

NEG coating of ELETTRA dipole chambers

Stefano Saroglia

04.09.2023

ELETTRA-CERN Project update

Outline:

- ✓ Project overview
 - ELETTRA 2.0
 - Dummy chambers
 - Coating requirements
- Coating strategy
- Experimental updates
- Conclusion

ELETTRA 2.0

Elettra Sincrotrone Trieste

- Synchrotron light source 34 beamlines
- From IR to Hard X-Rays for:
 - Solid state physics
 - o Biology
 - Environmental science

Elettra 2.0

- Arcs upgrade 72 St.St. chambers
 - $\circ~$ Outsource NEG coating
- Horizontal emittance reduction by 49 times (0.25 nm rad)
- Update UHV System smaller diameters for higher magnetic fields
- **NEG** coating for
 - Distributed pumping
 - Low PSD yields

Dummy chambers (2 types)

Without synchrotron light extraction (woLE)

Dummy chambers cross section

> With synchrotron light extraction (wLE)

Open volume •

e⁻ side

photon side

e⁻ channel

photon channel

•

Coating requirements

➤ e- channel

- 0.2 < Thickness < 0.5 μm impedance limited
- High coverage

photon channel

- $0.2 < thickness < 1.5 \ \mu m$
- High coverage PSD limited

Coating requirements

Absorber area

- High coverage PSD limited
- 2nd coating run

Pumping ports

- High coverage PSD limited
- 2nd coating run

ELETTRA-CERN Project update

Outline:

Project overview

✓ Coating strategy

- Coating principle
- Short plasma confinement
- Target translation in UHV
- Experimental updates

Conclusion

Coating Principle

Magnetron Sputtering

- Vacuum chamber = **substrate**
- Target of coating material
- Plasma discharge
- Uniform film growth

ELETTRA geometry

- Plasma inhomogeneity at narrow region
- Non-uniform coating
 - o Plasma difference
 - Change in coated surface

Short plasma confinement

- Previous similar coating
 - Whole cathode active
 - \circ Only overall control
 - Local inhomogeneities possible

- Advantages of short plasma
 - **Power** in specific position
 - Localized film growth
 - Control of time per position
 - \circ Homogeneity
 - Local cathode-substrate distance
 - Cross section adaptation

20 mm

Dipole woLE – target arrangement

> woLE Coating approach:

- Bent target for e⁻ channel
- Translational spacers on fixed target (longitudinal translation)
- Pivoting target for photon channel (transversal motion)

woLE Coating challenges:

- Spacers = insulated + no-scratch movement
- Pivoting mechanism
- Minimize shadow from pivoting centre
- UHV motion system from top

Dipole wLE – target arrangement

> wLE Coating approach:

- Pivoting target through full section (transversal motion)
- Bending spacers for 3° angle
- No hindrance on the side

- > wLE Coating challenges:
 - Spacers = insulated + no-scratch movement
 - Pivoting mechanism
 - UHV motion system from top

ELETTRA-CERN Project update

Outline:

- Project overview
- Coating strategy

✓ Experimental results

- Optimization of thickness uniformity
- Coating system implementation
- Conclusion

Optimization of thickness uniformity

Plasma study in narrow volumes

- Create narrow chamber + sample
- U-shaped alu profile, capped with stainless steel sample

Short plasma confinement along z-axis

- Investigation of magnetic bottling
 - Plasma ignition in low field region

 Investigation of **diverging** magnetic field

Stefano Saroglia | ELETTRA-CERN update

Thickness uniformity – Bottling

Static analysis

- 2 regimes
 - High Pressure = Broad & flat solenoid length
 - Low Pressure = Narrow & gaussian solenoid centre

Dynamic analysis

- 2 ideas for coating 10 cm at ≈0.45 µm:
 - Continuous scanning

Thickness uniformity – Bottling

Static analysis

- 2 regimes
 - High Pressure = Broad & flat solenoid length
 - Low Pressure = Narrow & gaussian solenoid centre

Dynamic analysis

- 2 ideas for coating 10 cm at ≈0.45 µm:
 - Continuous scanning
 - \circ Multi-static at fixed distance
- Plasma Pinning on previous coating positions

Thickness uniformity – Diverging

Static analysis

- Broad & fairly flat profiles
- Coherent with magnetic field and solenoid positioning

- Continuous scanning analysis
 - Continuous coating over 55 cm (10h) successful
 - 1 solenoid length of non-homogeneity
 - Homogeneous profile over 30 cm (0.63 ± 0.03 μm)

Coating system implementation - Vacuum

- Vacuum for half-shells coating
 - Vacuum vessel to host shells
 - Adaptation components for support
 - Design of top flange for feedthroughs
- Cathodes manipulation in UHV (MME collaboration)
 - Vertical translation
 - Movable spacers on bearings
 - Horizontal translation
 - $\circ~$ Access from top flange
 - $\circ~~$ UHV compatible components

Coating system implementation - Solenoid

High field short solenoid

- Self-produced due to time constraints
 - \circ Hollow conductor water cooled
 - \circ Copper bought from MSC-NCM
 - Deoxidized in b.107 Kapton adhesion ⁵/₂
- 320 mm diameter to pass through real chambers
- Water cooling circuit developed

ELETTRA-CERN Project update

Outline:

- Project overview
- Coating strategy
- Experimental updates
- ✓ Conclusion
 - Summary
 - Schedule

Conclusions

Summary

- Satisfying coating over 30 cm
- Solenoid design almost completed
- Vacuum for dummy coating almost completed
- UHV translation system ongoing

Schedule

- 2023 = complete full coating system
- 2024 = finalize recipe for dipoles

Time Frame	Milestones	Deliverables
Q3 2023	Start tests on half chambers	Validate coating in alu profile
Q4 2023	Production of final solenoid	
Q1 2024	Parameters optimization for dummy coating	Report on coating parameters
Q2 2024	Half shell complete coating (optional: real chamber?)	NEG technology to industry

home.cern

APPENDIX – Coating study system

APPENDIX - Bottling results normalised

APPENDIX - Bottling results absolute

APPENDIX – Magnetic Bottling analysis

- No visible effect of change in magnetic profile
 - Probably not bottling

APPENDIX - Bottling results – plasma escape

APPENDIX – Diverging solenoid results

0 - 37 cm

Dipole wLE – target arrangement – Plan C

