High Energy Physics Lecture 1: Introduction

Ricardo Gonçalo Universidade de Coimbra Laboratório de Instrumentação e Física Experimental de Part.culas

Welcome to High Energy Physics!

- Introductions
- Logistics
- Course structure
- Bibliography
- Quick overview

Introduction and Logistics

- Ricardo Gonçalo
 - Logistics:
 - Email: jgoncalo@uc.pt
 - Office: E.20
 - Office hours: Tuesday 11am?
- Research interests:
 - Higgs boson properties
 - Hadronic jet physics
 - Trigger development
 - Detector upgrade
 - Data analysis
 - etc

Overall learning objectives

- Elementary particles, their spectrum and classification; fundamental interactions and corresponding gauge bosons
- Klein-Gordon and Dirac equations and their free-particle solutions; zero mass and helicity limit; neutrinos and the V-A structure of weak interactions
- Fermion and boson propagators; Yukawa potential of a bosonic field; propagators
- Feynman diagrams; cross section calculation at 1st order for simple processes; higher order diagrams and renormalization
- Proton form factor and structure functions; quarks and gluons; notions of quantum chromodynamics; strong coupling constant; quark confinement and asymptotic freedom
- Neutrino physics; mixing and oscillation
- P, C, and T symmetries; CP and T violation and the CPT theorem
- Unified electroweak theory and the Standard Model; neutral and charged currents, W and Z bosons
- The Higgs mechanism and electroweak symmetry breaking
- High energy collider- and non-collider based experiments; important results
- Limitations of the Standard Model and searches for new physics

Course structure

- 14 theory lectures:
 - Mixture of slides and blackboard
 - If time allows: a seminar (to be defined)
- 14 problem sessions:
 - Sometimes will use for theory
- Grading:
 - Final test during 18th May problem session (50%)
 - Problem sets to deliver individually (50%) in Inforestudante

Bibliography

- Main book (in principle):
 - Mark Thomson "Modern Particle Physics"
- Sometimes I will use:
 - D. J. Griffiths "Introduction to Elementary Particles"
 - G.Barr et al. "Particle Physics in the LHC Era"
 - F. Halzen & A.D. Martin "Quarks & Leptons"
- Encyclopaedia on particle properties and other relevant information
 - PDG: <u>http://pdg.lbl.gov</u>

Particle Physics

Particle Physics

 High Energy Physics? Same as particle physics, physics of elementary particles, etc

Plus

And the forces...

The Standard Model of Particle Physics

 $\begin{array}{l} \mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{u}^{a} - g_{s} f^{abc} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c} - \frac{1}{4} g_{s}^{2} f^{abc} f^{adc} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{d} g_{\nu}^{c} - \partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{+} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2 c^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - i g c_{w} (\partial_{\nu} Z_{\mu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - W_{\mu}^{-} - W_{\mu}^{-} W_{\mu}^{-} - W_{\mu}^{-} - W_{\mu}^{-} W_{\mu}^{-} - W_{\mu}^{-} - W_{\mu}^{-} W_{\mu}^{-} - W_{\mu}^{-} W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}))$ $igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}-W_{\nu}^{+}W_{\mu}^{-})-A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})+A_{\mu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-})$ $\overset{(-)}{W_{\nu}}\overset{(-)}{\partial_{\nu}}\overset{(-)}{W_{\mu}}\overset{(-)}{)}) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - C_{\mu}^{0}W_{\mu}^{-})) - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{$ $Z_{u}^{0}Z_{u}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\mu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\mu}^{-}W_{\mu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\mu}^{-}W_{\mu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\mu}^{-}W_{\mu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\mu}^{-}W_{\mu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\nu}^{0}W_{\mu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu}Z_{\mu}^{0}W_{\mu}^{-}) + g^{2}s_{w}c_{w}(A_{\mu$ $W_{\nu}^{+} W_{\mu}^{-}) - 2 \dot{A}_{\mu} Z_{\mu}^{0} W_{\nu}^{+} W_{\nu}^{-}) - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - 2 M^{2} \alpha_{h} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \phi^{-} - \frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0} - \frac{1}{2} \partial_{\mu} \phi^{0} - \frac{1}{2} \partial_{\mu} \phi^{0} \partial_{\mu} \phi^{0} - \frac{1}{2} \partial_{$ $\beta_h \left(\frac{2M^2}{a^2} + \frac{2M}{a} H + \frac{1}{2} (H^2 + \phi^0 \phi^0 + 2\phi^+ \phi^-) \right) + \frac{2M^4}{a^2} \alpha_h$ $g \alpha_h M (H^3 + H \phi^0 \phi^0 + 2H \phi^+ \phi^-) \frac{1}{5}q^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2\right) - \frac{1}{5}q^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2\right) - \frac{1}{5}q^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2\right) - \frac{1}{5}q^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2\right) - \frac{1}{5}q^2\alpha_h \left(H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 2(\phi^0)^2H^2\right) - \frac{1}{5}q^2\alpha_h \left(H^4 + (\phi^0)^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^- + 4H^2\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^+\phi^- + 4H^2\phi^- + 4H^$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H \frac{1}{2}ig\left(W^+_{\mu}(\phi^0\partial_{\mu}\phi^--\phi^-\partial_{\mu}\phi^0)-W^-_{\mu}(\phi^0\partial_{\mu}\phi^+-\phi^+\partial_{\mu}\phi^0)\right)+$ $\frac{1}{2}g\left(W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)+W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)\right)+\frac{1}{2}g\frac{1}{2}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)+$ $M\left(\frac{1}{c_{w}}Z_{\mu}^{0}\partial_{\mu}\phi^{0}+W_{\mu}^{+}\partial_{\mu}\phi^{-}+W_{\mu}^{-}\partial_{\mu}\phi^{+}\right)-ig\frac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W_{\mu}^{+}\phi^{-})+igs_{w}WA_{\mu}(W$ $W_{\scriptscriptstyle \mu}^-\phi^+) - ig \frac{1-2c_{\scriptscriptstyle \mu}^2}{2c_{\scriptscriptstyle \mu}} Z_{\scriptscriptstyle \mu}^0 (\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) + ig s_w A_\mu (\phi^+\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) - ig s_w A_\mu (\phi^-\partial_\mu\phi^- - \phi^-\partial_\mu\phi^+) - ig s_w (\phi^-\partial_\mu\phi^- - \phi^-\partial_\mu\phi^-) - ig s_w (\phi^-\partial_\mu\phi^ \frac{1}{4}g^2 W^+_\mu W^-_\mu (H^2 + (\phi^0)^2 + 2\phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^-) - \frac{1}{8}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^-) - \frac{1}{2}g^2 \frac{1}{c^2} Z^0_\mu Z^0_\mu (H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^-) - \frac{1}{2}g^2 \frac{1}{c^2} Z^0_\mu (H^2 + (\phi^0)^2 + 2(z^2_w - 1)^2 \phi^-) - \frac{1}{c^2} Z^0$ $\frac{1}{2}g^2\frac{s_w^2}{c}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c}Z_{\mu}^0H(W_{\mu}^+\phi^--W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^-\phi^-+W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^-) + \frac{1}{2}g^2s_wA_{\mu}\phi^ W_{\mu}^{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2}-1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - G_{\mu}^{0}\phi^{+})$ $g^2 s^2_{vv} A_{\mu} A_{\mu} \phi^+ \phi^- + \frac{1}{2} i g_s \lambda^a_{ii} (\bar{q}^\sigma_i \gamma^\mu q^\sigma_i) g^a_{\mu} - \bar{e}^{\lambda} (\gamma \partial + m^{\lambda}_e) e^{\lambda} - \bar{\nu}^{\lambda} (\gamma \partial + m^{\lambda}_{\nu}) \nu^{\lambda} - \bar{u}^{\lambda}_i (\gamma \partial + m^{\lambda}_e) e^{\lambda} - \bar{\nu}^{\lambda} (\gamma \partial + m^{\lambda}_{\nu}) e^{\lambda} - \bar{u}^{\lambda}_i (\gamma \partial + m^{\lambda}_e) e^{\lambda} - \bar{\nu}^{\lambda} (\gamma \partial + m^{\lambda}_e) e^{\lambda}$ $m_u^{\lambda} u_i^{\lambda} - \bar{d}_i^{\lambda} (\gamma \partial + m_d^{\lambda}) d_i^{\lambda} + i g s_w A_\mu \left(-(\bar{e}^{\lambda} \gamma^\mu e^{\lambda}) + \frac{2}{3} (\bar{u}_i^{\lambda} \gamma^\mu u_i^{\lambda}) - \frac{1}{3} (\bar{d}_i^{\lambda} \gamma^\mu d_i^{\lambda}) \right) +$ $\frac{ig}{4c}Z_{\mu}^{0}\{(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{d}_{i}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})d_{i}^{\lambda})+$ $(\bar{u}_j^{\lambda}\gamma^{\mu}(1+\frac{8}{3}s_w^2+\gamma^5)u_j^{\lambda})\}+\frac{ig}{2\sqrt{2}}W_{\mu}^+\left((\bar{\nu}^{\bar{\lambda}}\gamma^{\mu}(1+\gamma^5)U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_j^{\bar{\lambda}}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_i^{\kappa})\right)+$ $\frac{ig}{2\sqrt{2}}W_{\mu}^{-}\left(\left(\bar{e}^{\kappa}U^{lep}_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}\right)+\left(\bar{d}_{i}^{\kappa}C_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{i}^{\lambda}\right)\right)+$ $\frac{ig}{2M_{\nu}/2}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_{\kappa}^{2}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\nu}^{2}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{\kappa}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}\frac{M_{\lambda\kappa}^{R}}{M_{\lambda\kappa}^{R}}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{\kappa}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{ig}{2}\frac{m_{\nu}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{ig}{4}\bar{\nu}_{\lambda}\frac{M_{\kappa}^{2}}{M_{\lambda\kappa}^{2}}(1-\gamma_{5})\hat{\nu}_{\kappa} - \frac{ig}{2}\frac{m_{\nu}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{ig}{4}\frac{m_{\nu}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{ig}{4}\frac{m_{\nu}^{2}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}$ $\frac{1}{4} \overline{\nu_{\lambda}} \frac{M_{\lambda}^{R}}{M_{\lambda\kappa}^{R}} (1-\gamma_{5}) \hat{\nu_{\kappa}} + \frac{ig}{2M\sqrt{2}} \phi^{+} \left(-m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda\kappa} (1-\gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda\kappa} (1+\gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa})-m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{j}^{\kappa})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{j}^{\lambda})-\frac{g}{2}\frac{m_{u}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{\lambda$ $\frac{g}{2}\frac{m_d^2}{M}H(\bar{d}_i^\lambda d_i^\lambda) + \frac{ig}{2}\frac{m_u^\lambda}{M}\phi^0(\bar{u}_i^\lambda\gamma^5 u_i^\lambda) - \frac{ig}{2}\frac{m_d^\lambda}{M}\phi^0(\bar{d}_i^\lambda\gamma^5 d_i^\lambda) + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu \bar{G}^a G^b g^c_\mu +$ $\bar{X}^{+}(\partial^{2} - M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \frac{M^{2}}{c^{2}})X^{0} + \frac{M^{2}}{c^{2}}X^{-} + \frac{M^{2}}{c^{2}}X^{0} + \frac{M^{2}}{c^{2}}X^{-} + \frac{M^{2}}{c^{2}}X^{0} + \frac{M^{2}}{c^{2}}X^{-} + \frac{M^{2}}{c^{2}}X^{0} + \frac{M^{2$ $\partial_\mu ar{X}^+ X^0) + igs_w W^+_u (\partial_\mu ar{Y} X^- - \partial_\mu ar{X}^+ ar{Y}) + igc_w W^-_u (\partial_\mu ar{X}^- X^0 - \partial_\mu ar{X}^+ ar{Y}))$ $\partial_{\mu}\bar{X}^{0}X^{+})+igs_{w}W_{\mu}^{+}(\partial_{\mu}\bar{X}^{-}Y-\partial_{\mu}\bar{Y}X^{+})+igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+}-\partial_{\mu}\bar{Y}X^{+}))$ $\partial_{\mu} \ddot{X}^{-} X^{-}) + igs_{w} \dot{A}_{\mu} (\partial_{\mu} \dot{X}^{+} X^{+} -$ $\partial_{\mu} \bar{X}^{-} X^{-}) - rac{1}{2} g M \left(ar{X}^{+} X^{+} H + ar{X}^{-} X^{-} H + rac{1}{c_{-}^{2}} ar{X}^{0} X^{0} H
ight) + rac{1-2c_{w}^{2}}{2c_{w}} i g M \left(ar{X}^{+} X^{0} \phi^{+} - ar{X}^{-} X^{0} \phi^{-}
ight) + rac{1}{c_{-}^{2}} ar{X}^{0} X^{0} H
ight)$ $\frac{1}{2c} igM (\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^-) + igMs_w (\bar{X}^0 X^- \phi^+ - \bar{X}^0 X^+ \phi^-) +$ $\frac{1}{2}igM\left(\bar{X}^{+}X^{+}\phi^{0}-\bar{X}^{-}X^{-}\phi^{0}\right)$.

Standard Model Production Cross Section Measurements

Back to school: Units

Standard Units

Grandeza física	SI	Factor de conversão	Unidades Standard
Comprimento	m	10^{15}	fm
Tempo	S	1	S
Massa	kg	$\frac{c^2}{1.602 \times 10^{-13}} = 5.609 \times 10^{29}$	MeV/c^2
Momento linear	kg ms ⁻¹	$\frac{c^2}{1.602 \times 10^{-13}} \frac{1}{c} = 1.871 \times 10^{21}$	$MeV/_{c}$ Velocidade em
			unidades de c

Natural Units: $\hbar = c = 1$

Grandeza física	SI	Factor de conversão	Unidades Naturais
Comprimento	m	$\frac{10^{15}}{\hbar c} = 5.068 \times 10^{12}$	MeV ⁻¹
Tempo	S	$\frac{1}{\hbar} = 1.519 \times 10^{21}$	MeV ⁻¹
Massa	kg	$\frac{c^2}{1.602 \times 10^{-13}} = 5.609 \times 10^{29}$	MeV
Momento linear	kg ms ⁻¹	$\frac{c^2}{1.602 \times 10^{-13}} \frac{10^{15}}{\hbar c} \left(\frac{1}{\hbar}\right)^{-1} = 1.871 \times 10^{21}$	MeV Velocidade em unidades de <i>c</i>

Plus the electric charge: $\alpha = \sqrt{4\pi\epsilon_0} \frac{e}{\hbar c} = \frac{1}{137}$

Standard vs Natural Units

Crandoza física	Unidades	Factor de	Unidades	
Granueza nsica	Standard	conversão	Naturais	
Comprimento	fm	$\frac{1}{\hbar c} = 5.068 \times 10^{-3}$	MeV ⁻¹	
Tempo	S	$\frac{1}{\hbar} = 1.519 \times 10^{21}$	MeV ⁻¹	
Massa	MeV/c^2	c ²	MeV	
	MeV/c		MeV	
Momento linear	Velocidade em	С	Velocidade em	
	unidades de c		unidades de <i>c</i>	

Particle Properties

Quarks, Leptons, Gauge bosons

Gauge Bosons

- Spin 1; different charges
- Responsible for properties of interactions
- Massive vs massless bosons

Sector		Q	Colour charge	Mass	Width	J^P
EW	$W^{\pm} \\ Z^{0} \\ \gamma$	$\begin{array}{cccc} W^{\pm} & \pm 1 & 0 \\ Z^{0} & 0 & 0 \\ \gamma & 0 & 0 \end{array}$		$80.399(23) { m GeV}$ $91.1876(21) { m GeV}$ 0	2.085(42) GeV 2.4952(23) GeV 0 (stable)	$ 1 1 1^{-} $
Strong	g	0	${\mathop{\rm SU}(3)_{ m colour}} \ { m octet}$	0	0 (stable)	1-

Leptons

- Unit charge, spin 1/2
- Feel electromagnetic and weak, but not strong force
- Lepton number L_e , L_μ , L_τ

• Found to be conserved in all known interactions

State	Q	Mass	L_e	L_{μ}	L_{τ}	Lifetime
e^- $ u_e$	$-1 \\ 0$	$0.511{ m MeV}\ < 2{ m eV}$	+1 +1	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \end{array}$	$> 4.6 \times 10^{26}$ years Stable
$\mu^- u_\mu$	$-1 \\ 0$	$\begin{array}{l} 105.7\mathrm{MeV} \\ < 0.19\mathrm{MeV} \end{array}$	0 0	$^{+1}_{+1}$	0 0	$2.197034(21) \times 10^{-6} \mathrm{s}$ Stable
$\frac{\tau^{-}}{\nu_{\tau}}$	$-1 \\ 0$	$1776.82 \pm 0.16 \mathrm{MeV}$ < 18.2 MeV	0 0	0 0	$^{+1}_{+1}$	$(290.6 \pm 1.0) \times 10^{-15} \mathrm{s}$ Stable

π^+ DECAY MODES	Fraction (Γ_i/Γ)			Confidence level	р (MeV/c)
$\overline{\mu^+ u_{\mu}}$	[<i>b</i>]	(99.9877	0 ± 0.000	04) %	30
$\mu^{\dot{+}} u_{\mu} \gamma$	[c]	(2.00	± 0.25) $ imes$ 10 $^{-4}$	30
$e^+\nu_e$	[<i>b</i>]	(1.230	± 0.004) $ imes$ 10 $^{-4}$	70
$e^+ u_{e} \gamma$	[c]	(7.39	± 0.05	$) imes 10^{-7}$	70
$e^+ \nu_e \pi^0$		(1.036	± 0.006) $ imes$ 10 $^{-8}$	4
$e^+ \nu_e e^+ e^-$		(3.2	\pm 0.5	$) imes 10^{-9}$	70
$e^+ \nu_e \nu \overline{\nu}$	*	< 5		$ imes$ 10 $^{-6}$ 90%	70
Lepton Family number (<i>LF</i>)	or L	epton nu	mber (<i>L</i>) violating mo	des
$\mu^+ \overline{\nu}_e$ L	[d] ·	< 1.5		$ imes 10^{-3}$ 90%	30
$\mu^+ \nu_{e}$ LF	[d] ·	< 8.0		$ imes$ 10 $^{-3}$ 90%	30
$\mu^- e^+ e^+ u$ LF	•	< 1.6		$ imes$ 10 $^{-6}$ 90%	30

Particle Data Group: https://pdg.lbl.gov

Quarks

• Fractional electric charge, spin 1/2 (see later about Isospin)

qb

- Always confined in hadrons: mesons (qq); baryons (qqq)
- Explain basic (static) structure of hadrons
- Colour quantum number:
 - 3 values: Red, Green, or Blue
 - Introduced to explain some baryon wavefunctions, for example of Δ ++ (uuu)
 - Only colour-neutral particles are stable
 - Stable combinations are qqq and $q\overline{q}$
 - Gluons are bi-coloured:

$$rar{b}, \quad rar{g}, \quad bar{g}, \quad bar{r}, \quad gar{r}$$

	Q	Mass	Ι	I_z
d	$-\frac{1}{3}$	$4.15.8\mathrm{MeV}$	$+\frac{1}{2}$	$-\frac{1}{2}$
u	$+\frac{2}{3}$	$1.73.3\mathrm{MeV}$	$+\frac{1}{2}$	$+\frac{1}{2}$
s	$-\frac{1}{3}$	$80130\mathrm{MeV}$	0	0
с	$+\frac{2}{3}$	$1.181.34\mathrm{GeV}$	0	0
b	$-\frac{1}{3}$	$4.19^{+0.18}_{-0.06}\mathrm{GeV}$	0	0
t	$+\frac{2}{3}$	$172.0\pm1.6{\rm GeV}$	0	0

$$, \quad \frac{1}{\sqrt{2}}(r\bar{r}-bb), \quad \frac{1}{\sqrt{6}}(r\bar{r}+bb-2g\bar{g})$$

- In the laboratory, we never see "free quarks" but bound systems:
 - "mesons": quark and antiquark pair
 - "baryons": three quarks bound together
 - "antibaryons": three antiquarks bound together
 - Collectively they are called "hadrons"
- To understand the underlying mechanism for a process involving hadrons, consider the constituent quarks (look it up, no need to memorize)
 - D^{*-} = bound state of anti-c quark and d quark
 - ρ^{-} = bound state of anti-u quark and d quark

 $B^0 \to D^{*-} + e^+ + \nu_e$ $B^0 \to \rho^- + e^+ + \nu_e$

≈140 known mesons≈65 baryons plus resonances59 hadrons found at the LHC until 2021

Antibaryons

9

Mesons

Nama		Mass (MoV/c ²)	Lifetime	Spin TP [5]	Charge	Isospin T	Strangeness S
QUARKS:		(Mey/C)	(6)	լ ս լով	10 /10	L	0
"mm"		411?	~?	1	<u>2</u>	1	0
ц. ц.	12	711.		2		2	v
"down"	ď	411?	?	12	$-\frac{1}{3}$	$\frac{1}{2}$	0
"strange"	R	558?	oo?	$\frac{1}{2}$	$-\frac{1}{3}$	0	-1
MESONS:		-			-		
pion	π	139	$\pi^{\pm}: 2.6 \times 10^{-8} \\ \pi^{0}: 8.3 \times 10^{-17}$	0-	-1, 0, +1	1	0
kaon	K	495	$K^{\pm}: 1.2 \times 10^{-8}$ $K^{0}:$ ambiguous	0-	-1, 0, +1	$\frac{1}{2}$	$K^{0}, K^{+}: +1$ $\bar{K}^{0}, K^{-}: -1$
eta	η	549	$8.9 imes10^{-15}$	0-	0	0	0
rho	ρ	770	$4.3 imes 10^{-24}$	1-	-1, 0, +1	1	0
omega	ω	783	6.58×10^{-23}	1-	0	0	0
phi	φ	1020	$1.6 imes 10^{-22}$	0-	0	0	0
	K^*	892	1.33×10^{-23}	1-	-1, 0, +1	$\frac{1}{2}$	$K^{*0}, K^{*+}: +1$ $\bar{K}^{*0}, K^{*-}: -1$
	÷	:	:	:	÷	:	
BARYONS	5:			I			
nucleon	N	938	proton $(p) : \infty$ neutron $(n) : 920$	$\frac{1}{2}^+$	0,+1	$\frac{1}{2}$	0
lambda	Λ	1116	$2.6 imes10^{-10}$	$\frac{1}{2}^{+}$	0	0	-1
sigma	Σ	1190	$\Sigma^{\pm} :\approx 10^{-10}$ $\Sigma^{0} :< 10^{-14}$	$\frac{1}{2}^+$	-1, 0, +1	1	-1
cascade	Ξ	1320	$pprox 2 imes 10^{-10}$	$\frac{1}{2}^+$	-1,0	$\frac{1}{2}$	-2
	÷	:	:	:	÷	÷	÷
delta	Δ	1232	$5 imes 10^{-24}$	$\frac{3}{2}^{+}$	-1, 0, +1, +2	$\frac{3}{2}$	0
	Σ^*	1383	$1.6 imes 10^{-23}$	$\frac{3}{2}^{+}$	-1, 0, +1	1	-1
	Ξ*	1530	$6.6 imes 10^{-23}$	$\frac{3}{2}^{+}$	-1,0	$\frac{1}{2}$	-2
Omega	Ω	1672	$1.3 imes 10^{-10}$	$\frac{3}{2}^{+}$	-1	0	-3
	÷	:		:	:	:	÷

Feynman Diagrams

Intreractions

- Interaction between two particles A and B interpreted as exchange of mediating particle X
- Left hand side: initial state
- Right hand side: final state
- Middle: how transition happened
- Time runs from left to right(*)

(*) But only in the sense that "before" is initial state and "after" is final state

Diagramas de Feynman

- em cada vértice :
- conservação do quadri-momento
- conservação da carga
- conservação dos números quânticos respeitados por cada interação

• Fundamental building block of an interaction is the "vertex"

q is any quark (colored object)

- vertex factor "coupling constant"
 - not part of diagram but indicates "strength" of interaction

q is any quark (colored object)

- In fact, any allowed process has an infinite number of possible diagrams
- The coupling constant:
 - diagrams with more vertices have vertex factors
 - if this is small, diagrams with more vertices contribute less
 - we do calculation at "order N" where N is the number of vertices.
 - must consider all diagrams of "order N"
 - if we want more precise calculation we go to higher order

from probabilities, and in turn, from quantum mechanical transition matrix elements.

these contain one g factor for each vertex.

Time-ordering is left - to -right.

But due to the uncertainty principle, we cannot know all about the "virtual" particle being exchanged. A vertical line represent all possible time-orderings.

An infinite number of diagrams is possible for the same initial and final state.

> classified according to the number of vertices

