Measurement of the energy loss through the synchronous phase shift

E. Shaposhnikova (CERN/BE) CERN-GSI Electron Cloud Workshop 2011

Thanks to G. Hagmann, P. Baudrenghien,A. Butterworth, T. Mastoridis , G. Arduini,W. Hofle, L. Tavian + LHC operation shift (V. Kain)

Synchronous phase shift

- Energy loss of the beam should be compensated by the RF system
- In the absence of acceleration the synchronous phase

 $\sin \phi_s = W_n/(e V),$

where W_n is energy loss per turn and per particle and V is the voltage amplitude

- Measurement of ϕ_{s} can be used for evaluation of energy loss due to
 - synchrotron radiation
 - resistive impedance (broad-band and narrow-band)
 - e-cloud

Synchronous phase shift

- Single bunch effects:
 - synchrotron radiation
 - broad-band resistive impedance
 - \rightarrow Phase shift is the same for all bunches
- Multi-bunch effects:
 - narrow-band resistive impedance
 - e-cloud
- \rightarrow Phase shift is different from bunch to bunch

Synchronous phase shift in LHC

 Measurements of the average synchronous phase shift (phase loop error)

 $\Delta \phi_s = \sum \Delta \phi_s / n_b = W / (e V N)$

- For power of 1 kW, voltage V = 3.5 MV and N =10¹³ (100 nominal bunches) $\rightarrow \Delta \phi_s = 0.9 \text{ deg}$
- First preliminary measurements done in 2010
- Bunch-by-bunch measurements are possible and planned for 2011 (in collaboration with OP Group)
- Effect is smaller for higher voltage (in absence of dependence on the bunch length):

 \rightarrow twice smaller shift for 6 MV in 2011 (3.5 MV in 2010)

Synchronous phase shift due to energy loss of a single bunch in the SPS

Raw data, 26 GeV/c

Energy loss /turn and particle

$$U_b = -e^2 Nk = -e^2 N \sum_n k_n(\sigma)$$

the loss factor for the Gaussian bunch

Energy loss of a single bunch in the CERN SPS, EPAC'04

SPS: energy loss from resistive impedance budget

Contributions to energy loss U/(N/10¹⁰)

Comparison with measurements

→ good agreement between calculated and measured energy loss as a function of bunch length for a single bunch → 70 keV energy loss for single bunch with length of 3.5 ns

SPS: uncaptured beam motion the 200 MHz signal

Injection

A few seconds later

 \rightarrow Energy loss due to e-cloud and impedance?

SPS: accelerating bucket on the flat bottom

Bucket: ϕ_s =1.8 deg, α =U/(eV)=0.03 U=60 keV, V=2 MV , hole ~2 $\sqrt{\pi\alpha}$ =0.6 Measured density plot: particles lost at injection $\rightarrow \phi_s \neq 0$

Capture loss of the LHC beam in the CERN SPS, EPAC'04

LHC: first measurements with 75 ns beam (on 18.11.2010) N=6x10¹³

Beam1: phase shift $\Delta \phi_s = 0.4 \text{ deg}$, no/small drift Beam2: Continuous drift, different slopes

Phase shift for a 75 ns beam (on 19.11.2010) N=8x10¹³

Beam 1: phase shift $\Delta \phi_s \sim 0.6 \text{ deg}$ Beam 2: phase drift (noisy pilot)

50 ns beam with energy ramp (18:30-20:00 on 19.11) N=1.1x10¹³

Beam 1: phase shift $\Delta \phi_s = 0.2 \text{ deg}$ Beam 2: continuous phase drift (~2 deg)

The last fill with 50 ns beam (6:30-8:00 on 20.11) N=5x10¹³

Beam 1: $\Delta \phi_s = 0.8 \text{ deg}$, increases faster for N > 10¹³ Beam 2: phase drift

Summary of 2010 stable phase measurements for Beam1

Last fills with 75 ns beam

- different phase drift during night and with/without beam
- large steps in phase due to the filling scheme (1.005 μs gaps)

Summary and future steps

- First observations show visible phase shift for Beam1:
 - phase shift is larger with 50 ns spacing than with 75 ns for even smaller beam intensity
 - nonlinear dependence of phase shift on total beam intensity both for 75 ns and 50 ns bunch spacings → threshold
 - more data is available, for 150 ns spacing also
- Need calibration/understanding vs cryogenic measurements
- Precision of measurements can be increased by data postprocessing (now) and by using filter (in future) – P.B.
- Beam2 phase drift should be investigated, systematics for Beam1 also
- Measurements in the SPS for beam with different spacings