Current opportunities in flavor physics

Claudia Cornella (JGU Mainz)

No direct evidence of BSM, we are facing a **mass gap**: NP is either very heavy, or light and weakly coupled to the SM.

No direct evidence of BSM, we are facing a **mass gap**: NP is either very heavy, or light and weakly coupled to the SM.

Use **EFTs** and **data** to bridge the gap:

- describe heavy NP via higher-dim. operators
- use data (electroweak, flavor & collider) to constrain the Wilson coefficients
- constraints are interpreted as lower bounds on an "effective" NP scale

Caveat: **interpreting** EFT bounds without additional assumptions can lead to overly pessimistic estimates.

• In the 1970s, the "SM" had two quark families, & CP was an accidental symmetry. CP violation in K mixing suggested a huge NP scale. The actual scale was much lower:

$$\frac{1}{\Lambda_{\rm CP}^2} (\bar{s} \, \Gamma \, d \,)^2 \Rightarrow \Lambda_{\rm CP} \sim 10^4 \, {\rm TeV} \qquad \qquad \frac{1}{\Lambda_{\rm CP}^2} \sim \frac{(G_F m_t V_{ts} V_{td})^2}{4\pi^2}$$

• In the 1970s, the "SM" had two quark families, & CP was an accidental symmetry. CP violation in K mixing suggested a huge NP scale. The actual scale was much lower:

$$\frac{1}{\Lambda_{\rm CP}^2} (\bar{s} \,\Gamma \,d\,)^2 \,\,\Rightarrow\,\,\Lambda_{\rm CP} \sim 10^4 \,{\rm TeV}$$

$$\frac{1}{\Lambda_{\rm CP}^2} \sim \frac{(G_F m_t V_{ts} V_{td})^2}{4\pi^2}$$

• **Similar caution** is needed when interpreting SMEFT bounds:

With O(1) couplings, flavor bounds point to huge scales,

....but in realistic models NP couplings can be suppressed: the real scale can be lower!

• In the 1970s, the "SM" had two quark families, & CP was an accidental symmetry. CP violation in K mixing suggested a huge NP scale. The actual scale was much lower:

$$\frac{1}{\Lambda_{\rm CP}^2} (\bar{s} \,\Gamma \,d\,)^2 \Rightarrow \Lambda_{\rm CP} \sim 10^4 \,{\rm TeV}$$

$$\frac{1}{\Lambda_{\rm CP}^2} \sim \frac{(G_F m_t V_{ts} V_{td})^2}{4\pi^2}$$

• **Similar caution** is needed when interpreting SMEFT bounds:

With O(1) couplings, flavor bounds point to huge scales,

....but in realistic models NP couplings can be suppressed: the real scale can be lower!

⇒ Educated assumptions about NP flavor structure can guide our interpretation of SMEFT bounds. Use flavor & hierarchy problem as guidance!

SM gauge interactions are flavor-universal, enjoying a large accidental flavor symmetry:

 $G_F = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

SM gauge interactions are flavor-universal, enjoying a large accidental flavor symmetry:

$$G_F = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_{\ell} \times U(3)_{\ell}$$

The interactions with the **Higgs** are the only source of flavor **non-universality & violation**. They break G_F to an approximate $U(2)^5$ symmetry:

This structure is an empirical fact. Its **origin** remains a puzzle, the **flavor puzzle**.

SM gauge interactions are flavor-universal, enjoying a large accidental flavor symmetry:

$$G_F = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_{\ell} \times U(3)_{\ell}$$

The interactions with the **Higgs** are the only source of flavor **non-universality & violation**. They break G_F to an approximate $U(2)^5$ symmetry:

This structure is an empirical fact. Its **origin** remains a puzzle, the **flavor puzzle**.

SM gauge interactions are flavor-universal, enjoying a large accidental flavor symmetry:

$$G_F = U(3)^5 \equiv U(3)_q \times U(3)_u \times U(3)_d \times U(3)_{\ell} \times U(3)_{\ell}$$

The interactions with the **Higgs** are the only source of flavor **non-universality & violation**. They break G_F to an approximate $U(2)^5$ symmetry:

This structure is an empirical fact. Its **origin** remains a puzzle, the **flavor puzzle**.

The hierarchy problem

The **Higgs mass** is **unstable** under quantum corrections. If there's nothing else, its naive scale is the **Planck** mass.

The hierarchy problem

The **Higgs mass** is **unstable** under quantum corrections. If there's nothing else, its naive scale is the **Planck** mass.

In the SM, the largest contribution comes from the top quark. To keep the Higgs mass at its measured value, naturalness suggests that some **NP coupled to** the **Higgs** and **top** appears around the **TeV scale**.

The hierarchy problem

The **Higgs mass** is **unstable** under quantum corrections. If there's nothing else, its naive scale is the **Planck** mass.

In the SM, the largest contribution comes from the top quark. To keep the Higgs mass at its measured value, naturalness suggests that some **NP coupled to** the **Higgs** and **top** appears around the **TeV scale**.

How to reconcile this with **flavor bounds**?

Protecting New Physics from Flavor

Minimal Flavor Violating (MFV) new physics:

• Yukawas couplings are the only sources of flavor violation: MFV describes (perturbations around) **flavor-universal NP.**

- by construction, little to no effect in flavor-changing processes.
- but couplings to valence quarks are not suppressed \Rightarrow LHC data pushes the scale of MFV NP to scales \gtrsim 10 TeV.

Protecting New Physics from Flavor

Minimal Flavor Violating (MFV) new physics:

- Yukawas couplings are the only sources of flavor violation: MFV describes (perturbations around) **flavor-universal NP.**
- (1) = (2) = (3)
- by construction, little to no effect in flavor-changing processes.
- but couplings to valence quarks are not suppressed \Rightarrow LHC data pushes the scale of MFV NP to scales \gtrsim 10 TeV.

Flavor-dependent (3rd family) new physics:

- NP distinguishes among different flavors by coupling dominantly (to the third family.
- Third family is "special": possible connection to hierarchy & flavor problem.
- NP has an approximate U(2)ⁿ symmetry, like the SM Yukawas.
- couplings to light families can be suppressed: can live at the TeV scale.

Key idea: The U(2) symmetry in the Yukawas and in the NP couplings has a single dynamical origin & is a remnant of a more fundamental difference.

Key idea: The U(2) symmetry in the Yukawas and in the NP couplings has a single dynamical origin & is a remnant of a more fundamental difference.

energy BSM At high energies, the three **families** are **intrinsically different** objects. dynamics involving Non-universal forces acting on the i-th SM family have characteristic scales $\Lambda_1 \gg \Lambda_2 \gg \Lambda_3 \gg m_W$. Λ_2 The flavor universality of SM gauge interactions is an accidental lowenergy property. Λ_3 $m_{W,t,H}$

Key idea: The U(2) symmetry in the Yukawas and in the NP couplings has a single dynamical origin & is a remnant of a more fundamental difference.

Key idea: The U(2) symmetry in the Yukawas and in the NP couplings has a single dynamical origin & is a remnant of a more fundamental difference.

Around Λ_3 , Yukawas & NP couplings have an approximate U(2) symmetry: largest entries in the 3rd family.

Key idea: The U(2) symmetry in the Yukawas and in the NP couplings has a single dynamical origin & is a remnant of a more fundamental difference.

Key idea: The U(2) symmetry in the Yukawas and in the NP couplings has a single dynamical origin & is a remnant of a more fundamental difference.

Confronting experiments

Current bounds on flavor-non-universal New Physics

With **current data**, NP mainly coupled to the 3rd family can exist at scales as low as **1-2 TeV**. Mutatis mutandis, similar results hold in the context of partial compositeness. [Glioti, Rattazzi, Ricci, Vecchi 2402.09503]

Current bounds on flavor-non-universal New Physics

With **current data**, NP mainly coupled to the 3rd family can exist at scales as low as **1-2 TeV**. Mutatis mutandis, similar results hold in the context of partial compositeness. [Glioti, Rattazzi, Ricci, Vecchi 2402.09503]

 \Rightarrow 3rd family NP is the closest motivated target for experimental exploration.

The largest effect are expected in **3rd-family searches**, taking heavy flavors from the proton.

lepton sector: $pp \rightarrow t\bar{t}, pp \rightarrow b\bar{b}...$ quark sector: $pp \rightarrow \tau\tau, pp \rightarrow \tau\nu$

The largest effect are expected in **3rd-family searches**, taking heavy flavors from the proton.

lepton sector: $pp \rightarrow t\bar{t}, pp \rightarrow b\bar{b}...$ quark sector: $pp \rightarrow \tau\tau, pp \rightarrow \tau\nu$

In tails, the energy enhancement of the NP cross-section can overcome the pdf suppression.

e.g. $pp \to \tau \nu$ $p \to \tau \to \tau$ $p \to \tau \to \tau$ $p \to \tau \to \tau$

The largest effect are expected in **3rd-family searches**, taking heavy flavors from the proton.

~ GeV

lepton sector: $pp \rightarrow t\bar{t}, pp \rightarrow b\bar{b}...$ quark sector: $pp \rightarrow \tau\tau, pp \rightarrow \tau\nu$

In tails, the energy enhancement of the NP cross-section can overcome the pdf suppression.

e.g. $pp \to \tau \nu$ $pb \not c$ v_{z} $\mathcal{L}_{ij} \times |V_{ij}|^{2} \times \left(\frac{M_{W}^{2}}{\hat{s}} - \epsilon_{L}\right)^{2}$ $\mathcal{O}(10^{-5}) \text{ for bc}$ $(\hat{s}/M_{W}^{2})^{2} \sim \mathcal{O}(10^{5})$ $\mathcal{L}_{u\bar{d}+d\bar{u}} \times |V_{ud}|^{2} \times \left(\frac{M_{W}^{2}}{\hat{s}}\right)^{2}$

Complementary to low-energy flavor searches: test the same NP in a different energy regime!

The largest effect are expected in **3rd-family searches**, taking heavy flavors from the proton.

lepton sector: $pp \rightarrow t\bar{t}, pp \rightarrow b\bar{b}...$ quark sector: $pp \rightarrow \tau\tau, pp \rightarrow \tau\nu$

In tails, the energy enhancement of the NP cross-section can overcome the pdf suppression.

Important to study also LFV and LFUV, e.g. comparing $pp \rightarrow \tau \tau$ to $pp \rightarrow \mu \mu$.

[See talks by Kai-Feng Chen]

Indirect searches with B mesons

3 \rightarrow **light** transitions: **B** & **tau** physics Here focus on **semileptonic** transitions: neutral currents $b \rightarrow s(d)\ell\ell\ell'$, $b \rightarrow s(d)\nu\nu$ charged currents $b \rightarrow c(u)\ell\nu$

Largest effects expected for τ , ν_{τ} .

Indirect searches with B mesons

3 → light transitions: B & tau physics Here focus on semileptonic transitions: neutral currents $b \to s(d)\ell\ell\ell'$, $b \to s(d)\nu\nu$ charged currents $b \to c(u)\ell\nu$

Largest effects expected for τ , ν_{τ} .

• Probing $b \rightarrow s \tau \tau$ directly is experimentally very challenging:

Even with full LHCb and Belle II dataset, the bounds will exceed the SM by 10²⁻³.

	CURRENT BOUND	PROJECTIONS	SM PREDICTION		
BR (B ⁺ → K ⁺ z ⁺ z ⁻)	< 2.25 · 10 ⁻³	< 6.5.10 ⁵	$(1.4 \pm 0.2) \cdot 10^{-7}$		
BR (B _s → z ⁺ z ⁻)	(6.8 · 10 3 @ 95% CL LHCB	(= 90% CL Bulle 2 5ab-1 < 5 · 10 ⁻⁴ @ 95% CL (HCL 300 fb-1	(7,73±0,49)·10-7		

Indirect searches with B mesons

3 → light transitions: B & tau physics Here focus on semileptonic transitions: neutral currents $b \to s(d)\ell\ell'$, $b \to s(d)\nu\nu$ charged currents $b \to c(u)\ell\nu$

Largest effects expected for τ , ν_{τ} .

Lepton flavor universality (violation) in $b \rightarrow c \ell \nu$

$$R_{D^{(*)}} = \frac{\mathscr{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathscr{B}(B \to D^{(*)}\ell\bar{\nu})}$$
$$[\ell = e, \mu]$$

 $\approx 3\,\sigma\,$ tension w.r.t. SM

 $\sim 10\,\%$ enhancement hinting at **excess in** the **tau** mode

[See also talks by Marina Artuso and Eluned Smith]

Lepton flavor universality (violation) in $b \rightarrow c \ell \nu$

[See also talks by Marina Artuso and Eluned Smith]

Theoretically clean.

Predictions rely on $B \to D^{(*)}$ form factors: no problem for $B \to D$, on going work to understand some inconsistencies for $B \to D^*$.

The Vcb puzzle

 V_{cb} significantly impacts the **prediction** of clean channels, e.g. $B_s \to \mu^+ \mu^-$ and $B \to K \nu \bar{\nu}$.

The Vcb puzzle

 V_{cb} significantly impacts the **prediction** of clean channels, e.g. $B_s \to \mu^+ \mu^-$ and $B \to K \nu \bar{\nu}$.

Inclusive and **exclusive** determinations differ by 3 - 4 σ .

- inclusive consistent across various datasets
- less consensus in the exclusive from $B \rightarrow D^*$; work in progress to understand the various tensions

$$b \rightarrow s \mu \mu$$

LHC data offer incredible access to the $b \rightarrow s\mu\mu$ system:

 $\frac{\mu/e \text{ universality ratios,}}{BR(H_{b} \rightarrow H_{s}\mu^{+}\mu^{-})} = \frac{dBR}{dq^{2}}(H_{b} \rightarrow H_{s}\mu^{+}\mu^{-})} = \frac{BR(H_{b} \rightarrow H_{s}\mu^{+}\mu^{-})}{dq^{2}} = \frac{P_{b}^{\circ}}{P_{b}^{\circ}} + \frac{A_{FB}}{A_{FB}} = \frac{H_{b}^{\circ}}{H_{b}^{\circ}} + \frac{B^{\circ}}{B_{b}^{\circ}} + \frac{B^{\circ}}{B_{b}^{\circ} + \frac{B^{\circ}}{B_{b}^{\circ}} + \frac{B^{\circ}}{B_{b}^{\circ}} + \frac{B^{\circ}}{B_{b}^{\circ}} + \frac{B^{\circ}}{B_{b}^{\circ} + \frac{B^{\circ}}{B_{b}^{\circ}} + \frac$

$$b \rightarrow s \mu \mu$$

LHC data offer incredible access to the $b \rightarrow s\mu\mu$ system:

 μ/e universality ratios, differential BRs, angular obs. for many different modes $H_{\mathsf{b}}: \mathsf{B}^{\mathsf{+}}, \mathsf{B}^{\mathsf{o}}, \mathsf{B}^{\mathsf{o}}_{\mathsf{s}}, \Lambda_{\mathsf{b}}$ $H_{\mathsf{s}}: \mathsf{K}^{\mathsf{+}}, \mathsf{K}^{\mathsf{o}}, \mathsf{K}^{\mathsf{*}\mathsf{+}}, \mathsf{K}^{\mathsf{*}\mathsf{o}}, \phi, \mathsf{P}\mathsf{K}^{\mathsf{-}}$ $\frac{dBR}{dq^{2}}(H_{b} \rightarrow H_{s}\mu^{+}\mu^{-}) \qquad P_{5}, A_{FB}...$ $\frac{BR(H_{s} \rightarrow H_{s} \mu^{+} \mu^{-})}{BR(H_{s} \rightarrow H_{s} e^{+} e^{-})}$ 1.0 $\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{\alpha}{4\pi} C_9(\bar{s}_L \gamma_\mu b_L)(\bar{\mu} \gamma^\mu \mu)$ Persisting tensions in several branching SM0.0 fractions and in the $B \rightarrow K^*$ angular analysis. -0.5 ${\cal C}_9^{
m U}$ BSM explanation requires $C_9^U \sim 0.25 C_9^{SM}$ -1.0Global Fi -1.5-2.0NP or underestimated hadronic contribution? [Alguero et al., 2304.07330] -2.5

 $B_s \to \phi \ell^+ \ell^-$

 $B \to K^* \ell^+ \ell^-$

 $B \to K \ell^+ \ell^-$

Disentangling long-distance and NP in $b \rightarrow s \mu \mu$

Ongoing theory and experimental effort to **disentangle long-distance** and **NP**:

- parametrize long-distance with dispersion methods/z expansion
- fit to q^2 spectrum
- extract residual amplitude

Disentangling long-distance QCD and NP in bsll

[Bordone, Isidori, Mächler, Tinari 2401.18007]

- result seems independent of q^2 (and λ for K^{*})
- cannot exclude sizeable long-distance effects with little q² and λ dependence. HHChiPT estimate suggests D*Ds/Ds*D*rescattering is too small to mimic $C_9^U \sim 0.25 C_9^{SM}$

Indirect searches with Kaons

Rare kaon decays (s \rightarrow d FCNCs)

- complementary to b → s in determining the orientation of 3rd family in flavor space
- allow us to probe $U(2)_{q,d}$ breaking in the 21 sector, related to the "next threshold", Λ_2
- For NP modes with a CKM-like structure, typically correlated with $B \rightarrow K \nu \bar{\nu}$

Indirect searches with Kaons

Rare kaon decays (s \rightarrow d FCNCs)

- complementary to b → s in determining the orientation of 3rd family in flavor space
- allow us to probe $U(2)_{q,d}$ breaking in the 21 sector, related to the "next threshold", Λ_2
- For NP modes with a CKM-like structure, typically correlated with $B \rightarrow K \nu \bar{\nu}$

- only rare K decay from which short distance information is accessible
- sole opportunity to get a clean B vs K comparison in the same transition, if similar precision (~10%) is achieved

Combining flavor, collider and electroweak

[Allwicher, CC, Isidori, Stefanek, 2311.00020]

Electroweak Precision as a Flavor Probe

3rd family NP is "**protected**" against direct searches at the LHC & flavor bounds, but not against **EW precision tests**.

At a Z factory, we can use the flavor blindness of the SM gauge interactions to indirectly probe NP coupled to **any** generation.

 \Rightarrow EWPT are powerful probes of flavor non-universality

Perspectives at Tera Z: EW precision tests

⇒ LEP bounds have a strength comparable to current direct searches for operators involving mostly the 3rd generation!

Perspectives at Tera Z: EW precision tests

⇒ LEP bounds have a strength comparable to current direct searches for operators involving mostly the 3rd generation!

Perspectives at Tera Z: EW precision tests

⇒ LEP bounds have a strength comparable to current direct searches for operators involving mostly the 3rd generation!

With $\approx 10^5$ more Z bosons than LEP, a tera-Z machine could probe 3rd-family NP up to ~ 10 TeV!

Perspectives at Tera Z: heavy flavors

A tera-Z machine is a powerful **heavy-flavor factory**. For **FCC-ee**:

Particle production (10^9)	B^0/\overline{B}^0	B^+/B^-	B_s^0/\overline{B}_s^0	B_c^+/\overline{B}_c^-	$\Lambda_b/\overline{\Lambda}_b$	$c\overline{c}$	$\tau^+ \tau^-$
Belle II	27.5	27.5	n/a	n/a	n/a	65	45
FCC-ee	620	620	150	4	130	600	170

[FCC Snowmass Summary, 2203.06520]

Clean environment and **boosted** topologies are **advantages** with respect to Belle II & LHCb

Will allow for major advancement in B & tau physics. Among others:

- precise measurements of $b \to s\tau\tau \& b \to s\nu\nu$, incl. $b \to d$ counterpart e.g. $B \to K\tau\tau$: if SM-like, few · 1000 reconstructed decays $\to O(5\%)$ precision on BR!
- access to heavier b-hadrons: B_c , B_s , Λ_b
- LFU tests in au decays at the 10⁻⁴ level

Conclusions

LHC NP at **TeV scale** requires flavor protection. Models with **NP coupled mostly to the 3rd family** are the **closest target**, and have a strong theoretical motivation.

Conclusions

LHC NP at **TeV scale** requires flavor protection. Models with **NP coupled mostly to the 3rd family** are the **closest target**, and have a strong theoretical motivation.

Many **signatures** to look for at **existing experiments**:

- direct 3rd family searches
- precision measurements in B, K and tau decays

These are the best path to discovery until the next collider.

Conclusions

LHC NP at **TeV scale** requires flavor protection. Models with **NP coupled mostly to the 3rd family** are the **closest target**, and have a strong theoretical motivation.

Many **signatures** to look for at **existing experiments**:

- direct 3rd family searches
- precision measurements in B, K and tau decays

These are the best path to discovery until the next collider.

Looking forward, a tera-Z machine like FCC-ee is ideal in testing these scenarios

- unprecedentedly precise **EWPT** that cannot be bypassed by flavor symmetries
- major advancements in tau and B physics, with access to new channels

If we firmly establish **any** anomaly, it will help design a future hadron collider, potentially creating a no-lose situation for **FCChh**.