

Neutral Pion Studies at NA62

Michal Koval

IPNP @ Malá Skála 14 April 2023

Outline

- 1. NA62: brief introduction (reminder)
 - What type of experiment is it?
 - How can π^0 decays be studied at NA62?

- 2. Neutral pion decays
 - What is common to various π^0 decays?
 - How are π^0 decays related to (g-2)?
- 3. Studies of neutral pion at NA62
 - Which π^0 measurements can be done?
 - What are the experimental challenges?

 Fixed target experiment studying charged kaons at CERN Super Proton Synchrotron (SPS)

SPS beam:

- 400 GeV/c protons
 - Target: beryllium
 - Coming in 3.5s long spills
 - 2·10¹² protons / spill

Secondary hadron beam:

- Momentum: 75 GeV/c
- Mix of K^+ (6%)/ π^+ (70%)/ p^+ (24%)

• The main goal: measurement of the ultra-rare ($B\sim 10^{-10}$) decay $K^+\to \pi^+\nu\bar{\nu}$

Charged kaon K^+ in the beam:

• Mass: 493.7 MeV

• Mean lifetime: 1.2×10^{-8} s

• Momentum: 75 GeV

Experimental layout of NA62:

- Kaon decays in flight
 - Mean free path ≈560 meters
- Decay products: π^{\pm} , μ^{\pm} , e^{\pm} , π^{0} , γ , ν with small transverse momenta

Charged kaon K^+ in the beam:

• Mass: 493.7 MeV

• Mean lifetime: 1.2×10^{-8} s

Momentum: 75 GeV

Experimental layout of NA62:

- Kaon decays in flight
 - Mean free path ≈560 meters
- Decay products: π^{\pm} , μ^{\pm} , e^{\pm} , π^{0} , γ , ν with small transverse momenta

NA62 timeline:

- 2008 2014
 Detector R&D
 and installation
- 2014 Pilot run
- 2015 Commissioning
- 2016 2018 NA62 Run 1
- 2021 2025 NA62 Run 2

NA62 luminosity:

NA62 Experiment: neutral pion production

- Six main decay modes of charged kaon:
- NA62 can be viewed also as a π^0 factory
 - Ideal decay mode for π^0 studies: $K^+ \to \pi^+ \pi^0$
- π^0 properties at NA62

• Mass: 135 MeV

• Mean lifetime: 8.4×10^{-17} s

• Momentum: ~(5-70) GeV

• Mean free path: few micrometers

 \rightarrow Neutral pion decays (almost) at the same vertex position as K^+

Decay	Branching ratio [%]
$K^+ \rightarrow \mu^+ \nu_{\mu}$	63.6
$K^+ \rightarrow \pi^+ \pi^0$	20.7
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	5.6
$K^+ \rightarrow \pi^0 e^+ \nu_e$	5.0
$K^+ \rightarrow \pi^0 \mu^+ \nu_\mu$	3.3
$K^+ \to \pi^+ \pi^0 \pi^0$	1.7

Neutral pion decays

• π^0 decays proceed via the same vertex:

- The electromagnetic interaction described by the formfactor $F_{\pi^0 \nu^* \nu^*}(p^2,q^2) \quad p,q$: 4-momenta of the 2 photons
- The formfactor not known a priori, various models exist (VMD, LMD, THS, ...)

Neutral pion decays, $\pi^0 \to \gamma \gamma$

• The main decay mode: $\pi^0 \rightarrow \gamma \gamma$ ($B \sim 99\%$)

• Both photons are on shell: formfactor \rightarrow constant $F_{\pi^0\gamma^*\gamma^*}(0,0)$

Neutral pion decays, $\pi^0 \rightarrow \gamma e^+ e^-$

• The second mode, the Dalitz decay: $\pi^0 \rightarrow \gamma e^+ e^-$ (B ~ 1%)

- One γ on shell, one γ off shell: formfactor \rightarrow 1D function $F_{\pi^0\gamma^*\gamma^*}(0,q^2)$
- The function varies slowly in the allowed range of $q^2 \rightarrow$ linear approximation

$$F(x) = \frac{F_{\pi^0 \gamma^* \gamma^*}(0, q^2)}{F_{\pi^0 \gamma^* \gamma^*}(0, 0)} = 1 + \frac{a}{a} x \qquad x = q^2 / M_{\pi^0}^2$$

Slope parameter of interest for experiment / theory comparison

Neutral pion decays, $\pi^0 \rightarrow e^+e^-e^+e^-$

• Rare decay mode, the double Dalitz decay: $\pi^0 \to e^+e^-e^+e^-$ ($B \sim 3 \times 10^{-5}$)

• Two γ off shell: formfactor remains a 2D function

Neutral pion decays, $\pi^0 \rightarrow e^+e^-$

• Very rare decay mode: $\pi^0 \rightarrow e^+e^-$ ($B \sim 6 \times 10^{-8}$)

• Formfactor model → branching ratio prediction

Neutral pion decays, $\pi^0 \rightarrow e^+e^-$, KTeV discrepancy

- Measurement by KTeV E799-II experiment (~ 800 observed events)
 - At first, apparent large (3 σ) discrepancy with the Standard Model was claimed
- Main complication for theory / experiment comparison: radiative corrections and radiative tail presence $\pi^0 \to e^+e^- + rad.\gamma$ vs. $\pi^0 \to \gamma e^+e^-$

IPNP @ Malá Skála, Michal Koval

- After new computations of radiative corrections by our colleagues from IPNP the discrepancy decreased to $\sim 2\sigma$
 - $B(\pi^0 \to e^+e^-)_{KTeV} = 6.85(27)(23) \times 10^{-8}$
 - $B(\pi^0 \to e^+e^-)_{SM} = 6.25(3) \times 10^{-8}$

Neutral pion relation to (g-2)

• Important contributions to the (muon) anomalous magnetic moment:

• Hadronic light-by-light contribution relies on hadronic models (such as $F_{\pi^0\gamma^*\gamma^*}(p^2,q^2)$)

Studies of π^0 decays at NA62

Common goal:

Precision measurements of branching ratios and formfactor using:

- $\pi^0 \rightarrow \gamma e^+ e^-$
- $\pi^0 \to e^+ e^- e^+ e^-$
- $\pi^0 \rightarrow e^+e^-$

What is needed:

- Statistics:
 - Large data sample with e^+e^- in the final state
- Systematics (precision):
 - High efficiency of trigger and detectors
 - Precise treatment of radiative corrections in NA62 simlations

Previous most-precise results obtained mostly by KTeV

Studies of π^0 decays at NA62

Data samples:

- 2007 data: recorded using old experimental setup from NA48/2
 - Low beam intensity \rightarrow smaller data sample than NA62
 - Simple and fully efficient trigger for e^{\pm}
- NA62 Run 1 data (2016-2018):
 - High beam intensity (70% of NA62 nominal)
 - Trigger line for e^+e^- :
 - Running in parallel to the main one $(K^+ \to \pi^+ \nu \bar{\nu})$
 - Conditions not optimized; had to be downscaled by a factor 8
 - The π^0 data sample size slightly smaller than KTeV
- NA62 Run 2 data (2021-2025):
 - Nominal beam intensity
 - Trigger line for e^+e^- :
 - Running in parallel to the main one $(K^+ \to \pi^+ \nu \bar{\nu})$
 - Conditions optimized; downscaling reduced to factor 2
 - The π^0 sample size is already the world-largest

π^0 Dalitz formfactor slope measurement

$$x = \frac{m_{ee}^2}{M_{\pi^0}^2}$$

16

• Using the 2007 data sample to measure the slope in: F(x) = 1 + ax

π^0 Dalitz: new data measurements

Branching ratio measurement NA62 Run 1 data, PhD thesis, unpublished

Limited by various systematic uncertainties

→ New approach to the measurement needed

Form factor slope measurement NA62 Run 1 data, PhD thesis, unpublished

Data sample larger by factor 10 than 2007 data

→ Precision limited by systematics Can be improved, manpower needed π^0 double Dalitz: prospects

- New measurement to be started by Michal Lelak
 - See his poster tomorrow
- Run 1 + Run 2 data should give the most precise measurement of the branching ratio and formfactor fits

Summary

1. NA62 experiment

- Fixed target experiment at CERN SPS, designed to study rare kaon decays $(K^+ \to \pi^+ \nu \bar{\nu})$
- Neutral pion (π^0) produced in K^+ decays, decays practically instantaneously

2. Neutral pion decays

- π^0 decays via electromagnetic interaction with two photons, described by a formfactor
- The formfactor enters computation of (g-2) in hadronic light-by-light scattering

3. Studies of neutral pion at NA62

- Ongoing measurements of $\pi^0 \to \gamma \; e^+e^-$, $\pi^0 \to e^+e^-e^+e^-$, $\pi^0 \to e^+e^-$
- Large decay samples already recorded
- Main challenge: keep various effects under control (trigger, backgrounds, ...)