Searches for Long Lived Particles

Guglielmo Frattari, on behalf of the ATLAS, CMS & FASER collaborations 12th Edition of the Large Hadron Collider Physics Conference Boston, 3 June 2024

Unique experimental challenge for LHC experiments?

displaced multitrack vertices

displaced leptons, lepton-jets, or lepton pairs

> multitrack vertices in the muon spectrometer

- **unconventional signatures:** require dedicated reconstruction & analysis methods to enhance sensitivity
- motivated by many BSM theories possible candidates to explain dark matter nature, neutrino masses, ...

image from J. Phys. G: Nucl. Part. Phys. 47 090501 (2020)

LLPs: Long Lived Particles

Highlight of recent searches done in ATLAS, CMS and FASER

Outline of the talk

Low-mass neutral long-lived scalars

- Search with displaced vertices and jets in ATLAS and CMS
- Displaced vertices with muons at CMS using data from LHC run 3
- Long-lived axion-like-particles search with FASER

Heavy neutral leptons

• Recent result from CMS using the B-parking dataset

<u>Massive charged long-lived particles with large ionization</u>

- Followup ATLAS analysis after the 3.3σ excess result
- Recent CMS result targeting the same phase space

Emerging jets

Recent new result from CMS

- using LHC run 2 data with **improved displaced tracks reconstruction**
- search for ≥2 displaced-jets, and ≥1 matched to a displaced vertex (DV)

arXiv:2403.15332

LLPs search with displaced vertices in **CATLAS**

Factor 10 ÷ 20 improvement on previous existing limits using same signature

LLPs to displaced jets with Run 3 data at

- target LLPs from Higgs boson decays or heavy neutral scalars
- use **improved displaced-jet triggers**:
 - requirements on large transverse momentum jets
 - + presence of 'prompt' & 'displaced' tracks

use of two Graph Neural Network (GNN)

based LLP taggers:

- 'displaced'-GNN
- 'prompt'-GNN
- data-driven estimate using orthogonal control regions (ABCD method)

LLPs to displaced jets with Run 3 data at

• first LHC limits on displaced-hadronic tau signature

- new most stringent limits on H→SS model for LLP masses ≥16 GeV
 - outperforms ATLAS with a fraction of the dataset 34.7/fb @ 13.6 TeV vs 140/fb @ 13 TeV
- additional interpretations of the results in $H \rightarrow SS \rightarrow light$ quarks, Fraternal Twin Higgs & Folded SUSY scenarios

CMS-PAS-EXO-23-013

LLPs to displaced muons with Run 3 data at

- search for **di-muon displaced vertices** produced in LLP decays
 - low mass LLPs, $m_{LLP} < 60$ GeV, from Higgs boson or heavy scalar decays
- new dedicated triggers to increase sensitivity
 - lower p_T threshold possible introducing a cut on transverse displacement (d₀)

• **background processes:** mis-reconstructed prompt muons, muons in jets \rightarrow data driven estimate from independent CRs

arXiv:2402.14491

LLPs to displaced muons with Run 3 data at

- 2 analysis categories based on muon reconstruction:
 - using both tracker & muon spectrometer (TMS)
 - standalone muon spectrometer (STA)

- partial Run 3 result competitive with full Run 2 result
 - new analysis better for $c\tau \ge 100$ cm for almost all masses

• experiment situated 500m from ATLAS collision point, aligned with the beam collision axis

sensitive to long-lived axion-like-particles (ALPs) produced with $\mathcal{O}(\text{TeV})$ boost along the beam line and **Front Scintillator** decaying inside the detector into photon pairs veto system

Tracking spectrometer stations

Scintillator veto system

Search for long-lived ALPs with *Taser*

- using 57/fb of data collected during 2022 & 2023
- ALPs produced in B/K meson decays, **decaying subsequently into photon pairs**
- signature: high energy deposit in the ECAL and no signal in veto scintillators

Main background: neutrinos interactions with detector material

• events categorised based on energy released in calorimeter & pre-shower layers

CERN-FASER-CONF-2024-001

b/st/c/us/dW g_{aW}

Search for long-lived ALPs with *EDSER*

Unique sensitivity in unexplored regions of the parameter space, ALPs masses in the range [60, 300] MeV

CERN-FASER-CONF-2024-001

m_a [MeV]

Search for HNLs in B-meson decays at

- unique dataset (41.6/fb): **B** parking, O(10B) $b\bar{b}$ events
 - lower µ trigger thresholds, delayed reconstruction
- targets low mass Heavy Neutral Leptons (HNLs) from B-mesons
 - signature: displaced vertex with lepton + track

- parameterised Neural Network
 to enhance sensitivity
 - leptons, tracks, and DV properties
 e.g. tracks transverse
 displacement (d_{xy})
- training with signal MC & a subset of data

Search for HNLs in B-meson decays at

- bump-hunt in 24 mutual exclusive categories
 - $(\mu\mu, \mue, e\mu)$ channels **x** transverse displacement of the DV **x** DV invariant mass

Discriminant variable: **DV mass**

Best sensitivity for HNL masses below 1.75 GeV

Results interpretation in **multiple** scenarios of HNL nature & coupling to SM

Search for massive charged LLPs

- signature of many new physics models at LHC energies; key characteristic: high p_T isolated track with
 - large ionization (dE/dx) measured in the pixel detector
 - long time of flight (ToF) measured with the calorimeter or muon chambers
- observable: particle mass, from β and track p_T measurements

Previously found 3.3σ excess by ATLAS

(JHEP 06 (2023) 158)

- 0.4 ± 0.7 events predicted, **7 observed**
- events compatible with $\beta \approx 1$ & being

reconstructed as muons

Search for massive charged LLPs in StatLAS

ATLAS-CONF-2023-044

Search for massive charged LLPs in

- search for 1 isolated high pT muon with large ionisation & missing energy
 - dE/dx measured separately in pixel & strips detector allowing background suppression
- two search methods:

- 60-80% overlap of events in the SR between the two approaches
- similar sensitivity to new physics models

CMS-PAS-EXO-18-002

mass method: from ionization variable + track p_T

Search for massive charged LLPs in

CMS *Preliminary* I_h [MeV/cm] 25 20 15 10 500

• limits set on various models

CMS-PAS-EXO-18-002

Z' model proposed to explain ATLAS excess

Guglielmo Frattari | 3 June 2024 | Searches for LLPs | 19

Obs

Q_{dark}

 $\overline{\mathrm{Q}}_{dark}'$

• exploring dark pion masses in [6,20] GeV range, dark scalar masses in [1,2.5] TeV

Flavor-aligned model

arXiv:2403.01556

Unflavored model

GNN-tagger keeps high signal acceptance for low $c\tau$

Searches for long-lived particles at LHC provides **unique challenges** for the experiments.

Development of new triggers, innovative analysis methods & powerful NN discriminants help in pushing the sensitivity.

Exciting times ahead with the Run 3 dataset quickly growing!

A selection of results from ATLAS, CMS and FASER has been presented, more details in the parallel sessions.

Additional material

FASER event display

Run 8834 Event 44421456 2022-10-13 16:09:44

