Image courtesy of CERN

The 12th Large Hadron Collider Physics Annual Conference June 3-7, 2024 @ Northeastern University http://lhcp2024.cos.northeastern.edu

Paolo Gandini INFN - Sezione di Milano

On behalf of the LHCb collaboration + results from CMS, ATLAS and ALICE

Outline

- This talk was originally assigned to Liupan An (LHCb), but unfortunately she was not able to attend
- This is the outline of the talk \rightarrow as usual the shopping list is too long \rightarrow I will cover only a small subset
- Hope to make justice to the good work by all the experiments in this rich field!

• $\Xi b \rightarrow \Psi(2S)\Xi \& \Xi b^* \rightarrow \Xi b\pi$ Accepted for publication in Phys. Rev. D https://cms-results.web.cern.ch/cms-results/public-results/publications/BPH-23-002/index.html

• f0(980) hadron in proton-lead collisions and evidence for its quark-antiquark composition https://cms-results.web.cern.ch/cms-results/public-results/publications/HIN-20-002/index.html

Submitted to Nature Physics

CMS

Parallel sessions

More results and detailed presentations can be found in today's parallel session Dedicated talks for each experiment + interesting theoretical insights

Image taken from PDG Review of Particle Physics

Introduction: QCD

- QCD dilemma: understanding the non-perturbative property of QCD at low-energy scale
- Hadron spectroscopy: a main tool to probe QCD at low-energy regime
- Heavy quarks bring advances both experimentally and theoretically

New hadrons at LHC

- Spectroscopy is a super-active field at LHC and all the experiments are contributing!
- So far 72 hadrons have been discovered at the LHC, of which 64 by LHCb
- The list is growing... All sectors represented

LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, <u>LHCb-FIGURE-2021-001</u>, 2021, and <u>2023 updates</u>.

LHCP2024 – 3rd June 2024 – Boston, USA

New hadrons at LHC

- In 2024, no new hadrons yet!
- But summer conferences have just started...
- And Run3 data taking is in full steam...

LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, <u>LHCb-FIGURE-2021-001</u>, 2021, and <u>2023 updates</u>.

Paolo Gandini

LHCP2024 – 3rd June 2024 – Boston, USA

New hadrons at LHC

LHCb collaboration, P. Koppenburg, List of hadrons observed at the LHC, <u>LHCb-FIGURE-2021-001</u>, 2021, and <u>2023 updates</u>.

Paolo Gandini

LHCP2024 – 3rd June 2024 – Boston, USA

Selected results by LHCb

Observation of new charmonium(-like) states in $B^+ \rightarrow D^{*\pm}D^{\mp}K^+$

```
B^+ \to D^{*+}D^-K^+ \qquad B^+ \to D^{*-}D^+K^+
```


NEW

- A simultaneous amplitude fit performed to two channels
- Include contributions from resonances decaying to D*-D+ and D*+D- (states linked by C parity)
- Determine the C parity of any new states

Observation of new charmonium(-like) states in $B^+ \rightarrow D^{*+}D^{+}K^+$

Figure 3: Difference between the $M(D^*D)$ distributions of the two channels $(B^+ \to D^{*+}D^-K^+$ and $B^+ \to D^{*-}D^+K^+)$. Only interference between states with the same J^P but different *C*-parities, and reflections from $T^*_{\bar{c}\bar{s}0,1}(2900)^0$ resonances, have significant contributions. The reference fit where $h_c(4000)$, $\chi_{c1}(4010)$ and $h_c(4300)$ are not included is shown as green dashed line.

Observation of new charmonium(-like) states in $B^+ \rightarrow D^{*+}D^{+}K^+$

Preliminary PAPER-2023-047to be submitted to arXiv NEW

Property	This work	Previous work		
$T^*_{\bar{c}\bar{s}0}(2900)^0$ mass (MeV)	$2914 \pm 11 \pm 15$	2866 ± 7		
$T^*_{\overline{cs0}}(2900)^0$ width (MeV)	$128\pm22\pm23$	57 ± 13		
$T^*_{\bar{c}\bar{s}1}(2900)^0 \text{ mass (MeV)}$	$2887\pm8\pm6$	2904 ± 5		
$T^*_{\overline{cs1}}(2900)^0$ width (MeV)	$92\pm16\pm16$	110 ± 12		
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}0}(2900)^0 D^{(*)+})$	$(4.5^{+0.6}_{-0.8}{}^{+0.9}_{-1.0}\pm 0.4) imes 10^{-5}$	$(1.2 \pm 0.5) \times 10^{-5}$		
$\mathcal{B}(B^+ \to T^*_{\bar{c}\bar{s}1}(2900)^0 D^{(*)+})$	$(3.8^{+0.7}_{-1.0}{}^{+1.6}_{-1.1}\pm0.3) imes10^{-5}$	$(6.7 \pm 2.3) \times 10^{-5}$		
$\frac{\mathcal{B}(B^+ \to T^*_{c\bar{s}0}(2900)^0 D^{(*)+})}{\mathcal{B}(B^+ \to T^*_{c\bar{s}1}(2900)^0 D^{(*)+})}$	$1.17 \pm 0.31 \pm 0.48$	0.18 ± 0.05		

- Four charmonium(-like) states are observed: at least 3 are new
- Existence of 2 tetraquark resonances in D^-K^+ confirmed (different channel, already observed $B^+ \rightarrow D^+D^-K^+$)

Observation of exotic J/ $\psi \Phi$ resonances in CEP

- Central Exclusive Production can be done at LHCb \rightarrow What do we look for?
- $pp \rightarrow p + X + p$ (rapidity gaps and protons intact)
- Colourless objects in QCD, Very low PT objects, Clean experimental environment
- Rich Physics: Photon-Pomeron, Double-Pomeron, Photoproduction, Glueballs, Exotica

NEW

Preliminary

PAPER-2023-043 in preparation

Observation of exotic J/ $\psi \Phi$ resonances in CEP

Observation of exotic J/ $\psi \Phi$ resonances in CEP

First exotic measurement in CEP

LHCP2024 - 3rd June 2024 - Boston, USA

Search for Pc in open charm modes

- Inclusive search performed using 5.7 fb⁻¹ data from 2016-2018
- Reconstruction of several different modes & combinations:
 - $\Lambda_c^+ \to p K^- \pi^+, D^- \to K^+ \pi^- \pi^-, D^0 \to K \pi$
 - $\Sigma_c^{++(0)} \to \Lambda_c^+ \pi^{+(-)}, D^{(*-)} \to D^{(-0)} \pi^-$

hidden-charm pentaquarks

doubly-charmed pentaquarks & excited Ξ_{cc}

Hadron 1	Hadron 2	Charge	I_3	Y	С	Limit Set	Hadron 1	Hadron 2	Charge	I_3	Y	С	Limit Set
Λ_c^+	$\overline{D}{}^{0}$	+1	$1/_{2}$	1	0	\checkmark	Λ_c^+	D^0	+1	-1/2	3	2	\checkmark
Λ_c^+	D^{-}	0	-1/2	1	0	\checkmark	Λ_c^+	D^+	+2	1/2	3	2	\checkmark
Λ_c^+	D^{*-}	0	-1/2	1	0	\checkmark	Λ_c^+	D^{*+}	+2	$1/_{2}$	3	2	\checkmark
Σ_c^{++}	$\overline{D}{}^{0}$	+2	$^{3/2}$	1	0	\checkmark	Σ_c^{++}	D^0	+2	1/2	3	2	\times
Σ_{c}^{++}	D^-	+1	$1/_{2}$	1	0	\checkmark	Σ_c^{++}	D^+	+3	$^{3/2}$	3	2	×
Σ_c^{++}	D^{*-}	+1	$1/_{2}$	1	0	×	Σ_c^{++}	D^{*+}	+3	$^{3/2}$	3	2	×
Σ_c^0	$\overline{D}{}^{0}$	0	-1/2	1	0	\checkmark	Σ_c^0	D^0	0	-3/2	3	2	\times
Σ_c^{0}	D^{-}	-1	-3/2	1	0	\checkmark	Σ_c^0	D^+	+1	-1/2	3	2	×
Σ_c^{0}	D^{*-}	-1	-3/2	1	0	×	Σ_c^0	D^{*+}	+1	-1/2	3	2	\times
Σ_c^{*++}	$\overline{D}{}^{0}$	+2	$^{3/2}$	1	0	\checkmark	Σ_c^{*++}	D^0	+2	$^{1/2}$	3	2	\checkmark
Σ_{c}^{*++}	D^{-}	+1	$1/_{2}$	1	0	\checkmark	Σ_c^{*++}	D^+	+3	$^{3/2}$	3	2	\checkmark
Σ_{c}^{*++}	D^{*-}	+1	1/2	1	0	\checkmark	Σ_c^{*++}	D^{*+}	+3	$^{3/2}$	3	2	×
Σ_{c}^{*0}	$\overline{D}{}^{0}$	0	-1/2	1	0	\checkmark	Σ_c^{*0}	D^0	0	-3/2	3	2	\checkmark
Σ_c^{*0}	D^-	-1	-3/2	1	0	\checkmark	Σ_c^{*0}	D^+	+1	-1/2	3	2	\checkmark
Σ_{c}^{*0}	D^{*-}	-1	-3/2	1	0	\checkmark	Σ_c^{*0}	D^{*+}	+1	-1/2	3	2	×

10 modes too statistically limited to set up upper limits

arXiv: 2404.07131 submitted to PRD

Search for Pc in open charm modes

- Every combination investigated (complete list in the paper)
- No significant signal found
- Upper Limits set for all combinations

$$R = \frac{N_{P_c}}{N_{\Lambda_c^+}} \times \frac{\varepsilon_{\Lambda_c^+}}{\varepsilon_{P_c}} \to \frac{\sigma(P_c) \times \mathcal{B}(P_c \to \Lambda_c^+ D(\pi)) \times \mathcal{B}(D)}{\sigma(\Lambda_c^+)}$$

Decay Mode	Width	Signif	icance (σ)	Q-value	Signal Viold	UL (× 10^{-3})		
	(MeV/c^2)	Local	Corrected	(MeV/c^2)	Signal Tleid	90% CL	95% CL	
$\Lambda_c^+ \pi^+ D^-$	0	3.59	2.21	225	41.6 ± 12.6	3.95	4.19	
	5	4.01	2.89	225	64.7 ± 17.4	4.43	4.69	
	10	4.30	3.32	225	87.1 ± 21.6	4.64	4.85	
	15	4.50	3.62	225	108.2 ± 25.3	4.72	4.90	
$\Lambda_c^+\pi^-D^-$	0	3.36	1.90	257	38.1 ± 12.4	4.28	4.56	
	5	3.86	2.71	253	62.1 ± 17.1	4.62	4.83	
	10	4.18	3.20	249	83.7 ± 21.2	4.72	4.88	
	15	4.44	3.56	249	103.5 ± 24.6	4.77	4.92	
$\Lambda_c^+ \pi^+ \overline{D}{}^0$	0	3.18	1.58	245	41.9 ± 13.7	2.87	3.06	
	5	3.73	2.53	245	67.6 ± 19.2	3.22	3.35	
	10	4.06	3.06	245	91.6 ± 24.1	3.29	3.39	
	15	4.30	3.42	245	115.0 ± 28.5	3.30	3.40	

- Pseudo-experiments indicate average number of channels fluctuate above 3σ is 7±5, so we conclude the results are consistent with background-only
- Known Pc states tested and yields all agree with zero

 $\begin{array}{c|c} P_c(4312)^+ & M = 4311.9 \, \text{MeV}, \Gamma = 10 \, \text{MeV} \\ P_c(4440)^+ & M = 4440 \, \text{MeV}, \Gamma = 21 \, \text{MeV} \\ P_c(4457)^+ & M = 4457.3 \, \text{MeV}, \Gamma = 6.4 \, \text{MeV} \end{array}$

arXiv: 2404.07131 submitted to PRD

Selected results by CMS

 $\Xi_b \rightarrow \Psi(2S)\Xi$ and $\Xi_b^* \rightarrow \Xi_b\pi$

- Integrated luminosity of 140 fb⁻¹
- Muon final states and different final states (different topologies)
- Several measurements in one paper (BFs, Production and competitive mass measure)

$$\begin{split} R_{\Xi_{b}^{*0}} &= \frac{\sigma(\mathrm{pp} \to \Xi_{b}^{*0}X) \,\mathcal{B}(\Xi_{b}^{*0} \to \Xi_{b}^{-}\pi^{+})}{\sigma(\mathrm{pp} \to \Xi_{b}^{-}X)} = 0.23 \pm 0.04 \,(\mathrm{stat}) \pm 0.02 \,(\mathrm{syst}) \\ R &= \frac{\mathcal{B}(\Xi_{b}^{-} \to \psi(2S)\Xi^{-})}{\mathcal{B}(\Xi_{b}^{-} \to J/\psi\Xi^{-})} = 0.84^{+0.21}_{-0.19} \,(\mathrm{stat}) \pm 0.10 \,(\mathrm{syst}) \pm 0.02 \,(\mathcal{B}) \\ M(\Xi_{b}^{*0}) &= 5952.4 \pm 0.1 \,(\mathrm{stat+syst}) \pm 0.6 \,(m_{\Xi_{b}^{-}}) \,\mathrm{MeV} \end{split}$$

Thus, we can conclude that about a third of the Ξ_b^- baryons are produced from Ξ_b^* decays

LHCP2024 – 3rd June 2024 – Boston, USA

Accepted in Phys. Rev. D CMS-BPH-23-002 CERN-EP-2024-038

$f_0(980)$ hadron in p-Pb collisions

- $f_o(980)$ hadron discovered half a century ago, but...
- Its quark content has not been settled:
 - Ordinary meson $q\overline{q}$?
 - Tetraquark qqqq?
 - Exotic state?
 - Kaon-Antikaon KK molecule ?
 - Glue qqg hybrid ?
- Strong evidence that $f_0(980)$ is an ordinary meson
- Inferred from scaling of elliptic anisotropies (v_2) with the number of constituent quarks (n_q)
- Empirically established using conventional hadrons in relativistic heavy ion collisions
- Other hypothesis on exotic nature ruled out

The argument of the function, KE_T/n_q , is related to the kinetic energy per constituent quark

LHCP2024 - 3rd June 2024 - Boston, USA

Selected results by ALICE

Suppression of fo(980) production in p-Pb collisions

- Similar study to CMS
- Nuclear modification factor Q_{pPb} of $f_o(980)$ measured in various multiplicity ranges
- A lot of interesting results:
 - $f_0(980)$ nuclear modification factor is lower than unity: suppression
 - For p_T<4GeV
 - Lower than charged hadrons
 - Difference increases with multiplicity
 - Suppression of the $f_o(980)/\pi$ and $f_o(980)/K^*(892)^o$ depends on p_T
- The results on the particle yield ratios may help to understand the nature of the internal structure of $f_0(980)$ particle
- No enhancement at intermediate pt hints at 2-quark vs 4-quark structure

Phys. Lett. B 853

(2024) 138665

Strong interaction of 3-body systems at the LHC

Only a full 3-body calculation that accounts for the internal structure of the deuteron can explain the data (Av18+UIX full) published results from Run 2

Strong interaction of 3-body systems at the LHC

• Measure the correlation functions of 3-body systems with femtoscopic techniques

arXiv:2308.16120

Conclusions

- LHC is a wonderful playground for hadrons physics!
- Unprecedented & probably unique opportunity for these type of studies
- Upgrade era started: higher statistics + access to states with lower production rates
- Summer conferences are just starting \rightarrow plenty of new results expected!

Backup Slides