqn separates

$$
\psi_{s l m \omega}=e^{-i \omega t} e^{i m \phi} R_{s l m \omega}(r) S_{s l m \omega}(\theta)
$$

Gravitational perts for Kerr

- Master eqn separates

$$
\psi_{s l m \omega}=e^{-i \omega t} e^{i m \phi} R_{s l m \omega}(r) S_{s l m \omega}(\theta)
$$

- Operator picture (Wald 1978)

$$
\mathcal{S}_{s}^{a b} \mathcal{E}_{a b}[h]=\mathcal{O}_{s}\left[\psi_{s}\right]
$$

Gravitational perts for Kerr

- Master eqn separates

$$
\psi_{s l m \omega}=e^{-i \omega t} e^{i m \phi} R_{s l m \omega}(r) S_{s l m \omega}(\theta)
$$

- Operator picture (Wald 1978)

$$
\mathcal{S}_{s}^{a b} \mathcal{E}_{a b}[h]=\mathcal{O}_{s}\left[\psi_{s}\right]
$$

- Metric can be reconstructed (in special gauges)

$$
h_{a b}\left[\psi_{s}, \bar{\psi}_{s}\right]
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\mathrm{int}}+\mathcal{L}_{\text {matter }}\right]
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
\begin{aligned}
& \quad S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\text {int }}+\mathcal{L}_{\text {matter }}\right] \\
& \mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g)
\end{aligned}
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
\begin{gathered}
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\text {int }}+\mathcal{L}_{\text {matter }}\right] \\
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) \quad G_{a b}(g)=\kappa_{0}\left[T_{a b}^{\vartheta}(\vartheta, g)+T_{a b}^{\mathrm{matter}}+\epsilon V_{a b}^{\mathrm{int}}(\vartheta, g)\right]
\end{gathered}
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
\begin{gathered}
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\text {int }}+\mathcal{L}_{\text {matter }}\right] \\
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) \quad G_{a b}(g)=\kappa_{0}\left[T_{a b}^{\vartheta}(\vartheta, g)+T_{a b}^{\mathrm{matter}}+\epsilon V_{a b}^{\mathrm{int}}(\vartheta, g)\right]
\end{gathered}
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
\begin{gathered}
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\text {int }}+\mathcal{L}_{\text {matter }}\right] \\
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) \quad G_{a b}(g)=\kappa_{0}\left[T_{a b}^{\vartheta}(\vartheta, g)+T_{a b}^{\mathrm{matter}}+\epsilon V_{a b}^{\mathrm{int}}(\vartheta, g)\right]
\end{gathered}
$$

- Solve order by order for equilibrium solution

$$
\vartheta_{A}=0 \quad \longrightarrow \quad G_{a b}\left(g_{c d}^{(0)}\right)=0 \quad \longrightarrow \quad g_{a b}=g_{a b}^{(0)}
$$

Black holes beyond GR

- Focus on theories which perturb off GR in decoupling limit

$$
\begin{gathered}
S=S_{E H}+\int d^{4} x \sqrt{-g}\left[\mathcal{L}_{\vartheta}+\epsilon \mathcal{L}_{\text {int }}+\mathcal{L}_{\text {matter }}\right] \\
\mathcal{W}_{A}(\vartheta, g)=\epsilon \rho_{A}(\vartheta, g) \quad G_{a b}(g)=\kappa_{0}\left[T_{a b}^{\vartheta}(\vartheta, g)+T_{a b}^{\mathrm{matter}}+\epsilon V_{a b}^{\mathrm{int}}(\vartheta, g)\right]
\end{gathered}
$$

- Solve order by order for equilibrium solution

$$
\begin{aligned}
& \vartheta_{A}=0 \quad \longrightarrow \quad G_{a b}\left(g_{c d}^{(0)}\right)=0 \quad \longrightarrow \quad g_{a b}=g_{a b}^{(0)} \\
& \longrightarrow \vartheta_{A}=0+\epsilon \vartheta_{A}^{(1)} \quad \longrightarrow \quad g_{a b}=g_{a b}^{(0)}+\epsilon^{2} g_{a b}^{(2)}
\end{aligned}
$$

Perturbed black holes beyond Kerr

- Now add dynamical perturbations to all fields

$$
\vartheta_{A}=\epsilon \vartheta_{A}^{(1)}+\eta \varphi_{A}+\ldots \quad g_{a b}=g_{a b}^{(0)}+\epsilon^{2} g_{a b}^{(2)}+\eta h_{a b}+\ldots
$$

Perturbed black holes beyond Kerr

- Now add dynamical perturbations to all fields

$$
\vartheta_{A}=\epsilon \vartheta_{A}^{(1)}+\eta \varphi_{A}+\ldots \quad g_{a b}=g_{a b}^{(0)}+\epsilon^{2} g_{a b}^{(2)}+\eta h_{a b}+\ldots
$$

- Prefer
EXAS

$$
h_{a b}=h_{a b}^{(0)}+\epsilon^{2} h_{a b}^{(2)} \quad \varphi=0+\epsilon \varphi_{A}^{(1)}
$$

Modified Teukolsky equation

- First solve $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$
- Deriving modified Teukolsky equation very involved

$$
\mathcal{E}_{a b}[h]+\epsilon^{2}\left(\delta \mathcal{E}_{a b}[h]-\delta T_{a b}^{\vartheta}[h]+C_{a b}[h]\right)
$$

Modified Teukolsky equation

See also $\mathrm{Li}+$

- First solve $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$ arXiv: 2206.10652
- Deriving modified Teukolsky equation very involved

$$
\mathcal{E}_{a b}[h]+\epsilon^{2}\left(\delta \mathcal{E}_{a b}[h]-\delta T_{a b}^{\vartheta}[h]+C_{a b}[h]\right)
$$

Modified Teukolsky equation

See also $\mathrm{Li}+$

- First solve $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$ arXiv: 2206.10652
- Deriving modified Teukolsky equation very involved

- Operator approach provides shortcut:

$$
\mathcal{S}^{a b}\left[\mathcal{E}_{a b}[h]+\epsilon^{2}\left(\delta \mathcal{E}_{a b}[h]-\delta T_{a b}^{\vartheta}[h]+C_{a b}[h]\right)\right]
$$

Modified Teukolsky equation

- First solve $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$ arXiv: 2206.10652
- Deriving modified Teukolsky equation very involved

- Operator approach provides shortcut:

$$
\begin{gathered}
\mathcal{S}^{a b}\left[\mathcal{E}_{a b}[h]+\epsilon^{2}\left(\delta \mathcal{E}_{a b}[h]-\delta T_{a b}^{\vartheta}[h]+C_{a b}[h]\right)\right] \\
=\mathcal{O}\left[\psi_{s}\right]+\epsilon^{2} \mathcal{V}[h]+\epsilon^{2} \mathcal{C}[h]
\end{gathered}
$$

Modified Teukolsky equation

See also $\mathrm{Li}+$

- First solve $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$ arXiv: 2206.10652
- Deriving modified Teukolsky equation very involved

- Operator approach provides shortcut:

$$
\begin{aligned}
& \mathcal{S}^{a b}\left[\mathcal{E}_{a b}[h]\right.\left.+\epsilon^{2}\left(\delta \mathcal{E}_{a b}[h]-\delta T_{a b}^{\vartheta}[h]+C_{a b}[h]\right)\right] \\
&=\mathcal{O}\left[\psi_{s}\right]+\epsilon^{2} \mathcal{V}[h]+\epsilon^{2} \mathcal{C}[h] \\
& h_{a b}\left[\psi_{s}, \bar{\psi}_{s}\right]
\end{aligned}
$$

Modified Teukolsky equation

See also $\mathrm{Li}+$

- First solve $\varphi_{A}^{(1)}\left[h^{(0)}\right]=\mathcal{W}_{A}^{-1}\left[h^{(0)}\right]$ arXiv: 2206.10652
- Deriving modified Teukolsky equation very involved

- Operator approach provides shortcut:

$$
\begin{gathered}
\mathcal{S}^{a b}\left[\mathcal{E}_{a b}[h]+\epsilon^{2}\left(\delta \mathcal{E}_{a b}[h]-\delta T_{a b}^{\vartheta}[h]+C_{a b}[h]\right)\right] \\
=\mathcal{O}\left[\psi_{s}\right]+\epsilon^{2} \mathcal{V}[h]+\epsilon^{2} \mathcal{C}[h]
\end{gathered}
$$

- View as perturbed eigenvalue problem

Eigenvalue perturbations

- For a spacetime deformed from Kerr, can apply perturbative approach

$$
H|n\rangle=E_{n}|n\rangle \rightarrow(H+\delta H)|n\rangle=\left(E_{n}+\delta E_{n}|n\rangle\right)
$$

Eigenvalue perturbations

- For a spacetime deformed from Kerr, can apply perturbative approach

$$
\begin{aligned}
H|n\rangle & =E_{n}|n\rangle \rightarrow(H+\delta H)|n\rangle=\left(E_{n}+\delta E_{n}|n\rangle\right) \\
\left\langle n^{(0)}\right| H\left|n^{(1)}\right\rangle & =E_{n}\left\langle n^{(0)} \mid n^{(1)}\right\rangle
\end{aligned}
$$

Eigenvalue perturbations

- For a spacetime deformed from Kerr, can apply perturbative approach

$$
\begin{aligned}
H|n\rangle & =E_{n}|n\rangle \rightarrow(H+\delta H)|n\rangle=\left(E_{n}+\delta E_{n}|n\rangle\right) \\
\left\langle n^{(0)}\right| H\left|n^{(1)}\right\rangle & =E_{n}\left\langle n^{(0)} \mid n^{(1)}\right\rangle \longrightarrow \delta E_{n}=\frac{\left\langle n^{(0)}\right| \delta H\left|n^{(0)}\right\rangle}{\left\langle n^{(0)} \mid n^{(0)}\right\rangle}
\end{aligned}
$$

Eigenvalue perturbations

- For a spacetime deformed from Kerr, can apply perturbative approach

$$
\begin{aligned}
H|n\rangle & =E_{n}|n\rangle \rightarrow(H+\delta H)|n\rangle=\left(E_{n}+\delta E_{n}|n\rangle\right) \\
\left\langle n^{(0)}\right| H\left|n^{(1)}\right\rangle & =E_{n}\left\langle n^{(0)} \mid n^{(1)}\right\rangle
\end{aligned}>\delta E_{n}=\frac{\left\langle n^{(0)}\right| \delta H\left|n^{(0)}\right\rangle}{\left\langle n^{(0)} \mid n^{(0)}\right\rangle} .
$$

- Scalar wave equation straightforward: $g_{a b}=g_{a b}^{(0)}+\epsilon g_{a b}^{(1)}$

$$
\square_{g^{(0)}+\epsilon g^{(1)}} \Phi=\left[\square^{(0)}+\epsilon \delta \square\right] \Phi
$$

Eigenvalue perturbations

- For a spacetime deformed from Kerr, can apply perturbative approach

$$
\begin{aligned}
H|n\rangle & =E_{n}|n\rangle \rightarrow(H+\delta H)|n\rangle=\left(E_{n}+\delta E_{n}|n\rangle\right) \\
\left\langle n^{(0)}\right| H\left|n^{(1)}\right\rangle & =E_{n}\left\langle n^{(0)} \mid n^{(1)}\right\rangle
\end{aligned} \quad\left\langle\delta E_{n}=\frac{\left\langle n^{(0)}\right| \delta H\left|n^{(0)}\right\rangle}{\left\langle n^{(0)} \mid n^{(0)}\right\rangle} .\right.
$$

- Scalar wave equation straightforward: $g_{a b}=g_{a b}^{(0)}+\epsilon g_{a b}^{(1)}$

$$
\square_{g^{(0)}+\epsilon g^{(1)}} \Phi=\left[\square^{(0)}+\epsilon \delta \square\right] \Phi \quad \delta \omega=-\frac{\left\langle\Phi^{(0)}\right| \delta \square\left|\Phi^{(0)}\right\rangle}{\left\langle\Phi^{(0)}\right| \partial_{\omega} \square^{(0)}\left|\Phi^{(0)}\right\rangle}
$$

Eigenvalue perturbations

Transient "turbulence" of scalar perts

Weakly charged Kerr-Newman

Roadmap

Roadmap

Roadmap

Summary and future

- Predicting QNMs allow for multi-mode ringdown tests of Kerr
- Modified Teukolsky eqn
- EVP method: allows for high spins
- Several challenges ahead in implementation
- Many detections in the coming years
- Combine constraints
- 3rd gen and LISA: precision predictions needed

Extras

Breaking isospectrality

- One conceptual issue: metric reconstruction couples ψ_{s} and $\bar{\psi}_{s}$
- Couples two families of modes: $\omega_{l m n}$ and $-\bar{\omega}_{l m n}$
- Equality of modes: even and odd parity modes have same spectrum (Nichols et al. 2012)
- Really degenerate perturbation theory

$$
\omega_{\text {even }}^{(2)} \neq \omega_{\text {odd }}^{(2)}
$$

- Ongoing work on parity breaking: Li et al.

Degenerate EVP

- Formally write metric reconstruction as

$$
h_{a b}^{(0)}=\mathcal{K}_{a b}[\psi]+\overline{\mathcal{K}}_{a b}[\bar{\psi}] \quad \mathcal{V}[h]=\mathcal{V} \mathcal{K}[\psi]+\mathcal{V} \overline{\mathcal{K}}[\bar{\psi}]
$$

- Consider superposition of states that don't mix

$$
\psi=\psi_{+}+\alpha \psi_{-}
$$

- Apply EVP approach

$$
\omega_{+}^{(2)}=-\frac{\left\langle\psi_{+}\right|(\mathcal{V}+\mathcal{C}) \mathcal{K}\left|\psi_{+}\right\rangle+\alpha\left\langle\psi_{+}\right|(\mathcal{V}+\mathcal{C}) \overline{\mathcal{K}}\left|\bar{\psi}_{-}\right\rangle}{\left\langle\psi_{+}\right| \partial_{\omega} \mathcal{O}\left|\psi_{+}\right\rangle}
$$

Combining events

- Beyond-GR parameter common to all events
- Beyond-GR parameter varies
- Need population modeling (hierarchical modeling) to combine events
- Modeling needs to account for degeneracies

$$
p(\vec{\theta}) \rightarrow p(\vec{\theta} \mid \vec{\Lambda}) p(\vec{\Lambda})
$$

- Example: charged black holes
- Use ringdown package (Isi, Farr)
- Use multiple tones, infer M, χ, Q
- Start from peak of full IMR waveform

Example: Charged BHs

Example: Charged BHs

Overtones in ringdown

Gravitational perts for Kerr

- Angular equation: (spin-weighted) spheroidal harmonics

$$
{ }_{s} \psi_{l m \omega}=e^{-i \omega t} e^{i m \phi}{ }_{s} R_{l m \omega}(r)_{s} S_{l m \omega}(\theta)
$$

- Standard Sturm-Liouville eigenvalue problem

$$
\begin{gathered}
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d S_{l m \omega}}{d \theta}\right)+V_{\theta}\left(\omega, A_{l m}\right) S_{l m \omega}=0 \\
V_{\theta}={ }_{s} E_{l m \omega}-\frac{m^{2}}{\sin ^{2} \theta}-s^{2} \cot ^{2} \theta-s^{2}+a^{2} \omega^{2} \cos ^{2} \theta-2 a \omega s \cos \theta
\end{gathered}
$$

Gravitational perts for Kerr

- Radial equation: Schroedinger-like with complex potential

$$
\begin{gathered}
\frac{d^{2} u_{l m \omega}}{d r_{*}^{2}}+V_{r} u_{l m \omega}=S_{l m \omega}(r) \quad R_{l m \omega}=\frac{u_{l m \omega}}{\left[\left(r-r_{+}\right)^{s}\left(r-r_{-}\right)^{s}\left(r^{2}+a^{2}\right)\right]^{1 / 2}} \\
V_{r}=\left(\omega-\frac{a m}{r^{2}+a^{2}}\right)^{2}-2 i s \frac{r-M}{r^{2}+a^{2}}\left(\omega-\frac{a m}{r^{2}+a^{2}}\right)+F\left(r, s, E_{l m \omega}, \omega\right) \\
u_{\mathrm{in}} \sim\left\{\begin{array}{cc}
A_{\mathrm{in}} e^{-i \omega r_{*}+A_{\text {out }} e^{i \omega r_{*}}} & r_{*} \rightarrow \infty \\
e^{-i\left(\omega-m \Omega_{H}\right) r_{*}} & r_{*} \rightarrow-\infty
\end{array}\right.
\end{gathered}
$$

Gravitational perts for Kerr

- Radial equation: Schroedinger-like with complex potential

$$
\begin{gathered}
\frac{d^{2} u_{l m \omega}}{d r_{*}^{2}}+V_{r} u_{l m \omega}=S_{l m \omega}(r) \quad R_{l m \omega}=\frac{u_{l m \omega}}{\left[\left(r-r_{+}\right)^{s}\left(r-r_{-}\right)^{s}\left(r^{2}+a^{2}\right)\right]^{1 / 2}} \\
V_{r}=\left(\omega-\frac{a m}{r^{2}+a^{2}}\right)^{2}-2 i s \frac{r-M}{r^{2}+a^{2}}\left(\omega-\frac{a m}{r^{2}+a^{2}}\right)+F\left(r, s, E_{l m \omega}, \omega\right) \\
\left(1-\frac{m \Omega_{H}}{\omega}\right)|\mathcal{T}|^{2}=1-|\mathcal{R}|^{2}
\end{gathered}
$$

Perturbed black holes beyond Kerr

- Now add dynamical perturbations to all fields

$$
\vartheta_{A}=\epsilon \vartheta_{A}^{(1)}+\eta \varphi_{A}+\ldots \quad g_{a b}=g_{a b}^{(0)}+\epsilon^{2} g_{a b}^{(2)}+\eta h_{a b}+\ldots
$$

Perturbed black holes beyond Kerr

- Now add dynamical perturbations to all fields

$$
\vartheta_{A}=\epsilon \vartheta_{A}^{(1)}+\eta \varphi_{A}+\ldots \quad g_{a b}=g_{a b}^{(0)}+\epsilon^{2} g_{a b}^{(2)}+\eta h_{a b}+\ldots
$$

- Coupled equations for perts

$$
\left(\begin{array}{cc}
\mathcal{E}_{a b}+\epsilon^{2}\left(\delta \mathcal{E}_{a b}-\delta T_{a b}^{\vartheta}\right) & \epsilon \mathcal{C}_{a b} \\
\epsilon \mathcal{F}_{A} & \mathcal{W}_{A}+\epsilon\left(\delta \mathcal{W}_{A}-\delta \rho_{A}\right)
\end{array}\right)\binom{h_{c d}}{\varphi_{B}}=0
$$

Eigenvalue perturbations

- Perturb eigenvalue and eigenstate

$$
\Phi=\left(\Phi_{m \omega}^{(0)} e^{-i \epsilon \delta \omega t}+\epsilon \Phi_{m \omega}^{(1)}\right) e^{i m \phi-i \omega^{(0)} t}
$$

Eigenvalue perturbations

- Perturb eigenvalue and eigenstate

$$
\Phi=\left(\Phi_{m \omega}^{(0)} e^{-i \epsilon \delta \omega t}+\epsilon \Phi_{m \omega}^{(1)}\right) e^{i m \phi-i \omega^{(0)} t}
$$

- Need finite product where wave operator is self-adjoint

$$
\langle\Psi \mid \Phi\rangle=C \quad\left\langle\Psi \mid \square^{(0)} \Phi\right\rangle=\left\langle\square^{(0)} \Psi \mid \Phi\right\rangle
$$

Eigenvalue perturbations

- Perturb eigenvalue and eigenstate

$$
\Phi=\left(\Phi_{m \omega}^{(0)} e^{-i \epsilon \delta \omega t}+\epsilon \Phi_{m \omega}^{(1)}\right) e^{i m \phi-i \omega^{(0)} t}
$$

- Need finite product where wave operator is self-adjoint

$$
\langle\Psi \mid \Phi\rangle=C \quad\left\langle\Psi \mid \square^{(0)} \Phi\right\rangle=\left\langle\square^{(0)} \Psi \mid \Phi\right\rangle
$$

Eigenvalue perturbations

- Perturb eigenvalue and eigenstate

$$
\Phi=\left(\Phi_{m \omega}^{(0)} e^{-i \epsilon \delta \omega t}+\epsilon \Phi_{m \omega}^{(1)}\right) e^{i m \phi-i \omega^{(0)} t}
$$

- Need finite product where wave operator is self-adjoint

$$
\begin{array}{ll}
\langle\Psi \mid \Phi\rangle=C & \left\langle\Psi \mid \square^{(0)} \Phi\right\rangle=\left\langle\square^{(0)} \Psi \mid \Phi\right\rangle \\
\operatorname{Im}[\mathrm{r}] \mid & \hat{y}^{\gamma} \mid \\
& \delta \omega=-\frac{\left\langle\Phi^{(0)}\right| \delta \square\left|\Phi^{(0)}\right\rangle}{\left\langle\Phi^{(0)}\right| \partial_{\omega} \square^{(0)}\left|\Phi^{(0)}\right\rangle}
\end{array}
$$

Gravitational example: charged black holes

- Coupled equations

$$
\begin{aligned}
& G_{a b}=8 \pi T_{a b}^{\mathrm{EM}} \\
& g^{a b} \nabla_{a} F_{b c}=0
\end{aligned}
$$

- Cannot decouple and separate: gravitoelectromag perturbations

Gravitational example: charged black holes

- Coupled equations

$$
\begin{aligned}
& G_{a b}=8 \pi T_{a b}^{\mathrm{EM}} \\
& g^{a b} \nabla_{a} F_{b c}=0
\end{aligned}
$$

- Cannot decouple and separate: gravitoelectromag perturbations
- Small charge: can decouple and apply EVP

$$
\begin{aligned}
g_{a b} & =g_{a b}^{(0)}+Q^{2} g_{a b}^{(2)}+\eta h_{a b} \\
F_{a b} & =Q F_{a b}^{(1)}+\eta f_{a b}
\end{aligned}
$$

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^{2} / M^{2}$

$$
\mathcal{L}_{\mathrm{int}}=\vartheta \mathcal{R}_{\mathrm{dCS}} \quad \mathcal{R}_{\mathrm{dCS}}=-\frac{1}{8} * R R:=-\frac{1}{8} * R^{a b c d} R_{a b c d}
$$

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^{2} / M^{2}$

$$
\mathcal{L}_{\mathrm{int}}=\vartheta \mathcal{R}_{\mathrm{dCS}} \quad \mathcal{R}_{\mathrm{dCS}}=-\frac{1}{8} * R R:=-\frac{1}{8} * R^{a b c d} R_{a b c d}
$$

- Stationary BH solutions

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^{2} / M^{2}$

$$
\mathcal{L}_{\mathrm{int}}=\vartheta \mathcal{R}_{\mathrm{dCS}} \quad \mathcal{R}_{\mathrm{dCS}}=-\frac{1}{8} * R R:=-\frac{1}{8} * R^{a b c d} R_{a b c d}
$$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^{2} / M^{2}$

$$
\mathcal{L}_{\mathrm{int}}=\vartheta \mathcal{R}_{\mathrm{dCS}} \quad \mathcal{R}_{\mathrm{dCS}}=-\frac{1}{8} * R R:=-\frac{1}{8} * R^{a b c d} R_{a b c d}
$$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)
- Binary black hole simulations (Okounkova et al. 2019)

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^{2} / M^{2}$

$$
\mathcal{L}_{\mathrm{int}}=\vartheta \mathcal{R}_{\mathrm{dCS}} \quad \mathcal{R}_{\mathrm{dCS}}=-\frac{1}{8} * R R:=-\frac{1}{8} * R^{a b c d} R_{a b c d}
$$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)
- Binary black hole simulations (Okounkova et al. 2019)
- Strong constraints from NICER (Silva et al. 2021) $\ell \lesssim 8.5 \mathrm{~km}$

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^{2} / M^{2}$

$$
\mathcal{L}_{\mathrm{int}}=\vartheta \mathcal{R}_{\mathrm{dCS}} \quad \mathcal{R}_{\mathrm{dCS}}=-\frac{1}{8} * R R:=-\frac{1}{8} * R^{a b c d} R_{a b c d}
$$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)
- Binary black hole simulations (Okounkova et al. 2019)
- Strong constraints from NICER (Silva et al. 2021) $\ell \lesssim 8.5 \mathrm{~km}$
- Slow-spin expansion for deform and ringdown (Cano et al. 2020; Wagle et al. 2021; Srivastava et al. 2021)

Quadratic gravity example: dCS

- Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^{2} / M^{2}$

$$
\mathcal{L}_{\mathrm{int}}=\vartheta \mathcal{R}_{\mathrm{dCS}} \quad \mathcal{R}_{\mathrm{dCS}}=-\frac{1}{8} * R R:=-\frac{1}{8} * R^{a b c d} R_{a b c d}
$$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)
- Binary black hole simulations (Okounkova et al. 2019)
- Strong constraints from NICER (Silva et al. 2021) $\ell \lesssim 8.5 \mathrm{~km}$
- Slow-spin expansion for deform and ringdown (Cano et al. 2020; Wagle et al. 2021; Srivastava et al. 2021)
- But parameter inference requires results at high spins $0 \leq \chi \leq 0.99$

Example: charged black holes

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\mathcal{O}_{2}+Q^{2} \delta O_{2} & Q^{2} \mathcal{G}_{2} \\
Q^{2} \mathcal{G}_{1} & \mathcal{O}_{1}+Q^{2} \delta O_{1}
\end{array}\right)\binom{\psi_{2}}{\psi_{1}}=0
$$

Example: charged black holes

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\mathcal{O}_{2}+Q^{2} \delta O_{2} & Q^{2} \mathcal{G}_{2} \\
Q^{2} \mathcal{G}_{1} & \mathcal{O}_{1}+Q^{2} \delta O_{1}
\end{array}\right)\binom{\psi_{2}}{\psi_{1}}=0
$$

- We know the eigenmodes for $Q=0$

$$
\begin{aligned}
& \psi_{2}=\psi_{2}^{(0)}+Q^{2} \psi_{2}^{(2)} \\
& \psi_{1}=0+Q^{2} \psi_{1}^{(2)}
\end{aligned}
$$

Example: charged black holes

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\mathcal{O}_{2}+Q^{2} \delta O_{2} & Q^{2} \mathcal{G}_{2} \\
Q^{2} \mathcal{G}_{1} & \mathcal{O}_{1}+Q^{2} \delta O_{1}
\end{array}\right)\binom{\psi_{2}}{\psi_{1}}=0
$$

- We know the eigenmodes for $Q=0$

$$
\begin{aligned}
& \psi_{2}=\psi_{2}^{(0)}+Q^{2} \psi_{2}^{(2)} \\
& \psi_{1}=0+Q^{2} \psi_{1}^{(2)}
\end{aligned}
$$

- This decouples everything

Example: charged black holes

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\mathcal{O}_{2}+Q^{2} \delta O_{2} & Q^{2} \mathcal{G}_{2} \\
Q^{2} \mathcal{G}_{1} & \mathcal{O}_{1}+Q^{2} \delta O_{1}
\end{array}\right)\binom{\psi_{2}}{\psi_{1}}=0
$$

- We know the eigenmodes for $Q=0$

$$
\begin{aligned}
& \psi_{2}=\psi_{2}^{(0)}+Q^{2} \psi_{2}^{(2)} \\
& \psi_{1}=0+Q^{2} \psi_{1}^{(2)}
\end{aligned}
$$

- This decouples everything

$$
\omega^{(2)}=-\frac{\left\langle\psi_{2}^{(0)}\right| \delta \mathcal{O}_{2}\left|\psi_{2}^{(0)}\right\rangle}{\left\langle\psi_{2}^{(0)}\right| \partial_{\omega} \mathcal{O}_{2}\left|\psi_{2}^{(0)}\right\rangle}
$$

Example: charged black holes

Fractional Error in $\tau=\frac{\tau_{\text {exact }}-\tau_{\text {approx }}}{\tau_{\text {approx }}}$

- Chandrasekhar: NP derivation

$$
\left(\begin{array}{cc}
\mathcal{O}_{2}+Q^{2} \delta O_{2} & Q^{2} \mathcal{G}_{2} \\
Q^{2} \mathcal{G}_{1} & \mathcal{O}_{1}+Q^{2} \delta O_{1}
\end{array}\right)\binom{\psi_{2}}{\psi_{1}}=0
$$

- We know the eigenmodes for $Q=0$

$$
\begin{aligned}
& \psi_{2}=\psi_{2}^{(0)}+Q^{2} \psi_{2}^{(2)} \\
& \psi_{1}=0+Q^{2} \psi_{1}^{(2)}
\end{aligned}
$$

- This decouples everything

