Study of in-medium radiation of quarks and gluons + few practical notes by ERC grant applicant

Martin Spousta

(Charles University)

What is this about?

- About **10 minutes presentation** of ERC consolidator project (= physics) + some few words about the problematics of **ERC projects** (= annoying grant stuff).
- How did I come to that?
 - By being an opponent ...

What is ERC?

• **ERC** = European Research Council = science founding body of EU. It offers 3 primary grant schemes:

Name	Qualifications	Max. funding	Aim
Primary grants			
Starting Grants	PhD + 2-7 years experience	€1.5 million (+ €0.5 million to cover "start-up" costs)	Supports up-and-coming independent research leaders. This is targeted at promoting early scientific independence of promising talent.
Consolidator Grants	PhD + 7-12 years experience	€2 million (+ €0.75 million)	Supports researchers at the stage at which they are consolidating their own independent research team or programme.
Advanced Grants	10-year excellent scientific track record	€2.5 million (+ €1.0 million)	Supports researchers who have already established themselves as independent research leaders in their own right.

What is ERC?

- **Logic:** high-risk high gain. "**Refrain**": Ground braking research. => One should have some well known papers.
- Our panel: "Fundamental constituents of matter" (PE2): Particle, nuclear, plasma, atomic, molecular, gas, and optical physics
- Average success rate: 12%.
- Now running at MFF UK: Advanced: 1, Consolidator: 1, Starting: 5

What is ERC?

- Two step evaluation:
 - 1 step removes vast majority of proposals
 - 2 step: in person interview in Brusel or online in the case of Covid
 - Grade A (=excellent, supported if there is enough money)
 - Grade B (not supported)
- Evaluated by quite few reviewers (e.g. **9 people**)
- More info, e.g. https://ec.cuni.cz/EC-121.html ... pointers to people who give great help to applicants, namely the group centered around prof. Strakoš.
- ... now my presentation for Step 2 (original slides for 10')

In medium radiation of quarks and gluons with the ATLAS detector at the LHC (IMERIA)

Martin Spousta

(Charles University)

Basic physics picture

Strong interaction:

- One of four fundamental forces, gives rise to the vast majority of mass in observed universe.
- Successful description by QCD, but still we do not understand various nonperturbative aspects such as hadron formation.

Basic physics picture

- Use heavy-ion collisions to study non-perturbative aspects of strong interactions.
- Heavy-ion collisions allow us to:
 - Study quark-gluon plasma (QGP)
 present in 10⁻⁶ s after the Big Bang.
 - See how complex phenomena emerge from strong interaction (jet quenching, quarkonia suppression, quarkonia formation, ...).

 Perform complex analyses of data from heavy-ion collisions to close three longstanding open problems in the field and contribute to general understanding of hadron formation.

After hadronization, parton shower turns into **jet of hadrons** we observe in the detector

- Jet production is suppressed in heavy-ion collisions (jet quenching).
- Basic quantification by nuclear modification factor, R_{AA}:

$$R_{\text{AA}} = \frac{1}{w_{\text{geometry}}} \frac{Yield (\text{Pb+Pb})}{Yield (\text{p+p})}$$

After hadronization, parton shower turns into **jet of hadrons** we observe in the detector

- Jet production is suppressed in heavy-ion collisions (jet quenching).
- Basic quantification
 by nuclear modification
 factor, R_{AA}:

OCD in

$$R_{\rm AA} = \frac{1}{w_{\rm geometry}} \frac{Yield \, ({\rm Pb} + {\rm Pb})}{Yield \, ({\rm p} + {\rm p})}$$

This project

Three objectives will bring answers to three fundamental questions in the field ...

Objective 1: What is the role of color in radiative processes in QGP?

- Perform detailed scan of jet suppression.
- Study the correlation of jet width and jet flavor.
- => Address the fundamental open problem of identifying which property
 of parton shower dictates the magnitude of energy loss of quarks and gluons.
- Without this knowledge we cannot understand the radiation of elementary particles within QGP.

vacuum component medium induced

Objective 3: What is the origin of measured soft particles near jets?

- Also jet structure is significantly modified.
- Pb+Pb to pp ratio of yields of particles inside a jet ...
- ... evaluated as a function of momentum fraction z.

Objective 3: What is the origin of measured soft particles near jets?

Objective 3: What is the origin of measured soft particles near jets?

- Study correlations between soft modes and other modes.
- "Chemistry" of low-z particles.
- Precise measurement of high-z particles.
 - => Understand the exact origin of soft radiation in an unambiguous way.

• Quarkonia = \boxed{q} \boxed{q} ... **formation** not understood.

• Phenomenological works suggest that **quarkonia may radiate** (M.S. PLB 767 (2017) 10-15, F. Arleo PRL 119(6) (2018), 062302).

• Basic experimental **fingerprint** of parton energy loss:

=> Quantify the large angle soft-particle production near prompt quarkonia.

- Change of paradigm in the description of measured suppression at high- p_T .
- **Further**, it will help to understand:
 - Jet quenching.
 - Hadronization of quarks to quarkonia.
 - ► Structure of **possible tetra-quark** X(3872) with heavy-ion collisions.

tetraquark

- Change of paradigm in the description of measured suppression at high- p_T .
- **Further**, it will help to understand:
 - Jet quenching.
 - Hadronization of quarks to quarkonia.
 - ► Structure of **possible tetra-quark** X(3872) with heavy-ion collisions.

- Change of paradigm in the description of measured suppression at high-p_T.
- **Further**, it will help to understand:
 - Jet quenching.
 - Hadronization of quarks to quarkonia.
 - ► Structure of **possible tetra-quark** X(3872) with heavy-ion collisions.

Summary

- What is the role of color in radiative processes in QGP?
- What is the origin of measured soft particles near jets?
- Do the quarkonia radiate when traversing QGP and can we better understand their formation?

BACKUP SLIDES