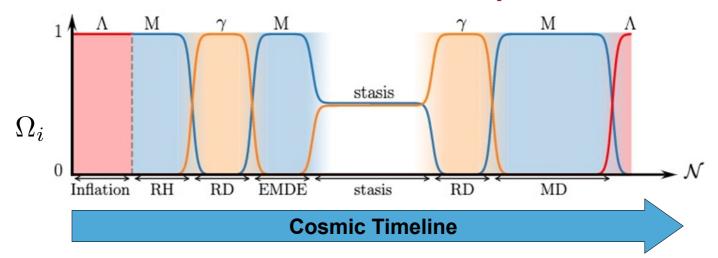
Stasis in an Expanding Universe

Overview, Concrete Realizations, and Observational Consequences



Brooks Thomas

LAFAYETTE COLLEGE

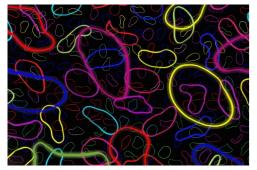
Based on work done in collaboration with:

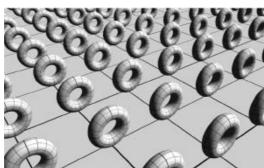
Keith R. Dienes, Fei Huang, Lucien Heurtier, Doojin Kim, and Tim M. P. Tait [arXiv:2108.02204, 2212.01369]

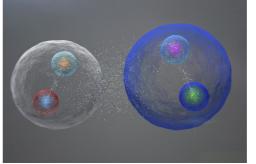
Mitchell Conference, Texas A&M University, May 19th, 2023

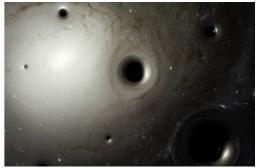
Towers of Unstable States

- A wide variety of scenarios for new-physics predict <u>towers of massive</u>, <u>unstable states</u> with a broad spectrum of masses, cosmological abundances, and lifetimes.
- Such towers are a generic feature of, for example,...
 - String theory (string moduli, axions, etc.)
 - Theories with extra spacetime dimensions (KK towers)
 - Scenarios with confining dark/hidden-sector gauge groups (boundstate resonances)
 - Scenarios which lead to the production of primordial black holes with an extended mass spectrum (the black holes themselves)
- In some cases, such states can give rise to astrophysical signals, signals at colliders, etc.; in others, they are too heavy/short-lived.



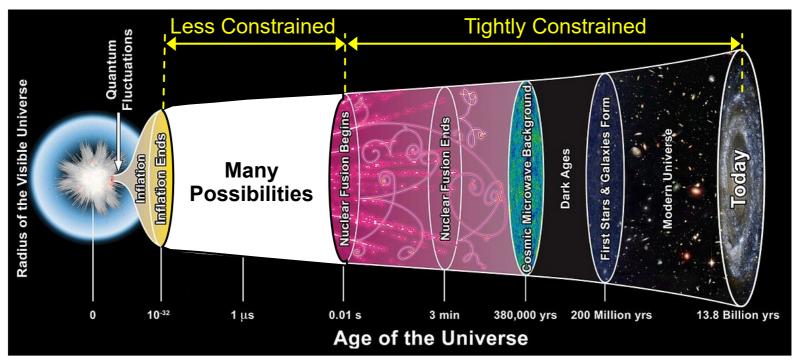






Cosmological Consequences

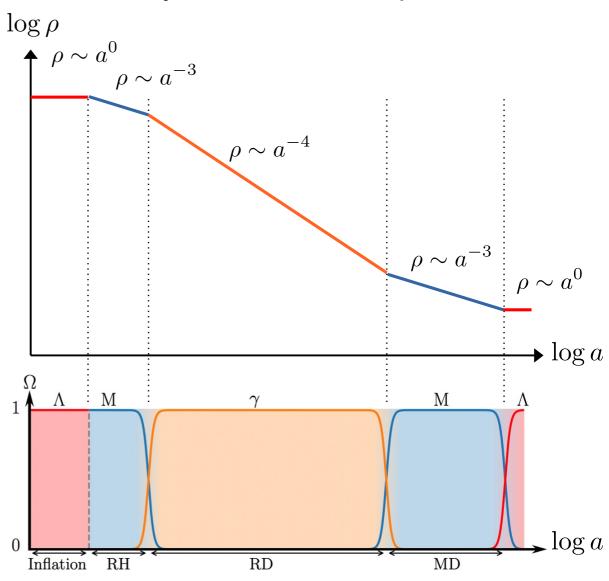
 The presence of such towers can have a significant impact on earlyuniverse cosmology – even if the tower states are too heavy/short-lived to be accessible.



- Indeed, as I'll show in this, talk, such towers can give rise to <u>stable</u>, <u>mixed-component eras</u>: eras in which the abundances of multiple cosmological energy components (in this case, matter and radiation) remain effectively constant over an extended period.
- Moreover, these eras are global attractors: if the basic conditions under which they arise satisfied, the universe will evolve toward them.

The Traditional Picture

- The energy densities associated with different <u>cosmological</u> <u>components</u> (matter, radiation, vacuum energy, etc.) with different equations of state scale behave differently under cosmic expansion.
- As a result, except during brief transition periods, the energy density of the universe is <u>dominated by</u> <u>one such component</u>.
- This is certainly the case in the standard cosmology.
- Moreover, it's typically the case event in <u>modified</u> <u>cosmologies</u> (e.g., with epochs of early matter- or vacuum-energydomination) as well.

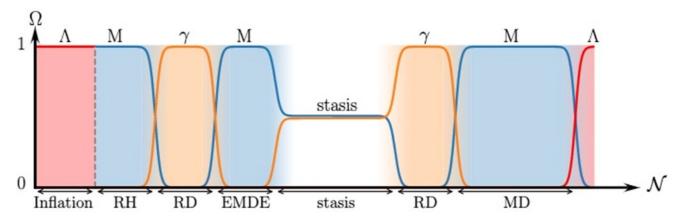


A Stable Mixed-Component Era?

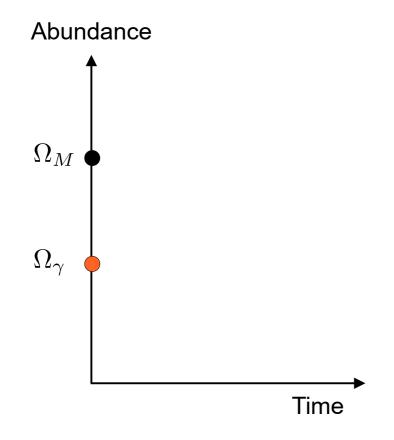
So... is it indeed possible to achieve a stable, mixed-component cosmological era in which multiple Ω_i maintain non-neglible, effectively constant values over an extended period?

- In other words, can we arrange for slices of the "cosmic pie" corresponding to components with different equations of state to <u>remain effectively</u> <u>fixed</u> over an extended period?
- At first glance, arranging this may seem impossible – or at least attainable only with a ridiculous amount of fine-tuning.

However, it turns out that such eras, which we call periods of **cosmic stasis**, can be realized in a straightforward manner in the presence of towers of unstable states.



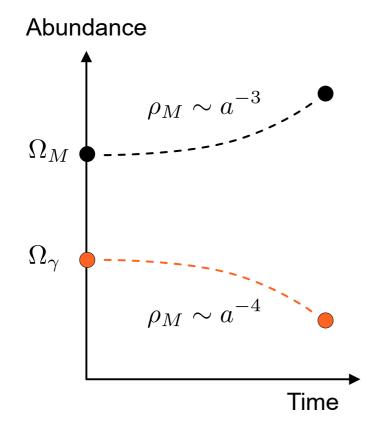
• To see how a stasis era can arise, let us consider a universe effectively consisting of matter and radiation alone, with all other Ω_i negligible.



$$\frac{d\rho_M}{dt} = -3H\rho_M$$

$$\frac{d\rho_\gamma}{dt} = -4H\rho_\gamma$$

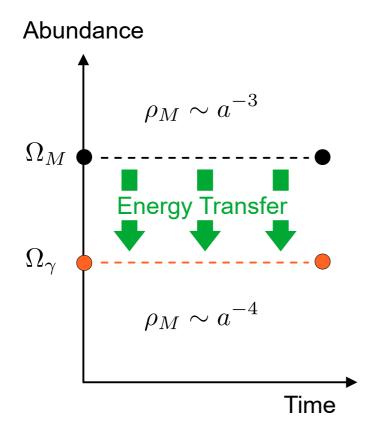
- To see how a stasis era can arise, let us consider a universe effectively consisting of matter and radiation alone, with all other Ω_i negligible.
- Since ρ_M and ρ_γ scale differently under cosmic expansion, Ω_M typically increases, while Ω_γ decreases.



$$\frac{d\rho_M}{dt} = -3H\rho_M$$

$$\frac{d\rho_\gamma}{dt} = -4H\rho_\gamma$$

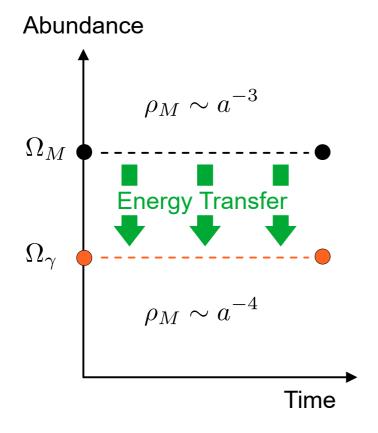
- To see how a stasis era can arise, let us consider a universe effectively consisting of matter and radiation alone, with all other Ω_i negligible.
- Since ρ_M and ρ_γ scale differently under cosmic expansion, Ω_M typically increases, while Ω_γ decreases.
- In order to compensate for this effect, what's needed is a <u>continuous</u> transfer of energy density from matter to radiation.



$$\frac{d\rho_M}{dt} = -3H\rho_M - S(t)$$

$$\frac{d\rho_\gamma}{dt} = -4H\rho_\gamma + S(t)$$

- To see how a stasis era can arise, let us consider a universe effectively consisting of matter and radiation alone, with all other Ω_i negligible.
- Since ρ_M and ρ_γ scale differently under cosmic expansion, Ω_M typically increases, while Ω_γ decreases.
- In order to compensate for this effect, what's needed is a <u>continuous</u> <u>transfer of energy density</u> from matter to radiation.



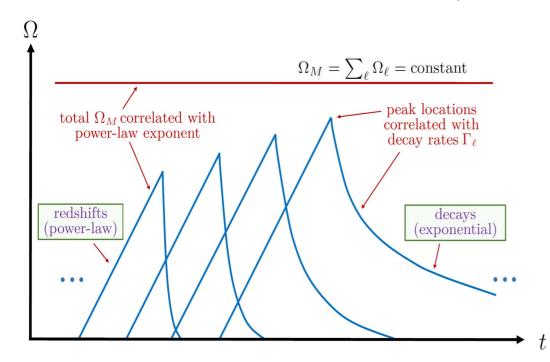
Boltzmann Equations

$$\frac{d\rho_M}{dt} = -3H\rho_M - S(t)$$

$$\frac{d\rho_\gamma}{dt} = -4H\rho_\gamma + S(t)$$

<u>Particle decays</u> provide a natural mechanism for obtaining these source/sink terms.

- The exponential decay of a single matter species, which occurs over a relatively short time period, is insufficient for achieving stasis.
- However in the presence of a <u>tower of matter states</u> ϕ_{ℓ} , where $\ell = 0, 1, 2, ..., N$ 1, whose decay widths Γ_{ℓ} and initial abundances $\Omega_{\ell}^{(0)}$ scale across the tower in such a way that the effect of decays on Ω_{M} and Ω_{γ} compensates for the effect of cosmic expansion over a extended period.
- Since the effective equation-of-state parameter for the universe satisfies $0 < w_{\rm eff} < 1/3$ during stasis, each individual Ω_{ℓ} rises until $t \sim 1/\Gamma_{\ell}$, and then plummets as the particle decays.



- Other particles with lower $\Omega_{\ell}^{(0)}$ but longer lifetimes continue to rise and collectively compensate for the loss of abundance as each state drops out.
- As a result, the total abundance $\Omega_{\rm M}$ of the matter states remains **effectively constant**, despite the rise and fall of the Ω_{ℓ} !

[Dienes, Huang, Heurtier, Kim, Tait, BT '21]

Conditions for Stasis

• The Boltzmann equations for the individual ρ_{ℓ} , in conjunction with the relevant Friedmann equation, yield an equation of motion for Ω_M .

Stasis Condition (Instantaneous)

$$\frac{d\Omega_M}{dt} = 0$$

• To achieve stasis, we impose
$$\frac{d\Omega_M}{dt}=0$$

$$\sum_\ell \Gamma_\ell \Omega_\ell = H(\Omega_M-\Omega_M^2)$$

• In order to achieve an <u>extended period</u> of stasis, we need this instantaneous stasis condition to be satisfied over a significant range of t.

The left and right sides of this stasis-condition equation must have the same functional dependence on *t*.

Conditions for Stasis

- By construction, during a stasis era, $\frac{d\Omega_M}{dt} = 0$ $\Omega_M = \overline{\Omega}_M = [\text{const.}]$
- The Friedmann acceleration equation therefore implies:

$$\frac{dH}{dt} = -\frac{1}{2}H^2(4 - \overline{\Omega}_M) \qquad \qquad H(t) = \left(\frac{2}{4 - \overline{\Omega}_M}\right)\frac{1}{t}$$

 Substituting these results into our instantaneous stasis condition, we find that the condition for realizing an extended period of stasis can be expressed in two ways:

$$\sum_\ell \Omega_\ell = \overline{\Omega}_M$$
 or $\sum_\ell \Gamma_\ell \Omega_\ell = rac{2\overline{\Omega}_M (1-\overline{\Omega}_M)}{4-\overline{\Omega}_M} rac{1}{t}$

• These expresssions can be combined to yield $\frac{\sum_{\ell} \Gamma_{\ell} \Omega_{\ell}}{\sum_{\ell} \Omega_{\ell}} = \frac{2(1 - \Omega_{M})}{4 - \overline{\Omega}_{M}} \frac{1}{t}$

$$\frac{\sum_{\ell} \Gamma_{\ell} \Omega_{\ell}}{\sum_{\ell} \Omega_{\ell}} = \frac{2(1 - \overline{\Omega}_{M})}{4 - \overline{\Omega}_{M}} \frac{1}{t}$$

• During stasis, then, this ratio of sums must be inversely proportional to t.

• Let's consider a tower of N such states states with...

Masses

$$m_{\ell} = m_0 + (\Delta m)\ell^{\delta}$$

Decay Widths

$$\Gamma_\ell = \Gamma_0 \left(\frac{m_\ell}{m_0} \right)^\gamma$$

Initial Abundances

$$\Omega_{\ell}^{(0)} = \Omega_0^{(0)} \left(\frac{m_{\ell}}{m_0}\right)^{\alpha}$$

- Towers of states with mass spectra of this form arise naturally in many extensions of the Standard Model.
 - KK excitations of a 5D scalar:

$$\begin{cases} mR \ll 1 & \longrightarrow \delta \sim 1 \\ mR \gg 1 & \longrightarrow \delta \sim 2 \end{cases}$$

 Bound states of a stronglycoupled gauge theory:

$$\delta \sim \frac{1}{2}$$

 Decay through <u>contact operators</u> of dimension d implies a scaling:

$$\mathcal{O}_{\ell} \sim \frac{c_{\ell}}{\Lambda^{d-4}} \phi_{\ell} \mathcal{F} \longrightarrow \gamma = 2d - 7$$

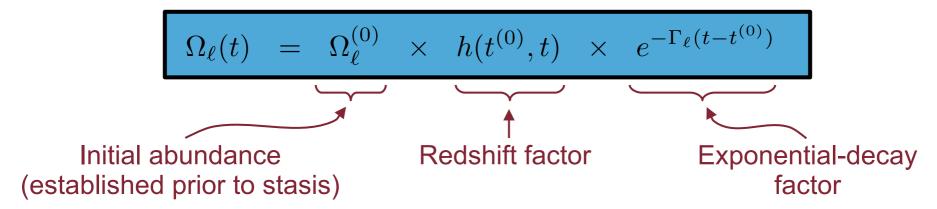
 Scaling of initial abundances depends on how they're generated:

$$\begin{array}{lll} \text{Misalignment production} & \longrightarrow & \alpha < 0 \\ \text{Thermal freeze-out} & \longrightarrow & \alpha < 0 \text{ or } \alpha > 0 \\ \text{Universal inflaton decay} & \longrightarrow & \alpha \sim 1 \end{array}$$

. . .

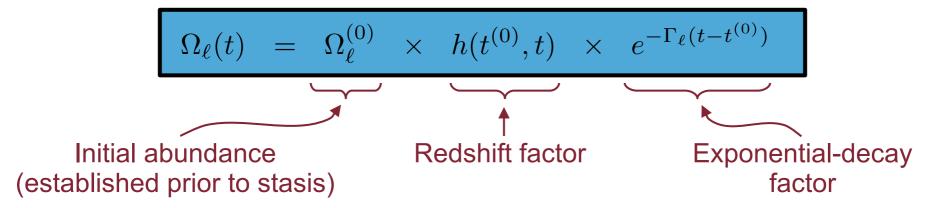
A Model of Stasis

• The abundance $\Omega_{\ell}(t)$ of each state at time t is a product of three factors.



A Model of Stasis

• The abundance $\Omega_{\ell}(t)$ of each state at time t is a product of three factors.



• For sufficiently large N and small Δm , we can approximate the sum over $\Gamma_{\ell}\Omega_{\ell}$ with an integral:

$$\sum_{\ell} \Gamma_{\ell} \Omega_{\ell}(t) = \Gamma_{0} \Omega_{0}^{(0)} h(t^{(0)}, t) \sum_{\ell} \left(\frac{m_{\ell}}{m_{0}}\right)^{\alpha + \gamma} e^{-\Gamma_{0} \left(\frac{m_{\ell}}{m_{0}}\right)^{\gamma} (t - t^{(0)})}$$

$$\approx \frac{\Gamma_{0} \Omega_{0}^{(0)} h(t^{(0)}, t)}{\delta} \int_{m_{0}}^{m_{N-1}} \frac{dm}{m - m_{0}} \left(\frac{m - m_{0}}{\Delta m}\right)^{1/\delta} \left(\frac{m}{m_{0}}\right)^{\alpha + \gamma} e^{-\Gamma_{0} \left(\frac{m}{m_{0}}\right)^{\gamma} (t - t^{(0)})}$$

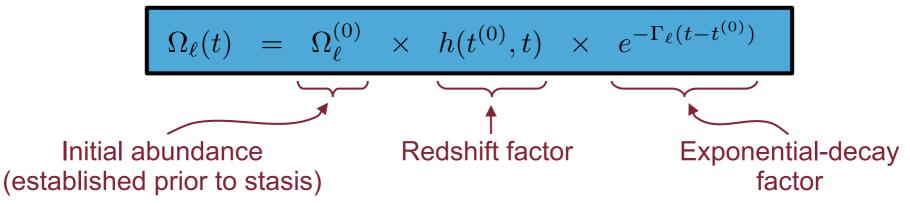
• For $t_{N-1} \ll t \ll t_0$, this is approximately

$$\sum_{\ell} \Gamma_{\ell} \Omega_{\ell}(t) \approx \frac{\Gamma_{0} \Omega_{0}^{(0)}}{\gamma \delta} \left(\frac{m_{0}}{\Delta m}\right)^{1/\delta} h(t^{(0)}, t) \Gamma\left(\frac{\alpha + \gamma + 1/\delta}{\gamma}\right) \left[\Gamma_{0}(t - t^{(0)})\right]^{-(\alpha + \gamma + 1/\delta)/\gamma}$$

Euler gamma function

A Model of Stasis

• The abundance $\Omega_{\ell}(t)$ of each state at time t is a product of three factors.



• Likewise, the sum over Ω_ℓ is well approximated by

$$\sum_{\ell} \Omega_{\ell}(t) \approx \frac{\Omega_0^{(0)}}{\gamma \delta} \left(\frac{m_0}{\Delta m}\right)^{1/\delta} h(t^{(0)}, t) \Gamma\left(\frac{\alpha + 1/\delta}{\gamma}\right) \left[\Gamma_0(t - t^{(0)})\right]^{-(\alpha + 1/\delta)/\gamma}$$

The ratio of the two sums is

$$\frac{\sum_{\ell} \Gamma_{\ell} \Omega_{\ell}(t)}{\sum_{\ell} \Omega_{\ell}(t)} \approx \left(\frac{\alpha + 1/\delta}{\gamma}\right) \frac{1}{t - t^{(0)}} \qquad t \gg t^{(0)} \qquad \sum_{\ell} \frac{\sum_{\ell} \Gamma_{\ell} \Omega_{\ell}(t)}{\sum_{\ell} \Omega_{\ell}(t)} \approx \left(\frac{\alpha + 1/\delta}{\gamma}\right) \frac{1}{t}$$

• Thus, our condition for extended stasis is satisfied! Indeed, we have

$$\left(\frac{\alpha+1/\delta}{\gamma}\right)\frac{1}{t} = \frac{2(1-\overline{\Omega}_M)}{4-\overline{\Omega}_M}\frac{1}{t}$$
 Both sides inversely proportional to t , as desired!

• Solving for $\overline{\Omega}_M$, we find that the <u>matter and radiation abundances</u> in such a stasis era are

$$\overline{\Omega}_M = \frac{2\gamma\delta - 4(1+\alpha\delta)}{2\gamma\delta - (1+\alpha\delta)} \qquad \overline{\Omega}_\gamma = 1 - \overline{\Omega}_M$$

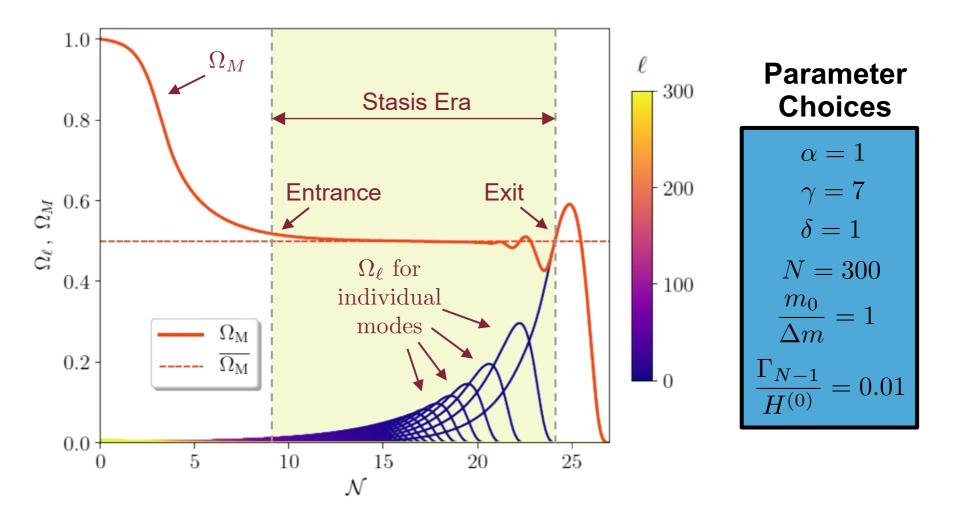
• Thus, our condition for extended stasis is satisfied! Indeed, we have

$$\left(\frac{\alpha+1/\delta}{\gamma}\right)\frac{1}{t}=\frac{2(1-\overline{\Omega}_M)}{4-\overline{\Omega}_M}\frac{1}{t} \qquad \text{Both sides inversely proportional to } t\text{, as desired!}$$

• Solving for $\overline{\Omega}_M$, we find that the <u>matter and radiation abundances</u> in such a stasis era are

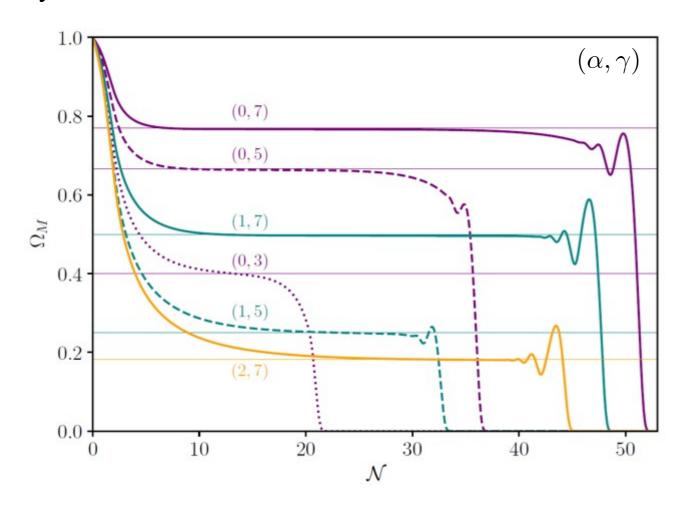
$$\overline{\Omega}_M = \frac{2\gamma\delta - 4(1+\alpha\delta)}{2\gamma\delta - (1+\alpha\delta)} \qquad \overline{\Omega}_\gamma = 1 - \overline{\Omega}_M$$

- These analytic results can be cross-checked by solving the Boltzmann equations numerically.
- The results of this analysis confirm our findings and provide additional information about how the stasis epoch <u>begins</u> and <u>ends</u>.



Numerical Results

• We obtain similar results for different combinations of α and γ , which yield stasis eras with different values for $\overline{\Omega}_M$.



Parameter Choices

$$\delta = 1$$

$$N = 10^{5}$$

$$\frac{m_0}{\Delta m} = 1$$

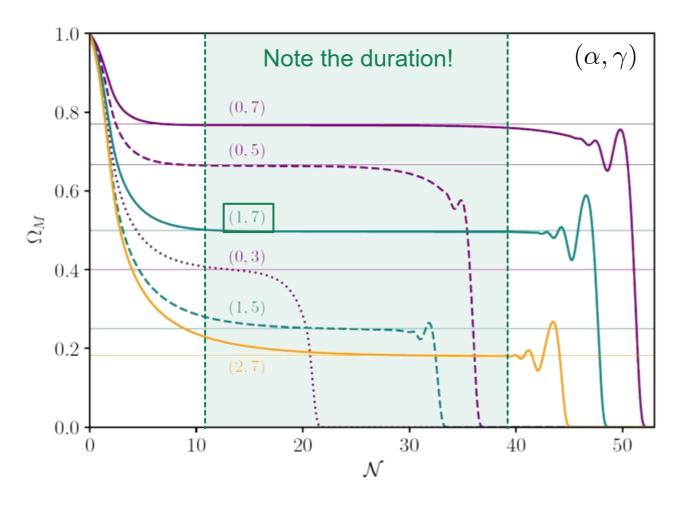
$$\frac{\Gamma_{N-1}}{H^{(0)}} = 0.1$$

• Indeed, our extended stasis condition implies that stasis can arise whenever the scaling parameters satisfy the following criterion:

$$-\frac{1}{\delta} < \alpha < \frac{\gamma}{2} - \frac{1}{\delta}$$

Numerical Results

• We obtain similar results for different combinations of α and γ , which yield stasis eras with different values for $\overline{\Omega}_M$.



Parameter Choices

$$\delta = 1$$

$$N = 10^{5}$$

$$\frac{m_0}{\Delta m} = 1$$

$$\frac{\Gamma_{N-1}}{H^{(0)}} = 0.1$$

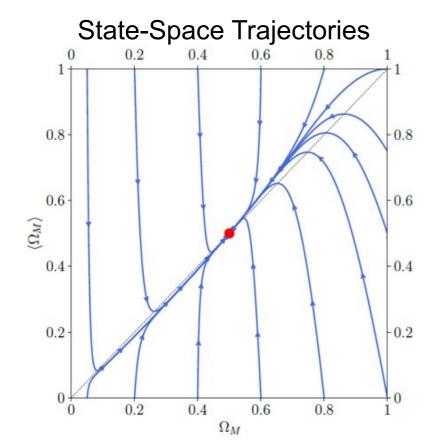
 Indeed, our extended stasis condition implies that stasis can arise whenever the scaling parameters satisfy the following criterion:

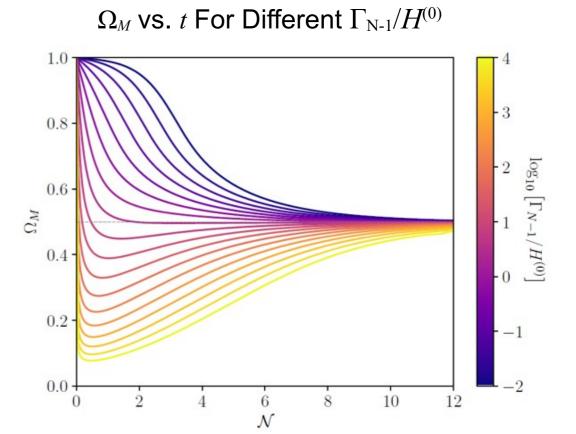
$$-\frac{1}{\delta} < \alpha < \frac{\gamma}{2} - \frac{1}{\delta}$$

Stasis as a Global Attractor

Does achieving cosmological stasis require a fine-tuning of the initial conditions for Ω_M and Ω_{γ} , or for the ratio $\Gamma_{N-1}/H^{(0)}$?

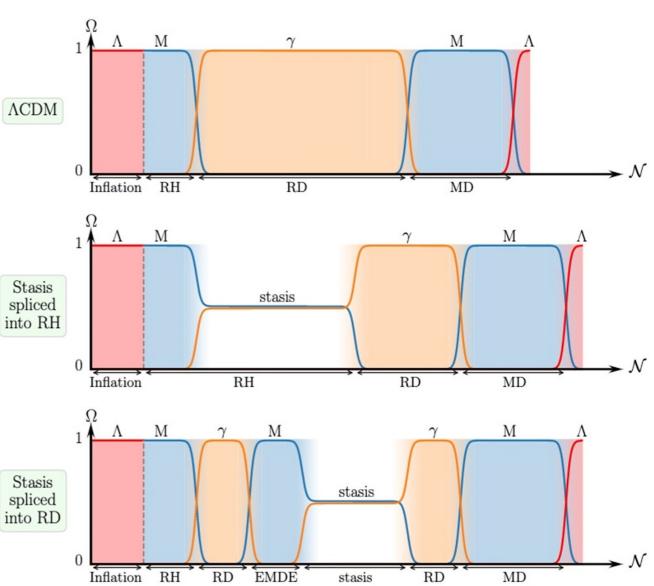
No it doesn't. In fact, stasis is a *global attractor* in the sense that regardless of what $\Omega_M(t)$ and its time-average $\langle \Omega_M \rangle(t)$ from $t^{(0)}$ to t are at a given $t \geq t^{(0)}$, Ω_M and Ω_γ will *evolve toward their stasis values*. Stasis doesn't require any special $\Gamma_{N-1}/H^{(0)}$ value either.





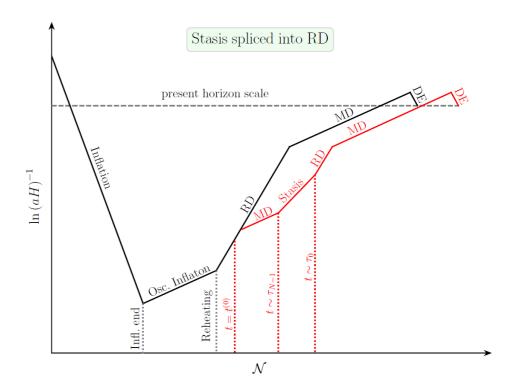
Splicing Stasis Into the Cosmological Timeline

- There are two primary ways in which a stasis epoch which arises from particle decays can be incorporated into the standard cosmological timeline:
- The stasis epoch could *follow inflation*. The inflaton produces the ϕ_{ℓ} directly in this case, and their decays reheat the universe.
- Stasis could occur at some point <u>after</u>
 reheating, following an EMDE wherein the φ_ℓ collectively dominate the energy density of the universe.



Implications of Stasis

- The comoving Hubble radius grows more slowly in cosmologies with a stasis era, so perturbation modes reenter the horizon at a later time. This has implications for <u>inflationary</u> <u>observables</u>.
- **Density perturbations** grow more quickly during stasis than in an RD era. As a result, compact objects such as PBH or compact minihalos can potentially form during stasis, as they do in an EMDE.



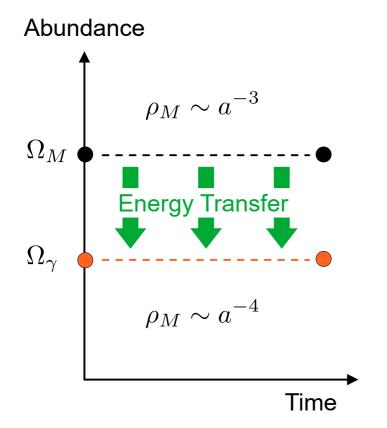
• <u>The dark-matter (DM) relic abundance</u> would be affected if DM is produced prior to or during stasis, due to the modified expansion history and to the injection of entropy by ϕ_{ℓ} . The DM could potentially also be produced by the decays of the ϕ_{ℓ} directly.

Stasis from Primordial-Black-Hole Evaporation

 A population of <u>primordial black holes</u> (PBH), whose evaporation via Hawking radiation transfers energy density from matter to radiation, can likewise give rise to a period of stasis.

[Dienes, Huang, Heurtier, Kim, Tait, BT '22]

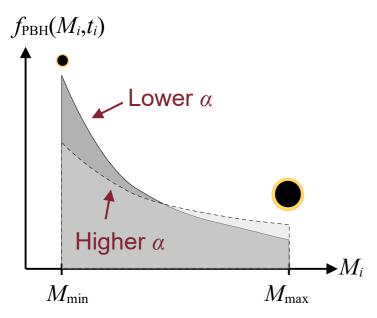
• In this case, <u>Hawking radiation</u> provides the mechanism via which energy density is transferred from matter to radiation.



$$\frac{d\rho_M}{dt} = -3H\rho_M - S(t)$$

$$\frac{d\rho_\gamma}{dt} = -4H\rho_\gamma + S(t)$$

Initial PBH Mass Spectrum



 Let's consider a population of primordial black holes (PBHs) with the mass spectrum

$$f_{\text{BH}}(M_i, t_i) = \begin{cases} CM_i^{\alpha - 1} & \text{for } M_{\text{min}} \le M_i \le M_{\text{max}} \\ 0 & \text{otherwise} \end{cases}$$

 Such an <u>extended mass spectrum</u> arises naturally in scenarios in which the PBHs form after inflation via the collapse of perturbations with a scale-invariant power spectrum.

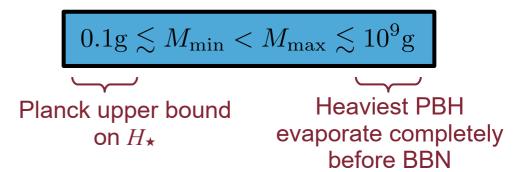
[Carr '75; Green, Liddle '97; Kim, Lee, MacGibbon '99; Bringmann, Keifer, Polarski '02; Carr et. al. '17]

• The value of α is determined by the equation-of-state parameter w_c for the universe during the epoch wherein the PBHs form.

$$\alpha = -\frac{3w_c + 1}{w_c + 1} \qquad \xrightarrow{-1/3 \le w_c \le 1} \qquad \boxed{-2 \le \alpha \le 0}$$

• Observational considerations likewise place constraints on the values of M_{\min} and M_{\max} :

[Carr, Kohri, Sendouda, Yokoyama '09; Keith, Hooper, Blinov, McDermott '20; Carr, Kohri, Sendouda, Yokoyama '21; Akrami et al. (Planck) '20]



Evaporation

• <u>Hawking radiation</u> provides a mechanism via which energy density can be transferred from the PBHs (which behave like massive matter) to radiation. [Hawking, '74; Hawking '75]

$$T_{\mathrm{BH}} = \frac{1}{8\pi GM} \sim 1.06 \,\mathrm{GeV}\left(\frac{10^{13}\,\mathrm{g}}{M}\right)$$

• The rate of change of the mass M of a single PBH due to this effect is

[MacGibbon, Webber, '90; MAcGibbon '91]

$$\frac{dM}{dt} \equiv -\varepsilon(M) \frac{M_P^4}{M^2}$$

Graybody factor: for this range of M, $\varepsilon(M) \approx \varepsilon$ is approximately constant.

• The time at which a PBH evaporates completely (i.e., at which M=0) as a result of this effect is

$$\tau(M_i) \equiv \frac{{M_i}^3}{3\varepsilon M_P^4}$$

 As a result, the PBH mass spectrum subsequently evolves according to a Boltzmann equation of the form

$$\frac{d\rho_{\rm BH}}{dt} + 3H\rho_{\rm BH} = \int_0^\infty dM_{\rm BH}(M,t) \frac{dM}{dt}$$

Boltzmann Evolution

• The evolution of the Hubble parameter H(t) is given by the Friedmann acceleration equation, which in thes case takes the form

$$\frac{dH}{dt} = -H^2 - \frac{4\pi G}{3} \left[\rho_{\rm BH} (1 + 3w_{\rm BH}) + \rho_{\gamma} (1 + w_{\gamma}) \right]$$

• Expressed in terms of the cosmological abundance $\Omega_{\rm BH} \equiv \rho_{\rm BH}/\rho_{\rm crit}$, the system of equations governing the expansion of the universe is

$$\frac{dH}{dt} = -\frac{1}{2}H^2(4 - \Omega_{\rm BH})$$
 ...where we have defined
$$\frac{d\Omega_{\rm BH}}{dt} = -\Gamma_{\rm BH}(t)\,\Omega_{\rm BH} + H\left(\Omega_{\rm BH} - \Omega_{\rm BH}^2\right)$$

$$\Gamma_{\rm BH}(t) \equiv -\frac{\int_0^\infty f_{\rm BH}(M,t)\frac{dM}{dt}\,dM}{\int_0^\infty f_{\rm BH}(M,t)M\,dM}$$

...where we have defined

$$\Gamma_{\rm BH}(t) \equiv -\frac{\int_0^\infty f_{\rm BH}(M,t) \frac{dM}{dt} dM}{\int_0^\infty f_{\rm BH}(M,t) M dM}$$

 Alternatively, one can change variables and express this system of equations in terms of $\Omega_{\rm BH}$ and its time-averaged value $\langle \Omega_{\rm BH} \rangle$ since the time t_i at which the PBH spectrum was initially established:

$$\langle \Omega_{\rm BH} \rangle \equiv \frac{1}{t - t_i} \int_{t_i}^t dt' \, \Omega_{\rm BH}(t')$$

PBH-Induced Stasis is a Global Attractor

 One can show that not only do these equations admit a <u>stasis solution</u>, but that this stasis solution is a <u>global attractor</u>.

[Barrow, Copeland, Liddle '91; Dienes, Huang, Heurtier, Kim, Tait, BT '22]

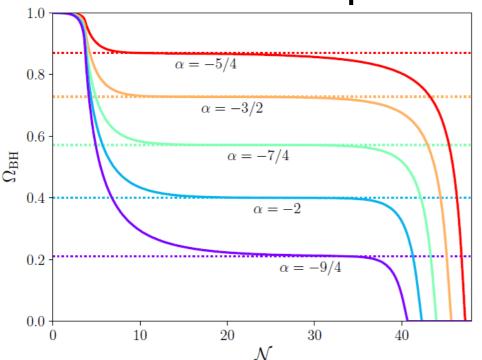
• The effective equation-of-state parameter \overline{w} for the universe as a whole during the stasis epoch and the PBH abundance $\Omega_{\rm BH}$ are determined by

the value of α :

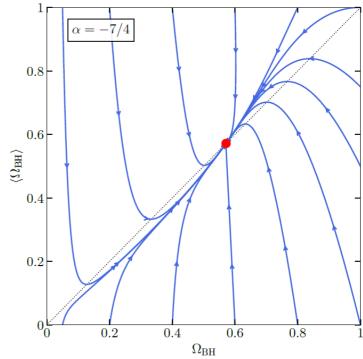
$$\overline{w} = -\frac{\alpha + 1}{\alpha + 7}$$

$$\overline{\Omega}_{\rm BH} = \frac{4\alpha + 10}{\alpha + 7}$$

Stasis from PBH Evaporation



Attractor Behavior



Duration of the Stasis Epoch

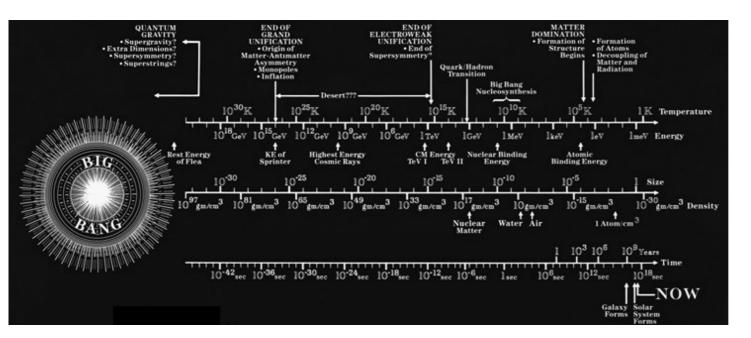
• The duration of this PBH-induced stasis epoch, expressed in terms of the number of *e*-folds of cosmic expansion that it spans, is given by

$$\mathcal{N}_s pprox \log \left[\frac{a(\tau(M_{\text{max}}))}{a(\tau(M_{\text{min}}))} \right] pprox \frac{\alpha + 7}{3} \log \left(\frac{M_{\text{max}}}{M_{\text{min}}} \right)$$

• For $M_{\text{min}} = 0.1 \text{ g}$ at its minimum and $M_{\text{max}} = 10^9 \text{ g}$ at its maximum, this yields a stasis epoch of duration

$$\mathcal{N}_s \lesssim 23 \left(\frac{\alpha + 7}{3} \right)$$

• This is a significant duration indeed – potentially spanning a range of temperatures $\mathcal{O}(\text{MeV}) \lesssim T \lesssim \mathcal{O}(10^{11}\,\text{GeV})!$



Duration of the Stasis Epoch

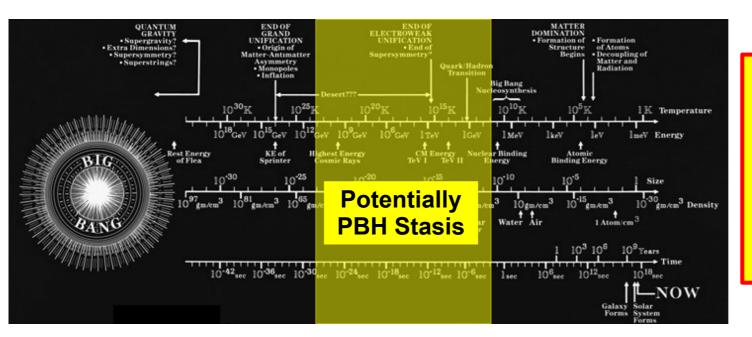
• The duration of this PBH-induced stasis epoch, expressed in terms of the number of *e*-folds of cosmic expansion that it spans, is given by

$$\mathcal{N}_s pprox \log \left[\frac{a(\tau(M_{\text{max}}))}{a(\tau(M_{\text{min}}))} \right] pprox \frac{\alpha + 7}{3} \log \left(\frac{M_{\text{max}}}{M_{\text{min}}} \right)$$

• For $M_{\text{min}} = 0.1 \text{ g}$ at its minimum and $M_{\text{max}} = 10^9 \text{ g}$ at its maximum, this yields a stasis epoch of duration

$$\mathcal{N}_s \lesssim 23 \left(\frac{\alpha+7}{3}\right)$$

• This is a significant duration indeed – potentially spanning a range of temperatures $\mathcal{O}(\text{MeV}) \lesssim T \lesssim \mathcal{O}(10^{11}\,\text{GeV})!$

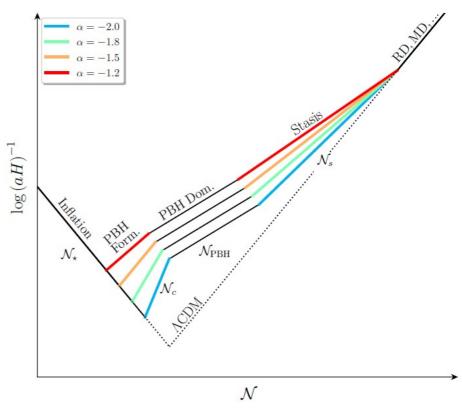


Thus, events such as the electroweak phase transition could have occurred during such a stasis epoch!

Cosmic Expansion History

- In cosmologies involving an epoch of PBH-induced stasis, the cosmological timeline includes a series of several different epochs after cosmic inflation ends. Sequentially, these are:
 - The epoch during which the PBHs are generated, wherein the equation-of-state parameter w_c determines α.
 - An epoch during which the PBHs come to dominate the energy density of the universe. This epoch is <u>matter-</u> <u>dominated</u> (w = 0).
 - The <u>stasis epoch</u>, which begins once the lightest PBHs begin to evaporate, and wherein $w = \overline{w}$.

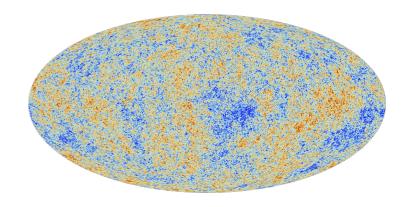
Comoving Hubble Horizon



The usual RD epoch with w = 1/3, which begins after the heaviest PBHs evaporate and stasis ends. Once this epoch begins, the expansion history coincides with that of the standard cosmology.

Inflationary Observables

 In the simplest inflationary scenarios, primordial perturbations of the inflaton field give rise to the pattern of inhomogeneities observed in the cosmic microwave background (CMB).



- However, modifications of the cosmological timeline beween the end of inflation and last scattering can alter predictions for CMB observables.
- The primary such observables are the tensor-to-scalar ratio r and **spectral index** n_s that characterize the primordial perturbation spectrum.
- For example, in single-field, slow-roll models of inflation, these obserables are directly related to the slow-roll parameters ε and η :

$$n_s = 1 - 6\epsilon + 2\eta$$
$$r = 16\epsilon$$

$$n_s = 1 - 6\epsilon + 2\eta$$

$$r = 16\epsilon$$
 where $\epsilon = \frac{M_P^2}{16\pi} \left[\frac{V'(\phi_\star)}{V(\phi_\star)} \right]^2$ $\eta = \frac{M_P^2}{8\pi} \left| \frac{V''(\phi_\star)}{V(\phi_\star)} \right|$

• The quantity ϕ_{\star} denotes the value of the inflaton field at the time at which a perturbation with wavenumber equal to the pivot scale k_{\star} exits the horizon. Following Planck, we take $k_{\star}=0.002~{
m Mpc^{-1}}$. [Akrami et al. (Planck) '20]

Inflationary Observables

• I order to determine ϕ_{\star} we note that in the slow-roll approximation, the Hubble parameter H_{\star} and scale factor a_{\star} at the time at which this same mode exist the horizon are related to ϕ_{\star} by

$$H_{\star}^2 \approx \frac{8\pi V(\phi_{\star})}{3M_P^2}$$

$$H_{\star}^2 pprox rac{8\pi V(\phi_{\star})}{3M_P^2}$$
 and $\log\left(rac{a_{
m end}}{a_{\star}}
ight) = rac{8\pi}{M_P^2} \int_{\phi_{
m end}}^{\phi_{\star}} rac{V(\phi)}{V'(\phi)} d\phi$

Combining these relations yields the integro-differential equation

$$\frac{8\pi}{M_P^2} \int_{\phi_{\text{end}}}^{\phi_{\star}} \frac{V(\phi)}{V'(\phi)} d\phi = \frac{1}{2} \log \left(\frac{8\pi a_{\text{now}}^2 V(\phi_{\star})}{3M_P^2 k_{\star}^2} \right) - \log \left(\frac{a_{\text{now}}}{a_{\text{end}}} \right)$$

- ...which can be solved for a given form of $V(\phi)$.
- In order to illustrate how r and n_s are modified in cosmologies involving an epoch of PBH-induced stasis, it is useful to work in the context of a concrete model for the inflaton potential... or two. We'll choose

Polynomial potentials:

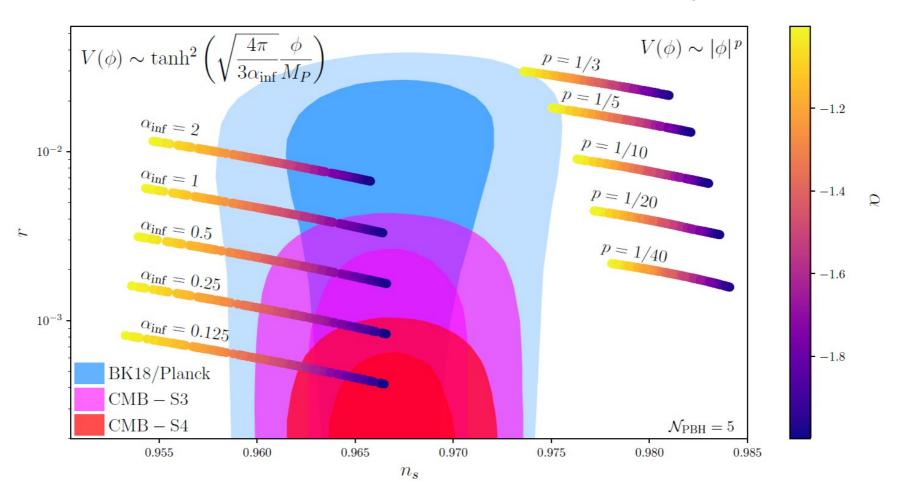
 $V(\phi) \sim |\phi|^p$

[Kallosh, Linde '13]

$$V(\phi) \sim \tanh^{2n} \left(\sqrt{\frac{4\pi}{3\alpha_{\rm inf}}} \frac{\phi}{M_P} \right)$$

Inflationary Observables: Results

• In general, the modifications of the cosmological timeline associated with PBH-induced stasis serve to increase r and decrease n_s .



 As a result, depending on the inflationary model in question, tensions between the predictions for these observables and CMB data may be either eased or exacerbated.

Gravitational-Wave Background

- The cosmological modifications associated with a PBH-induced stasis epoch affect the **gravitational-wave (GW) background** in several ways.
- Perhaps most importantly, the modified expansion history alters the contribution to the GW background generated by other sources.
- For concreteness, we'll consider the simple case of a <u>stochastic GW</u> <u>background</u> which is homogeneous, isotropic, Gaussian, and unpolarized.
- The differential GW energy density per logarithmic comoving wavenumber k for this case is:

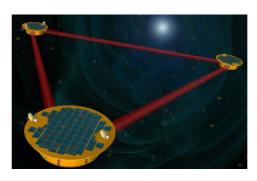
[Caprini, Figueroa '18]

• The differential amplitude $h_k(a)$ depends on when the pertubation mode re-enters the horizon:

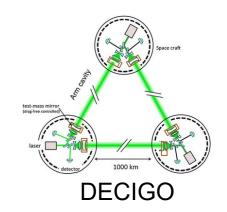
$$\frac{d\rho_{\rm GW}(a)}{d\log k} = \frac{k^2 h_k^2(a)}{16\pi G a^2}$$

$$h_k(a) = \frac{a_k}{a} h_k(a_k)$$

Advanced LIGO



LISA



Gravitational-Wave Background

• During an epoch wherein w is constant, the wavenumber k which enters the horizon at scale factor a_k scales with a_k according to the relation

$$k = a_k H_k \propto a_k^{-(1+3w)/2}$$

• This implies that:
$$\boxed{\frac{d\rho_{\rm GW}(a)}{d\log k} \propto a^{-4}h_k^2(a_k)k^{\xi(w)}} \quad \text{where} \qquad \xi(w) \equiv \frac{2(3w-1)}{(3w+1)}$$

$$\xi(w) \equiv \frac{2(3w-1)}{(3w+1)}$$

- In the standard cosmology, wherein the universe remains radiationdominated (w = 1/3) from the end of reheating until matter-radiation equality, $\xi(w) = 0$ throughout the entire duration.
- Thus, the resulting present-day GW spectrum or, more precisely, the differential present-day GW abundance per unit physical frequency f – is flat (i.e., f-independent) and given by [Caprini, Figueroa '18]

$$\frac{d\Omega_{\text{GW}}^{\text{sc}}}{d\log f} = \Omega_{\gamma}(a_{\text{now}}) \left(\frac{g_{\star S}(T_{\text{eq}})}{g_{\star S}(T_k)}\right)^{4/3} \frac{g_{\star}(T_k)}{24\pi^2} \frac{H_{\star}^2}{M_P^2}$$

Gravitational-Wave Background

- By contrast, cosmology involving a PBH-induced stasis epoch with w = w as well as a PBH-production epoch with $w = w_c$ and a PBH-dominated epoch with w = 1 can <u>differ significantly</u> from this result.
- In particular, in such a modified cosmology, the corresponding presentday GW spectrum is given by

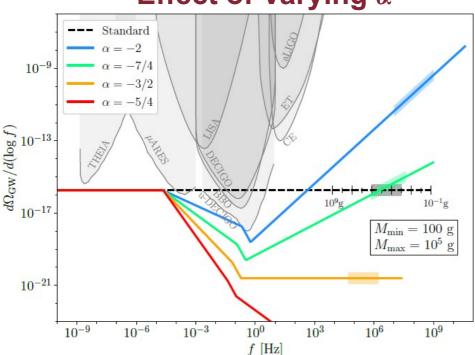
$$\frac{d\Omega_{\text{GW}}}{d\log f} = \frac{d\Omega_{\text{GW}}^{\text{sc}}}{d\log f} \times \begin{cases}
1 & f \leq f_s \\
\left(\frac{f}{f_s}\right)^{\xi(\overline{w})} & f_s < f \leq f_{\text{PBH}} \\
\left(\frac{f_{\text{PBH}}}{f_s}\right)^{\xi(\overline{w})} \left(\frac{f}{f_{\text{PBH}}}\right)^{-2} & f_{\text{PBH}} < f \leq f_f \\
\left(\frac{f_{\text{PBH}}}{f_s}\right)^{\xi(\overline{w})} \left(\frac{f}{f_{\text{PBH}}}\right)^{-2} \left(\frac{f}{f_f}\right)^{\xi(w_c)} & f_f < f \leq f_{\text{end}} \\
0 & f_{\text{end}} < f ,
\end{cases}$$

Spectrum obtained in the standard cosmology for the same H_{\star}

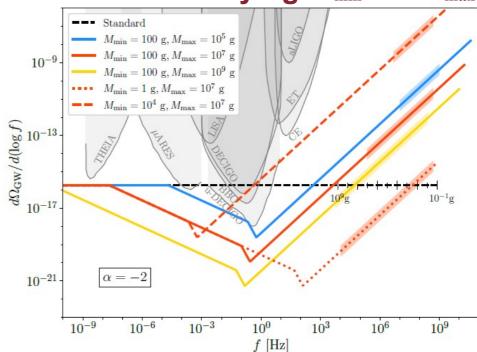
Piecewise function with different power-law exponents within different frequency intervals corresponding to different

• Given the sensitivities of planned, proposed, and existing **gravitational-wave observatories**, these modifications can have significant implications for the detection of the stochastic GW background.

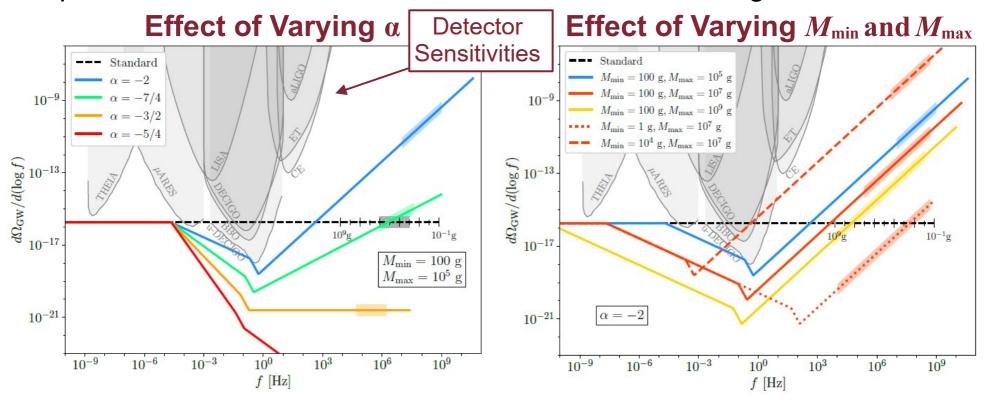
Effect of Varying α



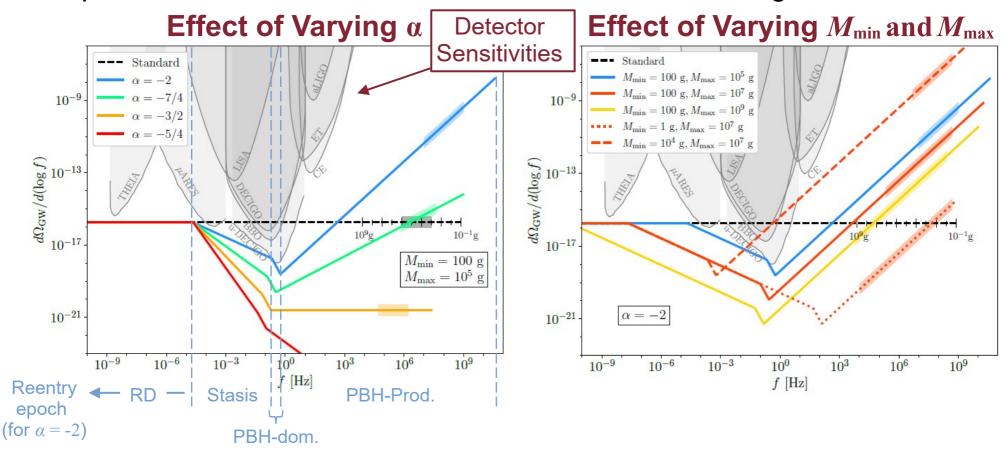
Effect of Varying M_{\min} and M_{\max}



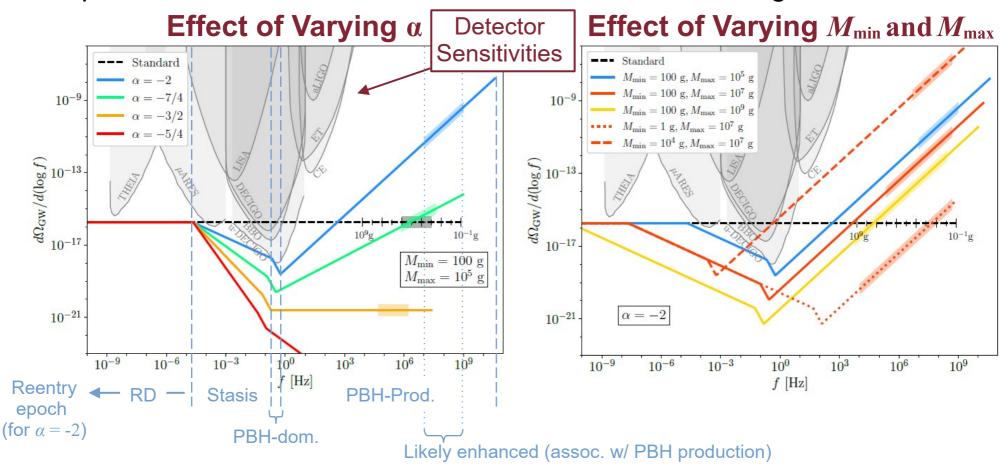
• Given the sensitivities of planned, proposed, and existing **gravitational- wave observatories**, these modifications can have significant implications for the detection of the stochastic GW background.



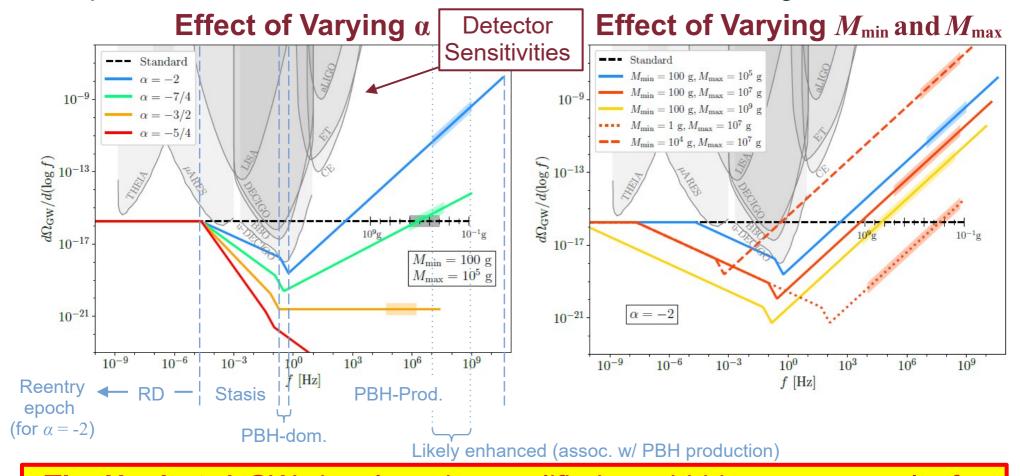
• Given the sensitivities of planned, proposed, and existing **gravitational- wave observatories**, these modifications can have significant implications for the detection of the stochastic GW background.



• Given the sensitivities of planned, proposed, and existing **gravitational- wave observatories**, these modifications can have significant implications for the detection of the stochastic GW background.



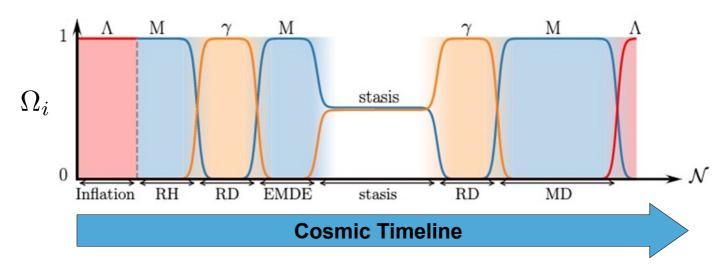
• Given the sensitivities of planned, proposed, and existing **gravitational- wave observatories**, these modifications can have significant implications for the detection of the stochastic GW background.



The Upshot: A GW signal can be amplified – or hidden – as a result of PBH-induced stasis. Correlations between slopes in different regions provide an observational handle on α , M_{\min} , and M_{\max} .

Summary

- <u>Stable, mixed-component cosmological eras</u> i.e. <u>stasis eras</u> are indeed a viable cosmological possibility and one that can arise naturally in many extensions of the Standard Model.
- For example, we have seen that a population of <u>unstable particles</u> with a range of lifetimes and a population of <u>primordial black holes</u> with an extended mass spectrum can both give rise to a stasis era.
- In both of these realizations, stasis is a **global attractor**, and achieving it does not require any fine-tuning of initial conditions.
- A period of stasis can have a variety of cosmological implications including an impact on <u>inflationary observables</u>, on the evolution of <u>density perturbations</u>, and on the <u>gravitational-wave spectrum</u>.



Above All

Since a variety of new-physics scenarios give rise to cosmic stasis, stasis and its consequences are something one must account for in such scenarios!