Ringdown beyond Kerr

Aaron Zimmerman (UT Austin), Asad Hussain (UT Austin) arXiv:2206:10653

> Mitchell Conference May 18, 202

First event from O4 (kind of)

• Still in ER15

S230518h: Likely NSBH

• FAR: 1 in 98 yr

Binary black hole merger

Dark matter and compact binaries

- Energy of 200 Hz GWs ~ peV
- Energy scale of 1 km ~ 200 peV
- Measure finite-size effects: response to spin and tides, hence equation of state
- ALPs: can produce "gravitational atoms"
 - Finite-size effects, monochromatic emission, population effects

Dark matter and compact binaries

- Energy of 200 Hz GWs ~ peV
- Energy scale of 1 km ~ 200 peV
- Measure finite-size effects: response to spin and tides, hence equation of state
- ALPs: can produce "gravitational atoms"
 - Finite-size effects, monochromatic emission, population effects
- Can detect entirely new km-scale compact objects

Chia, Edwards, Wadekar, AZ +, arXiv:2306.XXXXX

Dark matter and compact binaries

- Energy of 200 Hz GWs ~ peV
- Energy scale of 1 km ~ 200 peV
- Measure finite-size effects: response to spin and tides, hence equation of state
- ALPs: can produce "gravitational atoms"
 - Finite-size effects, monochromatic emission, population effects
- Can detect entirely new km-scale compact objects
- ...or focus on tests of gravity

Black hole ringdown

Binary black hole merger

Binary black hole merger

Waves around black holes

$$\Box_g \Phi = 0$$

Schw: separation of variables:

$$\Phi_{\omega lm} \sim e^{-i\omega t} \frac{u_{\omega lm}(r)}{r} Y_{lm}(\theta, \phi)$$

Waves around black holes

$$\Box_g \Phi = 0$$

Schw: separation of variables:

$$\Phi_{\omega lm} \sim e^{-i\omega t} \frac{u_{\omega lm}(r)}{r} Y_{lm}(\theta, \phi)$$

Radial wave equation

$$\frac{d^2 u_{\omega lm}}{dr_*^2} + (\omega^2 - V) u_{\omega lm} = 0$$

$$V = \left(1 - \frac{2M}{r}\right) \left(\frac{l(l+1)}{r^2} + \frac{2M}{r^3}\right)$$

Waves around black holes

$$\Box_g \Phi = 0$$

Schw: separation of variables:

$$\Phi_{\omega lm} \sim e^{-i\omega t} \frac{u_{\omega lm}(r)}{r} Y_{lm}(\theta, \phi)$$

Radial wave equation

$$\frac{d^2 u_{\omega lm}}{dr_*^2} + (\omega^2 - V) u_{\omega lm} = 0$$

$$V = \left(1 - \frac{2M}{r}\right) \left(\frac{l(l+1)}{r^2} + \frac{2M}{r^3}\right)$$

Quasinormal modes

Quasinormal modes

Black hole spectroscopy

- Spectra determined by mass and spin
- Mass sets overall frequency scale

$$f \approx 16 \left(\frac{M_{\odot}}{M}\right) \text{kHz}$$

- Low quality oscillator: hard to measure ringdown
- One mode: mass and spin
- Two modes: clean test of Kerr spacetime

1.6 Berti, Cardoso, Will (2006)

Multiple modes in ringdown

Capano, Cabero +, arXiv:2105.05238

Isi, Gielser +, arXiv:1905.00869 c.f. Cotesta +, arXiv:2201.00822

Constraining deviations

Primarily null tests

$$h(t) = \sum A_{lmn} e^{-t/\tau_{lmn}} \cos(2\pi f_{lmn} t + \phi_{lmn})$$
$$f \to f(1 + \delta \hat{f})$$
$$\tau \to \tau(1 + \delta \hat{\tau})$$

- How to combine multiple constraints?
 - Need specific theory
 - Hierarchical analysis

Constraining deviations

Primarily null tests

$$h(t) = \sum A_{lmn} e^{-t/\tau_{lmn}} \cos(2\pi f_{lmn} t + \phi_{lmn})$$
$$f \to f(1 + \delta \hat{f})$$
$$\tau \to \tau(1 + \delta \hat{\tau})$$

- How to combine multiple constraints?
 - Need specific theory
 - Hierarchical analysis

Ringdown tests from O3

Full waveform, no overtones

pSEOBNRv4HM

Towards precision tests

- Test specific theories
 - Constraints mapped to theory params
 - Incorporate higher harmonics and overtones
- Much work on QNMs beyond-GR, expansions in small spin
 - McManus et al. arXiv:1906.05155
 - Cano, Fransen, Hertog arXiv:2005.03671
- But merged black holes have $~\chi\sim 0.7$

Ringdown beyond Kerr

Metric perts don't separate or decouple in Kerr

$$G_{ab}(g) = \kappa_0 \eta T_{ab}$$
 $g_{ab} = g_{ab}^{(0)} + \eta h_{ab}$

Metric perts don't separate or decouple in Kerr

$$G_{ab}(g) = \kappa_0 \eta T_{ab}$$

$$g_{ab} = g_{ab}^{(0)} + \eta h_{ab}$$

$$G_{ab}(g^0) = 0$$

$$\mathcal{E}_{ab}[h] = \kappa_0 T_{ab}$$

Metric perts don't separate or decouple in Kerr

$$G_{ab}(g) = \kappa_0 \eta T_{ab}$$

$$G_{ab}(g^0) = 0$$

$$\mathcal{E}_{ab}[h] = \kappa_0 T_{ab}$$

• Teukolsky (1973): Use Newman-Penrose eqns to decouple scalar quantites

$$s = 0:$$
 Φ Φ $s = \pm 1:$ $F_{\mu\nu}$ \longrightarrow ϕ_0, ϕ_2 \longrightarrow $\mathcal{O}_s[\psi_s] = 4\pi T_s$ $s = \pm 2:$ $C_{\mu\nu\rho\sigma}$ Ψ_0, Ψ_4

Master eqn separates

$$\psi_{slm\omega} = e^{-i\omega t} e^{im\phi} R_{slm\omega}(r) S_{slm\omega}(\theta)$$

Master eqn separates

$$\psi_{slm\omega} = e^{-i\omega t} e^{im\phi} R_{slm\omega}(r) S_{slm\omega}(\theta)$$

• Operator picture (Wald 1978)

$$\mathcal{S}_s^{ab}\mathcal{E}_{ab}[h] = \mathcal{O}_s[\psi_s]$$

Master eqn separates

$$\psi_{slm\omega} = e^{-i\omega t} e^{im\phi} R_{slm\omega}(r) S_{slm\omega}(\theta)$$

• Operator picture (Wald 1978)

$$\mathcal{S}_s^{ab}\mathcal{E}_{ab}[h] = \mathcal{O}_s[\psi_s]$$

• Metric can be reconstructed (in special gauges)

$$h_{ab}[\psi_s, \bar{\psi}_s]$$

Focus on theories which perturb off GR in decoupling limit

$$S = S_{EH} + \int d^4x \sqrt{-g} [\mathcal{L}_{\vartheta} + \epsilon \mathcal{L}_{int} + \mathcal{L}_{matter}]$$

• Focus on theories which perturb off GR in decoupling limit

$$S = S_{EH} + \int d^4x \sqrt{-g} [\mathcal{L}_{\vartheta} + \epsilon \mathcal{L}_{int} + \mathcal{L}_{matter}]$$

$$\mathcal{W}_A(\vartheta,g) = \epsilon \rho_A(\vartheta,g)$$

Focus on theories which perturb off GR in decoupling limit

$$S = S_{EH} + \int d^4x \sqrt{-g} [\mathcal{L}_{\vartheta} + \epsilon \mathcal{L}_{int} + \mathcal{L}_{matter}]$$

$$W_A(\vartheta, g) = \epsilon \rho_A(\vartheta, g) \qquad G_{ab}(g) = \kappa_0 \left[T_{ab}^{\vartheta}(\vartheta, g) + T_{ab}^{\text{matter}} + \epsilon V_{ab}^{\text{int}}(\vartheta, g) \right]$$

Focus on theories which perturb off GR in decoupling limit

$$S = S_{EH} + \int d^4x \sqrt{-g} [\mathcal{L}_{\vartheta} + \epsilon \mathcal{L}_{int} + \mathcal{L}_{matter}]$$

$$W_A(\vartheta, g) = \epsilon \rho_A(\vartheta, g) \qquad G_{ab}(g) = \kappa_0 \left[T_{ab}^{\vartheta}(\vartheta, g) + T_{ab}^{\text{matter}} + \epsilon V_{ab}^{\text{int}}(\vartheta, g) \right]$$

Focus on theories which perturb off GR in decoupling limit

$$S = S_{EH} + \int d^4x \sqrt{-g} [\mathcal{L}_{\vartheta} + \epsilon \mathcal{L}_{int} + \mathcal{L}_{matter}]$$

$$W_A(\vartheta, g) = \epsilon \rho_A(\vartheta, g) \qquad G_{ab}(g) = \kappa_0 \left[T_{ab}^{\vartheta}(\vartheta, g) + T_{ab}^{\text{matter}} + \epsilon V_{ab}^{\text{int}}(\vartheta, g) \right]$$

Solve order by order for equilibrium solution

$$\vartheta_A = 0 \qquad \longrightarrow \qquad G_{ab}(g_{cd}^{(0)}) = 0 \qquad \longrightarrow \qquad g_{ab} = g_{ab}^{(0)}$$

Focus on theories which perturb off GR in decoupling limit

$$S = S_{EH} + \int d^4x \sqrt{-g} [\mathcal{L}_{\vartheta} + \epsilon \mathcal{L}_{int} + \mathcal{L}_{matter}]$$

$$W_A(\vartheta, g) = \epsilon \rho_A(\vartheta, g) \qquad G_{ab}(g) = \kappa_0 \left[T_{ab}^{\vartheta}(\vartheta, g) + T_{ab}^{\text{matter}} + \epsilon V_{ab}^{\text{int}}(\vartheta, g) \right]$$

Solve order by order for equilibrium solution

$$\vartheta_A = 0 \longrightarrow G_{ab}(g_{cd}^{(0)}) = 0 \longrightarrow g_{ab} = g_{ab}^{(0)}$$

$$\longrightarrow \vartheta_A = 0 + \epsilon \vartheta_A^{(1)} \longrightarrow g_{ab} = g_{ab}^{(0)} + \epsilon^2 g_{ab}^{(2)}$$

Perturbed black holes beyond Kerr

Now add dynamical perturbations to all fields

$$\vartheta_A = \epsilon \vartheta_A^{(1)} + \eta \varphi_A + \dots$$
 $g_{ab} = g_{ab}^{(0)} + \epsilon^2 g_{ab}^{(2)} + \eta h_{ab} + \dots$

Perturbed black holes beyond Kerr

Now add dynamical perturbations to all fields

$$\vartheta_A = \epsilon \vartheta_A^{(1)} + \eta \varphi_A + \dots$$
 $g_{ab} = g_{ab}^{(0)} + \epsilon^2 g_{ab}^{(2)} + \eta h_{ab} + \dots$

• Preferred basis partially decouples:

$$h_{ab} = h_{ab}^{(0)} + \epsilon^2 h_{ab}^{(2)}$$

$$\varphi = 0 + \epsilon \varphi_A^{(1)}$$

Modified Teukolsky equation

- $\bullet \ \ \text{First solve} \quad \varphi_A^{(1)}[h^{(0)}] = \mathcal{W}_A^{-1}[h^{(0)}]$
- Deriving modified Teukolsky equation very involved

$$\mathcal{E}_{ab}[h] + \epsilon^2 (\delta \mathcal{E}_{ab}[h] - \delta T_{ab}^{\vartheta}[h] + C_{ab}[h])$$

- First solve $\varphi_A^{(1)}[h^{(0)}]=\mathcal{W}_A^{-1}[h^{(0)}]$
- Deriving modified Teukolsky equation very involved

See also Li + arXiv: 2206.10652

 $\bullet \ \ \text{First solve} \quad \varphi_A^{(1)}[h^{(0)}] = \mathcal{W}_A^{-1}[h^{(0)}]$

- Deriving modified Teukolsky equation very involved
- Operator approach provides shortcut:

$$\mathcal{S}^{ab}[\mathcal{E}_{ab}[h] + \epsilon^2(\delta \mathcal{E}_{ab}[h] - \delta T_{ab}^{\vartheta}[h] + C_{ab}[h])]$$

 $\bullet \ \ \text{First solve} \quad \varphi_A^{(1)}[h^{(0)}] = \mathcal{W}_A^{-1}[h^{(0)}]$

- See also Li + arXiv: 2206.10652
- Deriving modified Teukolsky equation very involved

Operator approach provides shortcut:

$$\mathcal{S}^{ab}[\mathcal{E}_{ab}[h] + \epsilon^2(\delta \mathcal{E}_{ab}[h] - \delta T_{ab}^{\vartheta}[h] + C_{ab}[h])]$$

$$= \mathcal{O}[\psi_s] + \epsilon^2 \mathcal{V}[h] + \epsilon^2 \mathcal{C}[h]$$

 $\bullet \ \mbox{First solve} \quad \varphi_A^{(1)}[h^{(0)}] = \mathcal{W}_A^{-1}[h^{(0)}]$

- See also Li + arXiv: 2206.10652
- Deriving modified Teukolsky equation very involved
- Operator approach provides shortcut:

$$\mathcal{S}^{ab}[\mathcal{E}_{ab}[h] + \epsilon^2(\delta \mathcal{E}_{ab}[h] - \delta T_{ab}^{\vartheta}[h] + C_{ab}[h])]$$

$$= \mathcal{O}[\psi_s] + \epsilon^2 \mathcal{V}[h] + \epsilon^2 \mathcal{C}[h]$$

 $\bullet \ \mbox{First solve} \quad \varphi_A^{(1)}[h^{(0)}] = \mathcal{W}_A^{-1}[h^{(0)}]$

- See also Li + arXiv: 2206.10652
- Deriving modified Teukolsky equation very involved
- Operator approach provides shortcut:

$$\mathcal{S}^{ab}[\mathcal{E}_{ab}[h] + \epsilon^2(\delta \mathcal{E}_{ab}[h] - \delta T_{ab}^{\vartheta}[h] + C_{ab}[h])]$$

$$= \mathcal{O}[\psi_s] + \epsilon^2 \mathcal{V}[h] + \epsilon^2 \mathcal{C}[h]$$

 $h_{ab}[\psi_s,ar{\psi}_s]$

View as perturbed eigenvalue problem

• For a spacetime deformed from Kerr, can apply perturbative approach

$$H|n\rangle = E_n|n\rangle \rightarrow (H + \delta H)|n\rangle = (E_n + \delta E_n|n\rangle)$$

• For a spacetime deformed from Kerr, can apply perturbative approach

$$H|n\rangle = E_n|n\rangle \rightarrow (H + \delta H)|n\rangle = (E_n + \delta E_n|n\rangle)$$

$$\langle n^{(0)}|H|n^{(1)}\rangle = E_n\langle n^{(0)}|n^{(1)}\rangle$$

For a spacetime deformed from Kerr, can apply perturbative approach

$$H|n\rangle = E_n|n\rangle \rightarrow (H + \delta H)|n\rangle = (E_n + \delta E_n|n\rangle)$$

$$\langle n^{(0)}|H|n^{(1)}\rangle = E_n\langle n^{(0)}|n^{(1)}\rangle \longrightarrow \delta E_n = \frac{\langle n^{(0)}|\delta H|n^{(0)}\rangle}{\langle n^{(0)}|n^{(0)}\rangle}$$

For a spacetime deformed from Kerr, can apply perturbative approach

$$H|n\rangle = E_n|n\rangle \rightarrow (H + \delta H)|n\rangle = (E_n + \delta E_n|n\rangle)$$

$$\langle n^{(0)}|H|n^{(1)}\rangle = E_n\langle n^{(0)}|n^{(1)}\rangle \longrightarrow \delta E_n = \frac{\langle n^{(0)}|\delta H|n^{(0)}\rangle}{\langle n^{(0)}|n^{(0)}\rangle}$$

• Scalar wave equation straightforward: $g_{ab} = g_{ab}^{(0)} + \epsilon g_{ab}^{(1)}$

$$\square_{g^{(0)}+\epsilon g^{(1)}}\Phi = [\square^{(0)}+\epsilon \delta\square]\Phi$$

For a spacetime deformed from Kerr, can apply perturbative approach

$$H|n\rangle = E_n|n\rangle \rightarrow (H + \delta H)|n\rangle = (E_n + \delta E_n|n\rangle)$$

$$\langle n^{(0)}|H|n^{(1)}\rangle = E_n\langle n^{(0)}|n^{(1)}\rangle \longrightarrow \delta E_n = \frac{\langle n^{(0)}|\delta H|n^{(0)}\rangle}{\langle n^{(0)}|n^{(0)}\rangle}$$

• Scalar wave equation straightforward: $g_{ab} = g_{ab}^{(0)} + \epsilon g_{ab}^{(1)}$

$$\Box_{g^{(0)}+\epsilon g^{(1)}} \Phi = [\Box^{(0)} + \epsilon \delta \Box] \Phi \qquad \delta \omega = -\frac{\langle \Phi^{(0)} | \delta \Box | \Phi^{(0)} \rangle}{\langle \Phi^{(0)} | \partial_{\omega} \Box^{(0)} | \Phi^{(0)} \rangle}$$

Transient "turbulence" of scalar perts

Weakly charged Kerr-Newman

Mark, Yang, AZ, Chen, arXiv:1409.5800

Roadmap

New physics?

Roadmap

Roadmap

Summary and future

- Predicting QNMs allow for multi-mode ringdown tests of Kerr
 - Modified Teukolsky eqn
 - EVP method: allows for high spins
 - Several challenges ahead in implementation
- Many detections in the coming years
 - Combine constraints
- 3rd gen and LISA: precision predictions needed

Extras

Breaking isospectrality

- ullet One conceptual issue: metric reconstruction couples $\,\psi_s\,$ and $\,\psi_s\,$
- Couples two families of modes: ω_{lmn} and $-ar{\omega}_{lmn}$
 - Equality of modes: even and odd parity modes have same spectrum (Nichols et al. 2012)
- Really degenerate perturbation theory

$$\omega_{\text{even}}^{(2)} \neq \omega_{\text{odd}}^{(2)}$$

Ongoing work on parity breaking:
 Li et al.

Hussain, AZ arXiv: 2206.10653 Li, Hussain, Wagle, Chen, Yunes, AZ arXiv:2306.XXXX

Degenerate EVP

Formally write metric reconstruction as

$$h_{ab}^{(0)} = \mathcal{K}_{ab}[\psi] + \bar{\mathcal{K}}_{ab}[\bar{\psi}] \qquad \qquad \mathcal{V}[h] = \mathcal{V}\mathcal{K}[\psi] + \mathcal{V}\bar{\mathcal{K}}[\bar{\psi}]$$

Consider superposition of states that don't mix

$$\psi = \psi_+ + \alpha \psi_-$$

Apply EVP approach

$$\omega_{+}^{(2)} = -\frac{\langle \psi_{+} | (\mathcal{V} + \mathcal{C}) \mathcal{K} | \psi_{+} \rangle + \alpha \langle \psi_{+} | (\mathcal{V} + \mathcal{C}) \bar{\mathcal{K}} | \bar{\psi}_{-} \rangle}{\langle \psi_{+} | \partial_{\omega} \mathcal{O} | \psi_{+} \rangle}$$

Combining events

- Beyond-GR parameter common to all events
- Beyond-GR parameter varies
 - Need population modeling (hierarchical modeling) to combine events
 - Modeling needs to account for degeneracies

$$p(\vec{\theta}) \to p(\vec{\theta}|\vec{\Lambda})p(\vec{\Lambda})$$

- Example: charged black holes
 - Use ringdown package (Isi, Farr)
 - Use multiple tones, infer $M,\,\chi,\,Q$
 - Start from peak of full IMR waveform

Example: Charged BHs

Example: Charged BHs

Overtones in ringdown

Giesler, Isi, Scheel, Teukolsky arXiv:1903.08284

Gravitational perts for Kerr

• Angular equation: (spin-weighted) spheroidal harmonics

$$_{s}\psi_{lm\omega} = e^{-i\omega t}e^{im\phi} _{s}R_{lm\omega}(r)_{s}S_{lm\omega}(\theta)$$

Standard Sturm-Liouville eigenvalue problem

$$\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{dS_{lm\omega}}{d\theta} \right) + V_{\theta}(\omega, A_{lm}) S_{lm\omega} = 0$$

$$V_{\theta} = {}_{s}E_{lm\omega} - \frac{m^{2}}{\sin^{2}\theta} - s^{2}\cot^{2}\theta - s^{2} + a^{2}\omega^{2}\cos^{2}\theta - 2a\omega s\cos\theta$$

Gravitational perts for Kerr

Radial equation: Schroedinger-like with complex potential

$$\frac{d^2 u_{lm\omega}}{dr_*^2} + V_r u_{lm\omega} = S_{lm\omega}(r) \qquad \qquad R_{lm\omega} = \frac{u_{lm\omega}}{[(r - r_+)^s (r - r_-)^s (r^2 + a^2)]^{1/2}}$$

$$V_{r} = \left(\omega - \frac{am}{r^{2} + a^{2}}\right)^{2} - 2is\frac{r - M}{r^{2} + a^{2}}\left(\omega - \frac{am}{r^{2} + a^{2}}\right) + F(r, s, \frac{E_{lm\omega}}{r}, \omega)$$

$$u_{\rm in} \sim \begin{cases} A_{\rm in} e^{-i\omega r_*} + A_{\rm out} e^{i\omega r_*} & r_* \to \infty \\ e^{-i(\omega - m\Omega_H)r_*} & r_* \to -\infty \end{cases}$$

Gravitational perts for Kerr

Radial equation: Schroedinger-like with complex potential

$$\frac{d^2 u_{lm\omega}}{dr_*^2} + V_r u_{lm\omega} = S_{lm\omega}(r) \qquad R_{lm\omega} = \frac{u_{lm\omega}}{[(r - r_+)^s (r - r_-)^s (r^2 + a^2)]^{1/2}}$$

$$V_{r} = \left(\omega - \frac{am}{r^{2} + a^{2}}\right)^{2} - 2is\frac{r - M}{r^{2} + a^{2}}\left(\omega - \frac{am}{r^{2} + a^{2}}\right) + F(r, s, \frac{E_{lm\omega}}{r}, \omega)$$

$$\left(1 - \frac{m\Omega_H}{\omega}\right) |\mathcal{T}|^2 = 1 - |\mathcal{R}|^2$$

Perturbed black holes beyond Kerr

Now add dynamical perturbations to all fields

$$\vartheta_A = \epsilon \vartheta_A^{(1)} + \eta \varphi_A + \dots$$
 $g_{ab} = g_{ab}^{(0)} + \epsilon^2 g_{ab}^{(2)} + \eta h_{ab} + \dots$

Perturbed black holes beyond Kerr

Now add dynamical perturbations to all fields

$$\vartheta_A = \epsilon \vartheta_A^{(1)} + \eta \varphi_A + \dots$$
 $g_{ab} = g_{ab}^{(0)} + \epsilon^2 g_{ab}^{(2)} + \eta h_{ab} + \dots$

Coupled equations for perts

$$\begin{pmatrix} \mathcal{E}_{ab} + \epsilon^2 (\delta \mathcal{E}_{ab} - \delta T_{ab}^{\vartheta}) & \epsilon \mathcal{C}_{ab} \\ \epsilon \mathcal{F}_A & \mathcal{W}_A + \epsilon (\delta \mathcal{W}_A - \delta \rho_A) \end{pmatrix} \begin{pmatrix} h_{cd} \\ \varphi_B \end{pmatrix} = 0$$

Perturb eigenvalue and eigenstate

$$\Phi = (\Phi_{m\omega}^{(0)} e^{-i\epsilon \delta\omega t} + \epsilon \Phi_{m\omega}^{(1)}) e^{im\phi - i\omega^{(0)}t}$$

Perturb eigenvalue and eigenstate

$$\Phi = (\Phi_{m\omega}^{(0)} e^{-i\epsilon \delta \omega t} + \epsilon \Phi_{m\omega}^{(1)}) e^{im\phi - i\omega^{(0)}t}$$

Need finite product where wave operator is self-adjoint

$$\langle \Psi | \Phi \rangle = C$$

$$\langle \Psi | \Box^{(0)} \Phi \rangle = \langle \Box^{(0)} \Psi | \Phi \rangle$$

Perturb eigenvalue and eigenstate

$$\Phi = (\Phi_{m\omega}^{(0)} e^{-i\epsilon \delta\omega t} + \epsilon \Phi_{m\omega}^{(1)}) e^{im\phi - i\omega^{(0)}t}$$

Need finite product where wave operator is self-adjoint

$$\langle \Psi | \Phi \rangle = C$$

$$\langle \Psi | \Box^{(0)} \Phi \rangle = \langle \Box^{(0)} \Psi | \Phi \rangle$$

Perturb eigenvalue and eigenstate

$$\Phi = (\Phi_{m\omega}^{(0)} e^{-i\epsilon \delta\omega t} + \epsilon \Phi_{m\omega}^{(1)}) e^{im\phi - i\omega^{(0)}t}$$

Need finite product where wave operator is self-adjoint

$$\langle \Psi | \Phi \rangle = C$$

$$\langle \Psi | \Box^{(0)} \Phi \rangle = \langle \Box^{(0)} \Psi | \Phi \rangle$$

$$\delta\omega = -\frac{\langle \Phi^{(0)} | \delta \Box | \Phi^{(0)} \rangle}{\langle \Phi^{(0)} | \partial_{\omega} \Box^{(0)} | \Phi^{(0)} \rangle}$$

Gravitational example: charged black holes

Coupled equations

$$G_{ab} = 8\pi T_{ab}^{\rm EM}$$

$$g^{ab}\nabla_a F_{bc} = 0$$

 Cannot decouple and separate: gravitoelectromag perturbations

Gravitational example: charged black holes

Coupled equations

$$G_{ab} = 8\pi T_{ab}^{\rm EM}$$

$$g^{ab}\nabla_a F_{bc} = 0$$

- Cannot decouple and separate: gravitoelectromag perturbations
- Small charge: can decouple and apply EVP

$$g_{ab} = g_{ab}^{(0)} + Q^2 g_{ab}^{(2)} + \eta h_{ab}$$
$$F_{ab} = Q F_{ab}^{(1)} + \eta f_{ab}$$

• Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^2/M^2$

$$\mathcal{L}_{\text{int}} = \vartheta \mathcal{R}_{\text{dCS}}$$
 $\mathcal{R}_{\text{dCS}} = -\frac{1}{8} * RR := -\frac{1}{8} * R^{abcd} R_{abcd}$

• Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^2/M^2$

$$\mathcal{L}_{\text{int}} = \vartheta \mathcal{R}_{\text{dCS}}$$
 $\mathcal{R}_{\text{dCS}} = -\frac{1}{8} * RR := -\frac{1}{8} * R^{abcd} R_{abcd}$

Stationary BH solutions

• Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^2/M^2$

$$\mathcal{L}_{\text{int}} = \vartheta \mathcal{R}_{\text{dCS}}$$
 $\mathcal{R}_{\text{dCS}} = -\frac{1}{8} * RR := -\frac{1}{8} * R^{abcd} R_{abcd}$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)

Stein arXiv:1407.2350

• Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^2/M^2$

$$\mathcal{L}_{\text{int}} = \vartheta \mathcal{R}_{\text{dCS}}$$
 $\mathcal{R}_{\text{dCS}} = -\frac{1}{8} * RR := -\frac{1}{8} * R^{abcd} R_{abcd}$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)
- Binary black hole simulations (Okounkova et al. 2019)

Stein arXiv:1407.2350

• Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^2/M^2$

$$\mathcal{L}_{\text{int}} = \vartheta \mathcal{R}_{\text{dCS}}$$
 $\mathcal{R}_{\text{dCS}} = -\frac{1}{8} * RR := -\frac{1}{8} * R^{abcd} R_{abcd}$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)
- Binary black hole simulations (Okounkova et al. 2019)
- Strong constraints from NICER (Silva et al. 2021) $\ell \lesssim 8.5 \mathrm{km}$

• Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^2/M^2$

$$\mathcal{L}_{\text{int}} = \vartheta \mathcal{R}_{\text{dCS}}$$
 $\mathcal{R}_{\text{dCS}} = -\frac{1}{8} * RR := -\frac{1}{8} * R^{abcd} R_{abcd}$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)
- Binary black hole simulations (Okounkova et al. 2019)
- Strong constraints from NICER (Silva et al. 2021) $\ell \lesssim 8.5 \mathrm{km}$
- Slow-spin expansion for deform and ringdown (Cano et al. 2020; Wagle et al. 2021; Srivastava et al. 2021)

Stein arXiv:1407.2350

• Dynamical Chern-Simons: couple total derivative to scalar field, new length scale $\epsilon \sim \ell^2/M^2$

$$\mathcal{L}_{\text{int}} = \vartheta \mathcal{R}_{\text{dCS}}$$
 $\mathcal{R}_{\text{dCS}} = -\frac{1}{8} * RR := -\frac{1}{8} * R^{abcd} R_{abcd}$

- Stationary BH solutions
- Post-Newtonian predictions (Yagi et al. 2012)
- Binary black hole simulations (Okounkova et al. 2019)
- Strong constraints from NICER (Silva et al. 2021) $\ell \lesssim 8.5 \mathrm{km}$
- Slow-spin expansion for deform and ringdown (Cano et al. 2020; Wagle et al. 2021; Srivastava et al. 2021)
- But parameter inference requires results at high spins $0 \le \chi \le 0.99$

Stein arXiv:1407.2350

Chandrasekhar: NP derivation

$$\begin{pmatrix} \mathcal{O}_2 + Q^2 \delta O_2 & Q^2 \mathcal{G}_2 \\ Q^2 \mathcal{G}_1 & \mathcal{O}_1 + Q^2 \delta O_1 \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} = 0$$

Chandrasekhar: NP derivation

$$\begin{pmatrix} \mathcal{O}_2 + Q^2 \delta O_2 & Q^2 \mathcal{G}_2 \\ Q^2 \mathcal{G}_1 & \mathcal{O}_1 + Q^2 \delta O_1 \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} = 0$$

• We know the eigenmodes for Q = 0

$$\psi_2 = \psi_2^{(0)} + Q^2 \psi_2^{(2)}$$

$$\psi_1 = 0 + Q^2 \psi_1^{(2)}$$

Chandrasekhar: NP derivation

$$\begin{pmatrix} \mathcal{O}_2 + Q^2 \delta O_2 & Q^2 \mathcal{G}_2 \\ Q^2 \mathcal{G}_1 & \mathcal{O}_1 + Q^2 \delta O_1 \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} = 0$$

We know the eigenmodes for Q = 0

$$\psi_2 = \psi_2^{(0)} + Q^2 \psi_2^{(2)}$$

$$\psi_1 = 0 + Q^2 \psi_1^{(2)}$$

This decouples everything

$$\omega^{(2)} = -\frac{\langle \psi_2^{(0)} | \delta \mathcal{O}_2 | \psi_2^{(0)} \rangle}{\langle \psi_2^{(0)} | \partial_\omega \mathcal{O}_2 | \psi_2^{(0)} \rangle}$$

Chandrasekhar: NP derivation

$$\begin{pmatrix} \mathcal{O}_2 + Q^2 \delta O_2 & Q^2 \mathcal{G}_2 \\ Q^2 \mathcal{G}_1 & \mathcal{O}_1 + Q^2 \delta O_1 \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} = 0 \quad \stackrel{\mathfrak{S}}{\underset{5}{\tilde{}}}_{1.5}^{2.5}$$

• We know the eigenmodes for Q = 0

$$\psi_2 = \psi_2^{(0)} + Q^2 \psi_2^{(2)}$$

$$\psi_1 = 0 + Q^2 \psi_1^{(2)}$$

This decouples everything

$$\omega^{(2)} = -\frac{\langle \psi_2^{(0)} | \delta \mathcal{O}_2 | \psi_2^{(0)} \rangle}{\langle \psi_2^{(0)} | \partial_\omega \mathcal{O}_2 | \psi_2^{(0)} \rangle}$$

Chandrasekhar: NP derivation

$$\begin{pmatrix} \mathcal{O}_2 + Q^2 \delta O_2 & Q^2 \mathcal{G}_2 \\ Q^2 \mathcal{G}_1 & \mathcal{O}_1 + Q^2 \delta O_1 \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} = 0$$

• We know the eigenmodes for Q = 0

$$\psi_2 = \psi_2^{(0)} + Q^2 \psi_2^{(2)}$$

$$\psi_1 = 0 + Q^2 \psi_1^{(2)}$$

This decouples everything

Dias, Godazgar, Santos, arXiv:1501.04625 Carullo et al. arXiv:2109.13961