



Emilio Andrea Maugeri & the PSI crew

# Characterization of the <sup>7</sup>Be target used for the measurement of the <sup>7</sup>Be(n, p)<sup>7</sup>Li reaction cross sections

**Isotope and Target Chemistry** :: Paul Scherrer Institut

n\_TOF Collaboration meeting, 11-12 December, 2017. Madrid, Spain



Measurement of the <sup>7</sup>Be(n,p)<sup>7</sup>Li cross section



<sup>7</sup>Be(n,p)<sup>7</sup>Li (1.64 MeV)

#### Target:

- $\triangleright \approx 100 \text{ ng of }^{7}\text{Be } (\approx 1.3 \text{ GBq})$
- Off-line mass separation at ISOLDE
- > Implantation on backing

Two targets of 20 MBq and 1.1 GBq of <sup>7</sup>Be, respectively



# Preparation of the starting <sup>7</sup>Be material



About 90 GBq of <sup>7</sup>Be were loaded into a cylindrical graphite crucible



transferred to the shielded container









it was inserted into the empty tantalum target container (20 mm inner diameter and 200 mm length) connected to a FEBIAD ion source unit equipped with a tantalum ionizer tube (3 mm inner diameter, 30 mm length).























### Target assembly



(1) aluminium backing; (2) aluminium frame, (3) target holder.

Al backing dimensions h  $\times$  w  $\times$  d: (50  $\times$  50  $\times$  0.018) mm

Frame dimensions h  $\times$  w  $\times$  d: (50  $\times$  50  $\times$  1) mm, with a 40 mm diameter central hole



#### Implantation of <sup>7</sup>Be

#### Lissajous curve

$$x = A_x f(\varpi_x t + \phi_x)$$

$$y = A_y f(\varpi_y t + \phi_y)$$

 $A_x$  and  $A_y$  are the amplitudes  $\varpi_x$  and  $\varpi_z$  are the frequencies  $\phi_x$  and  $\phi_y$  are the phases

$$A_x = A_y$$
  
 $\varpi_x = 241 \text{ Hz}; \quad \varpi_z = 150 \text{ Hz}$   
 $\phi_y = 0.125$ 







 $7.2 \times 10^{15}$  ions, corresponding to an activity of about 1 GBq, were estimated to be implanted over 10 hours. The <sup>7</sup>Be beam intensity was between 5 nA and 44 nA



#### Cross section measurement

$$\sigma = \frac{C}{\Phi N \sum f_t}$$

Where C is experimental counts (number of interactions per cm<sup>2</sup> per second), and  $\Phi$  is the flux of beam particles passing through the target, N is the target nuclei density,  $\sum f_t$  is the sum of correction factors.

$$\sigma = \frac{C}{C_{ref}} \, \frac{N_{ref}}{N} \, \sigma_{ref} \, BIF$$

Where \*BIF is the beam interception factor, i.e. the fraction of the neutron beam intercepted by the target nuclei

*BIF* depends on the beam profile and target size. It very important when the target is smaller than the beam profile, since it interacts with only a fraction of it.

$$BIF = \frac{BIF_{ref}}{BIF_{target}}$$

<sup>\*</sup>ratio of the number of neutrons hitting the target nuclei to the number of neutrons in the whole beam



# Spatial beam profile



#### **Results EAR2**

| Е           | PX (mm) |       | PY (mm) |       |
|-------------|---------|-------|---------|-------|
| (eV)        | mean    | sigma | mean    | sigma |
| 1e-3 – 1e-2 | 19.50   | 9.92  | 25.18   | 10.09 |
| 1e-2 – 1e-1 | 19.52   | 10.11 | 25.25   | 10.28 |
| 1e-1 – 1    | 19.12   | 10.08 | 25.57   | 10.26 |
| 1 – 1e1     | 18.76   | 10.08 | 25.93   | 10.34 |
| 1e1 – 1e2   | 18.62   | 10.08 | 26.03   | 10.83 |
| 1e2 – 2e2   | 18.51   | 10.23 | 25.17   | 10.62 |

M. Barbagallo, n\_TOF Analysis Meeting, CERN, February 2015

#### Expected target radius ~ 20 mm





### Distribution of <sup>7</sup>Be in implanted targets

#### Radiographic imaging method:

GE Typhoon™ FLA 7000 is laser scanner with spatial resolution down to 25 µm was used in combination with reusable Fujifilm imaging plates.



Table 1 Thickness, density, and material of each layer.

| Layer type            | Thickness (µm) | Density (g/cm <sup>3</sup> ) | Material                                           |     |
|-----------------------|----------------|------------------------------|----------------------------------------------------|-----|
| Surface layer         | 9              | 1.4                          | polyethyleneterephthalate                          | 1 8 |
|                       |                |                              | phosphor*: urethane = 25:1                         | 1   |
| Phosphor layer        | 115            | 3.3                          | *Ba: F: Br: I (atomic number ratio 1:1:0.85:0.15,  |     |
|                       |                |                              | density 5.2 g/cm <sup>3</sup> )                    |     |
| Back layer            | 12             | 1.4                          | plastic                                            | 1   |
| Base layer            | 190            | 1.4                          | polyethyleneterephthalate                          | T,  |
| Ferrite layer         | 80             | 3.0                          | MnO, ZnO, Fe <sub>2</sub> O <sub>3</sub> + plastic | 1   |
| Back protective layer | 25             | 1.4                          | polyethyleneterephthalate                          | 1   |



Imaging Plate is a two-dimensional radiation detector with a phosphor layer of photostimulable barium fluorobromide usually doped with europium (BaFBr:Eu<sup>2+</sup>).

This layer trap and store the radiation energy.

The stored energy is stable until scanned with a laser beam, which releases the energy as luminescence.

The emitted light is collected and transformed to an electrical signal by a photomultiplier tube.

The electrical signal is then converted into digital information by A/D conversion for image display and analysis.



# Distribution of <sup>7</sup>Be in implanted targets



(a)

The target was placed on a millimetre graph paper with openings corresponding to the central hole of the aluminium frame and to the four <sup>44</sup>Ti markers,

The implanted area of the targets was placed facing the IP in a light-tight aluminium case.

Raw image from the ARIP. Resolution: 0.025 mm



A "Total Variation Filter" using a Poisson noise model was applied to improve the signal to noise ratio.



n\_TOF Collaboration meeting, 11-12 December, 2017. Madrid, Spain

Re-binning to shrink the size of the picture to dimension we can handle with our software. Resolution:  $0.25\ \text{mm}$ 



De-blurring using the Richardson-Lucy-method with 25 iterations and no additional preconditioning of the data.







Homogenious square

d = 15 mm

BIF = 0.689



### Distribution map of <sup>7</sup>Be in implanted targets



$$x_C = 2.017 \text{ mm } \sigma_x = 2.074 \text{ mm}$$

 $y_C = -2.980 \text{ mm } \sigma_v = 2.518 \text{ mm}$ 

BIF = 1.108

$$x_{\rm C} = 0.0 \text{ mm } \sigma_{\rm x} = 2.074 \text{ mm}$$

$$y_C = 0.0 \text{ mm } \sigma_v = 2.518 \text{ mm}$$

$$BIF = 1.137$$



#### Distribution map of <sup>7</sup>Be in deposited target

| Be 7<br>53.22 d                      | Be 8<br>5.57 eV<br>81.9·10·18 s |  |  |
|--------------------------------------|---------------------------------|--|--|
| ε<br>γ 478<br>σ <sub>n,p</sub> 38820 | 2α 0.046                        |  |  |
| Li 6<br>7.59                         | Li 7<br>92.41                   |  |  |
| σ 0.039<br>σ <sub>n,a</sub> 940      | σ 0.045                         |  |  |

Screening of small sections of the target using a standard  $\gamma$ -spectrometry with a 10 cm thick lead collimator with a 2 mm diameter hole in front of a coaxial HPGe-detector



 $y_C = -1.880 \text{ mm}$   $\sigma_v = 2.375 \text{ mm}$ 



# Wir schaffen Wissen – heute für morgen

#### Acknowledgement

- Vögele Alexander
- Laboratory of
   Radiochemistry
- n\_TOF Collaboration





# Distribution map of <sup>7</sup>Be in implanted targets

#### samples that are perfectly aligned with the beam line



