
key4hep Update

Juan Miguel Carceller

on behalf of the Keyhep team

CERN

June 21, 2023

The key4hep Team: New Additions

• Swathi Sasikumar (fellow) joined in March

• Leonhard Reichenbach (PhD student) joined
in March

• Juan Miguel Carceller (fellow) joined in
February

1

key4hep

• Turnkey software for future accelerators

• Community with people from many different
experiments: CEPC, CLIC, EIC, FCC, ILC,
Muon Collider, etc.

• Share components to reduce maintenance
and development cost and allow everyone to
benefit from its improvements

• Complete data processing framework, from
generation to data analysis

2

Event Data Model: EDM4hep
• Data Model used in key4hep

• From a specification in a yaml file, and using podio, the C++ code containing all the classes and
methods is generated

3

Event Data Model: EDM4hep
• New tool to show a complete visualization of EDM4hep from the model description

4

Event Data Model: EDM4hep

• The data model itself is quite stable, only a few minor changes during the past months

• Changes on utilities around EDM4hep: visualization, python bindings, improved JSON support. . .

• There are now python bindings that make it possible to work with EDM4hep in python:

from edm4hep import edm4hep
particle = edm4hep.MCParticle() # default initialized particle

particle.getCharge() # 0.0

series = edm4hep.TimeSeries(1, 2, 3) # classes can be constructed with non-default parameters

series.getCellID() # 1

series.getTime() # 2.0

series.getInterval() # 3.0

mc = edm4hep.MutableMCParticle() # mutable classes can also be modified

mc.setPDG(2212)

mc.getPDG() # 2212

5

https://github.com/key4hep/EDM4hep#python-bindings

Event Data Model: EDM4hep
• Combined with the podio python bindings it’s possible to write and read frames

from edm4hep import edm4hep
from ROOT import podio
from podio.root_io import Writer
import cppyy

writer = Writer('frame.root') # This will write the frame to a file called frame.root

frame = podio.Frame() # This is where the collection and other things will be stored

coll = edm4hep.MCParticleCollection() # Create an EDM4hep collection

coll.create() # Create a MutableMCParticle object

frame.put(cppyy.gbl.std.move(coll), "MCParticles") # Add collection to frame

writer.writeFrame(frame, 'events')
writer.finish()

• Yurii is already using these bindings to port scripts from the Muon Collider software to EDM4hep
6

Event Data Model: EDM4hep
• Combined with the podio python bindings it’s possible to write and read frames

from edm4hep import edm4hep
from ROOT import podio
from podio.root_io import Writer
import cppyy

writer = Writer('frame.root') # This will write the frame to a file called frame.root

frame = podio.Frame() # This is where the collection and other things will be stored

coll = edm4hep.MCParticleCollection() # Create an EDM4hep collection

coll.create() # Create a MutableMCParticle object

frame.put(cppyy.gbl.std.move(coll), "MCParticles") # Add collection to frame

writer.writeFrame(frame, 'events')
writer.finish()

Ugly! Plans on improving it

• Yurii is already using these bindings to port scripts from the Muon Collider software to EDM4hep
7

https://github.com/AIDASoft/podio/issues/432

podio

• podio (Plain Old Data IO) is a toolkit for the creation of EDMs like EDM4hep

• Close to version 1.0: Schema evolution, among other improvements

• RNTuple backend: Long-standing PR, no major issues
• Adds a RNTuple-based backend for writing and reading, using podio::Frame

• Adds tests that use already existing tests that write and read collections (all tests pass)

8

podio: RNTuple backend

TTree based

ROOTFrameWriter writer(filename);

writer.writeFrame(frame);

writer.finish();

ROOTFrameReader reader{};

reader.openFile(filename)

auto event = podio::Frame(reader.readEntry("events", 0));

RNTuple based

ROOTNTupleWriter writer(filename);

writer.writeFrame(frame);

writer.finish();

ROOTNTupleReader reader{};

reader.openFile(filename)

auto event = podio::Frame(reader.readEntry("events", 0));

• For the future:
• Comparisons between the RNTuple and TTree-based backends: reading and writing speed,

file size

• Python bindings for the RNTuple writer and reader

9

key4hep Framework

• Gaudi based core framework:

• k4FWCore provides the interface between EDMs and Gaudi

• k4MarlinWrapper allows to call Marlin processors

• k4SimDelphes for integration with Delphes

• k4SimGeant4 for integration with Geant4

• k4Gen for integration with generators

• k4geo for detector models, previously lcgeo

• . . .

10

https://gitlab.cern.ch/gaudi/Gaudi/
https://github.com/key4hep/k4FWCore
https://github.com/key4hep/k4MarlinWrapper
https://github.com/key4hep/k4SimDelphes
https://github.com/HEP-FCC/k4SimGeant4
https://github.com/HEP-FCC/k4Gen
https://github.com/key4hep/k4geo

key4hep Framework: Frame Support

• Coming soon, support for podio::Frame in k4FWCore, Benedikt

• More work needed for the metadata

• DD4hep saves to frames in 1.24 and after (not yet in the release nor in the nightlies)

11

https://github.com/key4hep/k4FWCore/pull/100

LCIO to EDM4hep conversion

• Status: Converter EDM4hep to LCIO in https://github.com/key4hep/k4EDM4hep2LcioConv

• Converter from LCIO to EDM4hep: https://github.com/key4hep/k4LCIOReader
• to be replaced by a newer one

• Leonhard has been using, testing and fixing these extensively:

• Support for EventHeader
conversion

• Fixing some broken associations

12

https://github.com/key4hep/k4EDM4hep2LcioConv
https://github.com/key4hep/k4LCIOReader
https://github.com/key4hep/k4EDM4hep2LcioConv/pull/13
https://github.com/key4hep/k4EDM4hep2LcioConv/pull/13
https://github.com/key4hep/k4LCIOReader/pull/32

• Leonhard will work on track fitting for electrons with ACTS in Gaudi

• Studying the status of k4ActsTracking, a package to integrate ACTS with key4hep

• User example: using ILD files that are converted to EDM4hep in jupyter notebooks with functions
from FCCAnalyses

1− 0.5− 0 0.5 1
*

lθcos

0

1000

2000

3000

Entries 202702

Mean 0.1889

Std Dev 0.5613

no pol

eνW physics benchmark analysis

13

https://github.com/key4hep/k4ActsTracking
https://github.com/Zehvogel/enuW/blob/master/e.ipynb

Pandora

• Liquid Argon (LAr) detectors are being studied for future experiments (e.g. FCC)

• Swathi will study jet energy resolution for IDEA-LAr when a full simulation for IDEA is implemented

• Currently studying LAr with CLD (with full
simulation)

• While adding the LAr calorimeter inside CLD
overlaps were found so changes in the
geometry had to be done

• Implementing a Gaudi algorithm to use
Pandora PFA with Gaudi

14

key4hep Builds

• Builds are done in containers for Centos 7, AlmaLinux 9 and Ubuntu 22.04

• Users only need source /cvmfs/sw-nightlies.hsf.org/key4hep/releases

• Next release will have support for Centos 7, AlmaLinux9 and Ubuntu 22.04

• Constant communication with users: many of the issues are solved for the next nightly (in less
than 24 hours)

15

key4hep Builds: Spack

• Status: spack is used to make the builds and then they are copied to cvmfs

• We used to have a fork of spack
• We were 3000 or 4000 commits behing spack develop

• Changes in upstream but not in our fork

• Changes in our fork but not in upstream

• Rebasing was very painful

• Fork archived

• Keeping up with Spack by updating regularly

• Updating was a bit painful, now libraries are
opt-in to be added to LD_LIBRARY_PATH

16

key4hep Builds: Nightlies
• Nightlies were updated

• Two build types depending if the build is done from scratch or not

• Builds from scratch will get the latest packages and let us know that the changes in spack don’t
break our builds - Updates every O(weeks)

• Daily builds that use as upstream the builds from scratch, they only build the packages that have
changed (or those that depend on a package that has changed)

• Three new hidden files in each release
• .scratch: If it’s there, that means it’s a build from scratch (all packages)

• .spack-commit: Which commit of spack was used to build this release

• .key4hep-spack-commit: Which commit of key4hep-spack was used to build this release
17

key4hep Builds: Tests and Next Steps
• New usability tests are being added: compilation, ROOT, python, python packages, whizard,

key4hep tools

• These tests come from experience, mainly from what people use that one day doesn’t work, to
make sure it doesn’t repeat

cat > ee.sin <<EOF

process ee = e1, E1 => e2, E2

sqrts = 360 GeV

n_events = 10

sample_format = lhef

simulate (ee)

EOF

run_test "whizard test" "whizard -r ee.sin"

• Next steps:
• Use build caches to deploy to cvmfs

• GCC 13 and C++20

• clang build

• MacOS build 18

https://github.com/key4hep/key4hep-spack/blob/release/scripts/run_usability_tests.sh

key4hep Validation: Simulation and Reconstruction

• Check the simulation and reconstruction chain

• Run daily, use the latest key4hep nightlies

• Run a simulation with DD4hep, then reconstruction, then analysis scripts and then make plots

• Results are compared to a reference sample

• Plots are deployed to WebEOS (static webpage)

• https://key4hep-validation.web.cern.ch/
• Work in progress, no documentation yet

19

https://key4hep-validation.web.cern.ch/

key4hep Validation: The Webpage

• Checks (are) will be done to check if the distributions are too different and then make the plot
background red, for example

• This is Z to qq at 100 GeV

20

Validation Example: DD4hep
• This PR fixes hits being dropped

• This happened after 1.23

• DD4hep has being pinned to 1.23 for a while in the nightlies not to save output files in the Frame
format

• We didn’t have the fix until it was noticed that something was looking wrong
21

https://github.com/AIDASoft/DD4hep/pull/1019

Validation Example: DD4hep
• If now we use the validation where a reference sample has the bug (note that in the future the

reference sample will be a ”good” sample) and the current has it fixed it’s very obvious:

22

key4hep Validation: EDM4hep

• Recently a new kind of validation was added

• Check what happens if we try to read old files produced with an old version of podio and EDM4hep

• For example, recently we had a change, a simple rename, can we read fine files created before
the rename?

23

key4hep Validation: EDM4hep

Python code

write.cpp

generate

read.cpp
generate

Executable that writes Frames
with random values

compile

Executable that reads Frames
with random values

compile

frame-v00-16-v00-08.root
write

podio EDM4hep

v00-16 v00-08
Choose another tag and repeat

podio EDM4hep

master

24

key4hep Validation: EDM4hep
write.cpp

auto zimhm = edm4hep::EventHeaderCollection();
auto hlmbl = zimhm.create();
hlmbl.setEventNumber(50);

hlmbl.setRunNumber(42);

hlmbl.setTimeStamp(77);

hlmbl.setWeight(37);

frame.put(std::move(zimhm), "EventHeaderCollection");

read.cpp

auto& zimhm = frame.get<edm4hep::EventHeaderCollection>("EventHeaderCollection");

auto hlmbl = zimhm[0];

if (hlmbl.getEventNumber() != int32_t(50)) {

std::cout << "Error: hlmbl.getEventNumber() != 50" << std::endl;

ret = 1;

}

...

• Generated frames, first the podio version, then
the EDM4hep version

$ ls -lh

86K Jun 19 15:03 frame-v00-16-01-v00-07.root

86K Jun 19 15:04 frame-v00-16-02-v00-07.root

94K Jun 19 15:06 frame-v00-16-03-v00-07.root

94K Jun 19 15:08 frame-v00-16-04-v00-07.root

94K Jun 19 14:54 frame-v00-16-05-v00-07-01.root

94K Jun 19 14:54 frame-v00-16-05-v00-07-02.root

94K Jun 19 15:09 frame-v00-16-05-v00-07.root

112K Jun 19 14:56 frame-v00-16-05-v00-08.root

112K Jun 19 14:57 frame-v00-16-05-v00-09.root

86K Jun 19 15:02 frame-v00-16-v00-07.root

• Results under study
25

Summary

• Progress in Key4hep in different areas. Addition of new people has helped

• The community of Key4hep users, developers keeps getting bigger → improvements → more
users, developers

• Increasing the number of features while at the same time making it more robust

• Lots of new developments soon!

26

Backup

Backup

27

The Validation Webpage

28

The Validation Webpage

29

Datamodel Validation: Generated Code
write.cpp

auto zimhm = edm4hep::EventHeaderCollection();
auto hlmbl = zimhm.create();
hlmbl.setEventNumber(50);

hlmbl.setRunNumber(42);

hlmbl.setTimeStamp(77);

hlmbl.setWeight(37);

frame.put(std::move(zimhm), "EventHeaderCollection");

read.cpp

auto& zimhm = frame.get<edm4hep::EventHeaderCollection>("EventHeaderCollection");

auto hlmbl = zimhm[0];

if (hlmbl.getEventNumber() != int32_t(50)) {

std::cout << "Error: hlmbl.getEventNumber() != 50" << std::endl;

ret = 1;

}

if (hlmbl.getRunNumber() != int32_t(42)) {

std::cout << "Error: hlmbl.getRunNumber() != 42" << std::endl;

ret = 1;

}

if (hlmbl.getTimeStamp() != uint64_t(77)) {

std::cout << "Error: hlmbl.getTimeStamp() != 77" << std::endl;

ret = 1;

}

if (hlmbl.getWeight() != float(37)) {

std::cout << "Error: hlmbl.getWeight() != 37" << std::endl;

ret = 1;

}

30

Datamodel Validation: Generated Code
• Also supports vector members

write.cpp

auto ycjbb = edm4hep::TrackCollection();
auto gghbj = ycjbb.create();
...

gghbj.addToDxQuantities({ 38, 47, 23 });

read.cpp

if (gghbj.getDxQuantities(0).type != edm4hep::Quantity({ 38, 47, 23 }).type) {
std::cout << "Error: gghbj.getDxQuantities(0) != { 38, 47, 23 }" << std::endl;

ret = 1;

}

if (gghbj.getDxQuantities(0).value != edm4hep::Quantity({ 38, 47, 23 }).value) {
std::cout << "Error: gghbj.getDxQuantities(0) != { 38, 47, 23 }" << std::endl;

ret = 1;

}

if (gghbj.getDxQuantities(0).error != edm4hep::Quantity({ 38, 47, 23 }).error) {
std::cout << "Error: gghbj.getDxQuantities(0) != { 38, 47, 23 }" << std::endl;

ret = 1;

}

• Relations not supported yet
31

Datamodel Validation: Next Steps

• Python bindings? Not for writing since old versions of EDM4hep don’t have it, possibly for reading
since we use the nightlies

• Other datamodels? In principle possible and possibly few changes are needed but the python
script needs rewriting some logic in a better way

• Add to the key4hep-validation webpage?

• Support relations

• Reuse podio parser?

32

