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EC  single-bunch effects



 
Strong head-tail instability, 
coherent tune shift, head-tail

 motion and associated 
emittance growth.
–

 

During bunch passage, e-

 

go 
toward beam center (pinch).

–

 

e-

 

follow perturbations of beam:
•

 

If displacement between head 
and tail, tail feels wake force.

–

 

Effective short-range wake field:
•

 

Single-bunch

 

TMC Instability.



 
Incoherent emittance growth

 and long-term beam losses

e = 1 x 1011 m-3

e = 2 x 1011 m-3

e = 3.5 x 1011 m-3

Strong head-tail 
instability (e > thresh )

Incoherent emittance 
growth  (e < thresh )



 
Single-bunch effects below & above EC instability threshold

(simulations for 
LHC @ injection)
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Simulations – HEADTAIL code



 

EC localized

 

in a finite number Nk

 

of interaction points (IPs)

 

around the ring.

HEADTAIL
 

→ CERN, 2002, G. Rumolo, F. Zimmermann, et al.



 

At each time step,

 

2D interaction computed with 
PIC module:



 

Matrix

 

to transport protons between IPs:
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 The cloud is thin

 

(2D). 

(by G.Rumolo)
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Electron cloud evolution

Studies of electron cloud effects
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Electron cloud evolution


 

EC “pinch”
 

in the transverse plane, during the passage of 
a bunch
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

 
EC evolution

 
at the centre of 

the bunch (x,y)=(0,0)
–

 

peaks (“linear”

 

e)
–

 

density increase

 

(“non linear”

 

e)

zBunch
HEAD

Bunch
TAIL

t=0 t=tendt

Electron cloud evolution

→ EC density

 

function of

 

longitudinal 
& transverse

 

position

 

in the bunch

1

300
(t)/0 r=0

EC phase space at different times: t0=beginning, 
t1=first peak, t2=first valley, t3=second peak
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Electron cloud evolution



 
EC evolution in dipole regions of LHC (@ inj

 
energy)
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Head-tail instability

Studies of electron cloud effects
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t = 0 ms
t = 20 ms
t = 40 ms

Snapshot of the vertical bunch profile (bunch 
centroid and rms size) at different time steps.

Head-tail instability

During the bunch passage, e-
 

are
 accumulated around beam center

If offset between head and tail:
→ tail feels transverse electric field

 
created by head
– effective short-range wake field

(simulations for 
LHC @ inj. energy, 
e =6 x 1011 m-3, 
Q’=2, field free 

region)

Vertical centroid motion and emittance 
growth in the the first 14 ms, at the onset of 

the strong head-tail instability.
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Simulation of head-tail instability

Dependence of beam blow-up on EC density value

Vertical emittance vs. time, for different 
EC densities; chromaticity Q’=2
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 3 x 1011 m-3

 3.5 x 1011 m-3

 4 x 1011 m-3

 6 x 1011 m-3

 9 x 1011 m-3

 3 x 1012 m-3 

 

Agrees with a 2-particles model 
analytical estimate of the

 

threshold 
density for TMC type instability:
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(studies for LHC @ injection)

E. Benedetto, G. Rumolo, D. Schulte, F. 
Zimmermann, PRST-AB 8, 124402 (2005)
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Dependence on bunch intensity

Simulation of head-tail instability

Vertical emittance vs. time, varying bunch intensity; (LHC 
@ inj), e =6 x 1011 m-3,

 

chromaticity Q’=2



 
At

 
half nominal

 
bunch 

intensity (green curve) 
→ below threshold

 
of 

the fast head-tail



E.Benedetto CARE-HHH Workshop, 7-8 March 2011 13

Chromaticity vs. e- density, needed 
to cure head-tail instability.

Q’=2
Q’=10
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Q’=25
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Vertical emittance vs. time, for different 
chromaticities (e

 

= 6 x 1011 m-3 )



 
Chromaticity cures

 
head-tail instability (in agreement w. observations)



 
Incoherent emittance growth below head-tail instability threshold
–

 

numerical noise or  physical effect  ?

Q’

e  [x 1012

 

m-3]

Simulation of head-tail instability
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

 

Clear threshold

 

in both planes.



 

Emittance growth

 

below

 

threshold.
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Dipole field regions

Simulation of head-tail instability



 

Clear threshold

 

in the vertical plane.


 

No instability

 

in the horizontal

 

plane.

(Simulations for LHC @ inj. energy, 10 kicks/turn, Q’=2)



 
Field free regions
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Emittance growth below 
density threshold

Studies of electron cloud effects
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HEADTAIL-ws
 

(“weak-strong”
 

or “Frozen cloud”
 

approx)
–

 
EC potential (z-dependent) computed only at 1st

 

interaction
–

 
Used for successive turns

–
 

Speeds-up
 

simulations
–

 
Valid for study of incoherent effects

 
only!

Emittance growth rate vs. # of 
macroparticles, for 1 (top) and 10 
kicks/turn (bottom lines); Simulation 
results for dynamic (blue) and frozen 
cloud (magenta) are compared.

Incoherent emittance growth



 
dependence # kicks/turn!
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Incoherent effects

 Non-monotonic dependence on # of kicks

1 8

10 17
Horizontal emittance growth vs

 

# kicks
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

 
Persisting emittance growth below threshold TMCI
–

 
NOT ONLY

 
numerical noise

–
 

resonance crossing and
 

trapping or scattering
–

 
Combined effect of :

•

 

Synchrotron motion
•

 

Incoherent tune shift

 

induced by EC (with pinch effect)
•

 

Resonances, excited by external nonlinearities or e-cloud itself

 

(in the 
simulations depend on e-cloud “kicks”

 

number and position)

Incoherent emittance growth

KEKB, Vertical beam size vs. beam 
Intensity (H.Fukuma, ECLOUD’02)

Bunch intensity and bunch length vs. time for the first (red) and 
last (green) bunch in a train.
Measurements in SPS with LHC-type bunch, MDs (coast) 26th 

Aug’04. (G.Rumolo, CARE-HHH Workshop, March’06, GSI) 
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zHEAD TAIL



 
Tune shift

 
function of z



 
Synchrotron motion
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Protons at high synchrotron 
amplitude can cross a resonance

 back and forward.

Incoherent emittance growth
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Ts

Horizontal action vs. time of a proton at large synchrotron 
amplitude (from HEADTAIL simulations) 

When a particle cross a resonance…
…its oscillation amplitude 
varies (cfr. random walk)

net increase of beam rms 
size and emittance

Incoherent emittance growth
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Time [s]E. Benedetto, G. Franchetti, F. Zimmermann, 

PRL 97, 3, 034801 (2006)
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EC “wake field”

Studies of electron cloud effects
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EC wake field

Wake field depends on pinch effect
Wake fields averaged

 

on the transverse 
beam cross section

Wake fields calculated on the axis

Different bunch sections at z = 0, at z ≈

 

0.4 and at z ≈

 

0.8 transversely displaced to compute 
wake field induced on the following part of the bunch.
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Broadband impedance model
 

for the electron cloud

Simulation of head-tail instability

K.Ohmi, F.Zimmermann, E.Perevedentsev, Phys. Rev. E 65, 016502 (2002).
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Broadband impedance model
 

for the electron cloud

 4 x 1011 m-3

 3 x 1012 m-3

 

 

x 1011 m-3

 6 x 1011 m-3
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Simulation of head-tail instability

Emittance vs. time for 
different EC densities: 
comparison between 
resonator model

 

(dotted 
line) and HEADTAIL

 

PIC  
module

 

(full line).



 
Fair agreement

 
at 

the onset of the 
instability only



E.Benedetto CARE-HHH Workshop, 7-8 March 2011 25

Conclusions

Studies of electron cloud effects
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Conclusions



 
Single-bunch

 
instabilities

 
and emittance growth

 
induced by EC



 
Simulations above

 
the strong instability threshold

–

 

Dependence on different parameters
–

 

Threshold

 

in agreement with analytical models
–

 

Chromaticity

 

as a cure for EC-TMC Instability (in agreement with 
measurements)

–

 

Dipole field
–

 

Comparison w.

 

broad-band resonator

 

model (agrees at the onset)


 
Slow emittance growth mechanism 
–

 

not only

 

numerical noise
–

 

resonance crossing

 

and trapping or scattering

 

mechanism
–

 

HEADTAIL(weak-strong) and

 

e-MICROMAP

 

successfully benchmarked



 
Very important to model:
–

 

Electron cloud pinch inducing incoherent tune shift
–

 

Accelerator lattice, non-linearities

 

and e-cloud location

 

in the ring
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Back-up Slides

Studies of electron cloud effects
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

 
e

 

motion during the passage of a proton bunch (Gaussian shape):
–

 

x << x

 

harmonic oscillations

 

(~ 2)

Position vs. time of e starting from different 
initial amplitudes.

GHz2.12 /c(z)r 2
r

2
ebe  

Electron cloud evolution

– x >> x

 

non-linear oscillations

 

(x > 12x

 

, e

 

perform less then ¼

 

oscillat.!!!)

zBunch HEAD Bunch TAIL

t=0 t=tendt

x 
[m

]

b

2b

3b

EC phase space at different times: t0=beginning, 
t1=first peak, t2=first valley, t3=second peak
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Parameters LHC @ injection (simulations ‘06)

N =3.75 m
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 Simplified model
–

 
circular symmetry

–
 

Gaussian beam (b

 

)
–

 
EC Gaussian distribution (e

 

= f
 

b

 

)
–

 
EC density linearly increasing in z

–
 

linearized synchrotron motion HEAD 
(-2 z)

TAIL 
(-2 z )

e

 

=0

max Qmax

e-MICROMAP (GSI space-charge code): 
analytical expression to compute the field

•

 

approximate EC distribution
•

 

PIC noise avoided

HEADTAIL-ws

 

(CERN):
field computed with

 

PIC module
• real EC distribution

 Benchmark
 

between:

Benchmark with space charge code

CARE-HHH collaboration w. G.Franchetti, GSI



E.Benedetto CARE-HHH Workshop, 7-8 March 2011 31

e = 0.5
 

b , Qmax

 

=0.04

e = 1
 

b , Qmax

 

=0.1

Benchmark with simplified model

HEADTAIL
HEADTAIL

e-MICROMAP

Relative emittance vs. number of 
turns, for 2 different EC densities 
(different Qmax ) 

Benchmark with space charge code

 very good agreement !

e-MICROMAP
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Analytical model approx: 
–

 
longitudinally: real EC-density 

–
 

transversely: Gaussian
 

cloud
• EC

 

(t=0)

 

= beam

•R2 = const 
• Qmax

 

=0.13

Under-estimation of 
electron charge !!!

Benchmark with space charge code

 qualitatively good agreement

Benchmark with
 

EC “pinch”
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