

production and properties at ATLAS and CMS

A. de Wit on behalf of the ATLAS and CMS Collaborations

Introduction

 Over a decade of Higgs boson physics at the LHC → probing Higgs boson properties ever more precisely

Higgs boson production cross sections

Higgs boson production measurements

Model dependence

(Inclusive) signal strength or cross section

cross sections

Data needs

Simplified template

Differential, fiducial measurements

See <u>talks</u> in the parallel sessions (S. Chatterjee, G. Callea)

Cross sections at 13.6 TeV

- Measurements with 2022 data
- Fiducial cross section measurements extrapolated to full phase space to combine:
 - $\sigma_{\rm H} = 58.2 \pm 8.7 \ \rm pb$ $(exp: 59.9 \pm 2.6 \text{ pb})$
 - @13.6 TeV
- Main uncertainty component statistical (for now)

Cross sections per production/decay mode

Nature 607 (2022) 52

- Precision better than 10% for ggF, 10-20% precision on most other production modes
- Decays into bosons, tau leptons: precision ~10%

Cross sections per production/decay mode

Nature 607 (2022) 52

~10%

STXS $H \rightarrow \tau \tau$

- Number of measured STXS bins doubled wrt previous measurement
 - Additional bins in VBF, ttH Enabled by NN $p_T(H)$ -regression and S/B MVA

ATLAS-CONF-2024-007

-	-	-

	ATLAS Preliminary H–	- >ττ √s	$\frac{1}{3} = 13$	3 TeV, 14	l l0 fb⁻¹
	-Tot. Syst. Theory	p-	value	e = 6%	Svet)
aa→H 1-iet 120< p ^H < 200		0.35	+0.61	$(\begin{array}{c} +0.38 \\ 0.27 \end{array})$	+0.49
		0 50	+0.89	(+0.52	+0.72
gg→H, ≥ 1-jet, 60≤ p _T < 120		0.50	-0.89 +0.75	 -0.52 +0.49 	-0.72 /
gg→H, ≥ 2-jet, m _{jj} < 350, 120≤ p _T ^H < 200		0.53	-0.74	(_0.48	-0.56)
gg→H, ≥ 2-jet, m _{jj} ≥ 350, p _T ^H < 200		5.09	+3.09 –2.49	(^{+1.66} _1.64	+2.61 -1.87)
gg→H, 200 ≤ p _T ^H < 300	•	0.99	+0.39 -0.36	(+0.28 -0.28	+0.27 -0.22)
gg→H, $p_T^H \ge 300$		1.51	+0.59 -0.50	(+0.44 -0.43	+0.39 -0.26)
qq'→Hqq', ≥ 2-jet, 60≤ m _j < 120	⊢	0.94	+0.68 -0.65	(+0.57 -0.55	+0.38 -0.36)
qq'→Hqq', ≥ 2-jet, 350 ≤ m _{jj} < 700, p _T ^H < 200		-0.96	+1.17 -1.31	(+0.83 -0.81	+0.81 _1.03)
qq'→Hqq', ≥ 2-jet, 700 ≤ m _{jj} < 1000, p _T ^H < 200		-0.24	+0.79 -0.89	(^{+0.63} 0.60	+0.49 -0.65)
qq'→Hqq', ≥ 2-jet, 1000 ≤ m _µ < 1500, p _T ^H < 200	H - -1	1.68	+0.61 -0.55	(+0.50 -0.47	+0.35 _0.29)
→ Add a diameter of the second s		0.12	+0.34 -0.33	(+0.30 -0.27	+0.16 -0.18)
qq'→Hqq', ≥ 2-jet, 350 ≤ m _{ii} < 700, p _T ^H ≥ 200		-1.16	+0.87 -0.81	(+0.75 -0.55	+0.44 -0.59)
qq'→Hqq', ≥ 2-jet, 700 ≤ m _{ji} < 1000, p _T ^H ≥ 200	H	0.98	+0.73 -0.63	(+0.67 -0.59	+0.28 -0.23)
qq'→Hqq', ≥ 2-jet, 1000 ≤ m _{ji} < 1500, p _T ^H ≥ 200		1.40	+0.56 -0.50	(+0.52 -0.47	+0.20 -0.18)
qq'→Hqq', ≥ 2-jet, m _{ji} ≥ 1500, p _T ^H ≥ 200	I	1.29	+0.39 -0.34	(+0.35 -0.32	+0.18 -0.13)
ttH, p _T ^H < 200	H	2.15	+1.75 –1.52	(^{+1.54} _1.33	+0.84 -0.75)
ttH, 200 ≤ p _T ^H < 300		-2.23	+1.26 –1.13	(+1.12 -0.79	+0.58 -0.80)
ttH, p _T ^H ≥ 300		3.58	+2.92 -2.31	(+2.62 (-2.12	+1.27 -0.90)
	0 5	10		15	20
				(σ×B)'	^{neas} /(σ×Β

See A. Gomez Delegido's talk in the parallel session tomorrow

VH, H→bb

- Rare process (V→leptons): large-branching fraction final states
- Rely on multivariate analysis techniques to improve sensitivity
- Inclusive (µ=1.15±0.21), per-production mode signal strengths and STXS

Electroweak VH

- KW sign $\lambda_{
 m WZ}$
- consistent with existing measurements (@ more than 5σ)

arXiv:2402.00426 (sub'd to PRL) arXiv:2405.16566 Sub to PLB

9

ttH production

- 1% of Higgs bosons
- Direct probe of top quark Yukawa coupling
- $H \rightarrow bb$: ML for S/B discrimination, CRs for backgrounds

2018 discriminant bins

ttH production

- 1% of Higgs bosons
- Direct probe of top quark Yukawa coupling
- $H \rightarrow bb$: ML for S/B discrimination, CRs for backgrounds

and CMS

CMS-PAS-HIG-19-011 JHEP 06 (2022) 97

 $\mu_{incl} = 0.33 \pm 0.17$ (stat) ± 0.21 (syst)

 $\mu_{incl} = 0.35 \pm 0.20$ (stat) ± 0.29 (syst)

Same bin boundaries, grouped differently between ATLAS

b-associated production

- b-associated production (via b-fusion and gluon fusion with gluon -> bb splitting) studied in final states with leptons (WW, ττ)
- Obs (exp) upper limit: 3.7 (6.1) x SM

CMS-PAS-HIG-23-003

BDT score

CMS-PAS-HIG-23-003

STXS interpretations

Example: STXS measurements in $H \rightarrow \gamma \gamma$

JHEP 07 (2021) 027

Use fine-grained measurements to constrain new physics, e.g. in EFT context

STXS interpretations

$\sqrt{s} = 13 \text{ Te}$	V, 139 fb ⁻¹	⊢● Total	Stat.
m _H = 125.0	J9 GeV, IV $_{H}^{I}$ < 2.5	Syst.	SM
	H→ZZ, H→W	N	Total Stat. Svst.
	$\Omega_{\rm tight}$ $p^{\rm H}$ < 200 GeV	1.2	$7 + 0.18 \left(\pm 0.08 + 0.16 \right) \left(\pm 0.08 + 0.16 \right)$
	1-jet $p_T^H < 60 \text{ GeV}$	0.6	-0.17 (+0.30, +0.51) -0.59 (+0.30, +0.51) -0.59 (+0.30, +0.51)
	1-jet $60 < p^{H} < 120 \text{ GeV}$	0.6	$\begin{array}{c} -0.38 (-0.29 -0.30) \\ +0.49 (\pm 0.32 , \begin{array}{c} +0.37 \\ 0.33 \end{array}) \end{array}$
<i>ч→H</i> (WW*)	1 jet $120 < p_T^H < 200 \text{ GeV}$		-0.40 ($-0.533 +0.89 (+0.63 +0.620.62 , 0.44$
	> 2-iet $n^H < 200$ GeV	1.54	$\begin{array}{c} -0.76 & -0.02 & -0.44 \\ +0.95 & (+0.43 & +0.85) \\ 0.42 & 0.72 \end{array}$
	$p^{H} > 200 \text{ GeV}$	1.3	$-0.64 \times -0.42 \times -0.72$
	μ _τ = 200 α 0 0		-0.70 -0.02 -0.447
	≥ 2-jet, 350 ≤ m_{jj} < 700 GeV, p_{τ}^{H} < 200 GeV	0.12	2 +0.60 (+0.45 -0.58 (-0.41 ,±0.41
	≥ 2-jet, 700 ≤ m_{jj} < 1000 GeV, p_T^H < 200 GeV	0.5	7 $^{+0.68}_{-0.61}$ $\begin{pmatrix} +0.57 & +0.37 \\ -0.51 & -0.33 \end{pmatrix}$
ı <i>→Hqq</i> (WW*)	≥ 2-jet, 1000 ≤ m_{jj} < 1500 GeV, p_T^H < 200 GeV	1.32	$2 \begin{array}{c} +0.64 \\ -0.51 \end{array} \left(\begin{array}{c} +0.50 \\ -0.45 \end{array} \right) \begin{array}{c} +0.40 \\ -0.24 \end{array} \right)$
	≥ 2-jet, m_{jj} ≥ 1500 GeV, p_T^H < 200 GeV	1.1	$9 \begin{array}{c} +0.48 \\ -0.42 \end{array} \begin{pmatrix} +0.42 \\ -0.38 \end{array} , \begin{array}{c} +0.23 \\ -0.17 \end{array}$
	\ge 2-jet, $m_{jj} \ge$ 350 GeV, $p_{\tau}^{H} \ge$ 200 GeV	1.54	$4 \begin{array}{c} +0.61 \\ -0.51 \end{array} \begin{pmatrix} +0.51 \\ -0.46 \end{array} \begin{array}{c} +0.34 \\ -0.22 \end{array}$
	0-jet, $p_{_{T}}^{_{H}}$ < 10 GeV	•	3 +0.36 (+0.30 +0.19 -0.30 (-0.27 , -0.13
	0-jet, 10 ≤ p_T^H < 200 GeV	1.1	$5 \begin{array}{c} +0.23 \\ -0.20 \end{array} \begin{pmatrix} +0.18 \\ -0.17 \end{array} , \begin{array}{c} +0.14 \\ -0.17 \end{array}$
	1-jet, $p_T^H < 60 \text{ GeV}$	0.3	$1 \begin{array}{c} +0.43 \\ -0.38 \end{array} \begin{pmatrix} +0.40 \\ -0.36 \end{array} \begin{array}{c} +0.16 \\ -0.13 \end{array}$
→H (ZZ*)	1-jet, 60 ≤ p_T^H < 120 GeV	1.42	$2 \begin{array}{c} +0.52 \\ -0.42 \end{array} \begin{pmatrix} +0.42 \\ -0.38 \end{array} , \begin{array}{c} +0.30 \\ -0.18 \end{array}$
	1-jet, 120 ≤ p_T^H < 200 GeV	0.4	$1 \begin{array}{c} +0.84 \\ -0.59 \end{array} \begin{pmatrix} +0.80 \\ -0.58 \end{array} , \begin{array}{c} +0.23 \\ -0.08 \end{array}$
	≥ 2-jet, p_{τ}^{H} < 200 GeV	-	$5 \begin{array}{c} +0.60 \\ -0.53 \end{array} \left(\begin{array}{c} +0.55 \\ -0.51 \end{array} \right) \begin{array}{c} +0.23 \\ -0.51 \end{array} \right)$
	$p_{\tau}^{H} \ge 200 \text{ GeV}$	2.4	$1 \begin{array}{c} +1.52 \\ -1.09 \end{array} \begin{pmatrix} +1.32 \\ -1.04 \end{pmatrix} \begin{array}{c} +0.75 \\ -0.31 \end{array}$
	VBF	1.43	$9 + 0.63 + 0.61 + 0.17 \\ -0.50 + 0.50 + 0.91 \\ -0.50 + 0.91 \\ -0.91 $
	≥ 2-jet, 60 < <i>m_{jj}</i> < 120 GeV	1.5	$1 \begin{array}{c} +2.83 \\ -2.24 \end{array} \begin{pmatrix} +2.79 \\ -2.22 \end{pmatrix} +0.45 \\ -2.22 \end{pmatrix} +0.45$
qq→Hqq (ZZ^)	≥ 2-jet, m_{jj} ≥ 350 GeV, p_T^H ≥ 200 GeV	0.18	$3 \frac{+2.09}{-} \left(\frac{+2.08}{-}, \frac{+0.18}{-}\right)$
1-lep (ZZ*)	 	1.29	9 +1.67 (+1.67 +0.15 -1.05 (-1.05 , -0.01
+ (ZZ*)		1.73	3 +1.77 (+1.72 +0.39 -1.14 (-1.13 ,-0.18
	· · · · · ·		

ΛΤΙΛς

+

AILAS	
√ <i>s</i> = 13 Te\	/, 139 fb⁻¹
m _H = 125.0	9 GeV, ly _I < 2.5
	LI_ N _0
	יץ כרח
	0-jet, $p_{\tau}^{\prime\prime} < 10 \text{ GeV}$
	0-jet, $10 \le p_{\tau}^{H} < 200 \text{ GeV}$
	1-jet, $p_{T}^{H} < 60 \text{ GeV}$
	1-jet, 60 ≤ p_{T}^{H} < 120 GeV
$aa \rightarrow H(ww)$	1-jet, $120 \le p_{\tau}^{H} < 200 \text{ GeV}$
<i>99 →11</i> (үү)	\ge 2-jet, m_{jj} < 350 GeV, p_T^H < 120 GeV
	\ge 2-jet, m_{jj} < 350 GeV, 120 $\le p_T^H$ < 200
	\ge 2-jet, $m_{jj} \ge$ 350 GeV, $p_{\tau}^{H} <$ 200 GeV
	$200 \le p_{_{T}}^{_{H}} < 300 \text{ GeV}$
	$300 \le p_T^H < 450 \text{ GeV}$
	$p_{\tau}^{H} \ge 450 \text{ GeV}$
	≤ 1-jet and VH-veto
	≥ 2-jet, VH-had
	\geq 2-jet, 350 \leq m_{jj} $<$ 700 GeV, $p_{_{T}}^{_{H}}$ $<$ 200
qq→Hqq (γγ)	≥ 2-jet, 700 ≤ m_{jj} < 1000 GeV, p_T^H < 200
	\ge 2-jet, $m_{jj} \ge$ 1000 GeV, $p_{T}^{H} <$ 200 GeV
	≥ 2-jet, 350 ≤ m_{ij} < 1000 GeV, p_T^H ≥ 200
	≥ 2-jet, m_{ii} ≥ 1000 GeV, p_{τ}^{H} ≥ 200 GeV
	p_{τ}^{v} < 150 GeV
qq →HIν (γγ)	$p_{\tau}^{v} \ge 150 \text{ GeV}$
	×
gg/qq →Hll/νν (γγ)	p_{τ}^{ν} < 150 GeV
	$p_{\tau}^{\nu} \ge 150 \text{ GeV}$
	$p_{\tau}^{\scriptscriptstyle H}$ < 60 GeV
	$60 \le p_{\tau}^{H} < 120 \text{ GeV}$
<i>t</i> ₹H (γγ)	$120 \le p_{\tau}^{H} < 200 \text{ GeV}$
	200 ≤ <i>p</i> ^{<i>H</i>} _− < 300 GeV
	<i>p</i> ^{<i>H</i>} ≥ 300 GeV
	r _T
tH (γγ)	
	،
<i>H</i> (Ζγ)	
-8	-6 -4 -2

σхΒ	normalized to SM value

BSM interpretations of STXS measurements

- 2499 dim-6 operators → reduced to less than 200 through symmetries
 - **50** remaining CP-conserving operators relevant for Higgs sector
 - Degeneracies → identify & study 19 independent directions

BSM interpretations of STXS measurements ATLAS \sqrt{s} =13 TeV, 139 fb⁻¹, m_H = 125.09 GeV SMEFT $\Lambda = 1$ TeV **ATLAS** $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $\blacksquare H \to \gamma \gamma$ C_{eH,22} 0.8 $H \rightarrow Z\gamma$ **С_{еН,33}** $H \rightarrow WW^* \rightarrow l\nu l\nu$ Expected contribution production decay 0.6 $H \rightarrow ZZ^* \rightarrow 4I$ 0.4 \blacksquare $H \rightarrow b\bar{b}$ $e_{ggF}^{[2]}$ $H \rightarrow \tau \tau$ 0.2 $e_{ggF}^{[3]}$ $\blacksquare H \rightarrow \mu \mu$ $\Theta_{H\gamma\gamma,Z\gamma}^{[1]}$ 85 0.25 <mark>-0.47</mark> -0.02 -0.01 $\Theta^{[2]}_{H\gamma\gamma,Z\gamma}$ -0.49 0.73 -0.49 ggF $e^{[3]}_{H\gamma\gamma,Z\gamma}$ 0.8 VBF $e_{ZH}^{[1]}$ -0.35 -0.27 0.02 -0.02 -0.01 WH 0.6 $e_{ZH}^{[2]}$ 0.21 0.87 -0.39 0.19 -0.05 -0.08 -0.06 0.03 ZH 0.32 -0.34 -0.58 0.66 -0.02 -0.08 -0.06 0.02 $e_{ZH}^{[3]}$ tītH 0.4 $e_{ZH}^{[4]}$ 0.22 0.08 0.66 0.72 -0.02 -0.03 -0.02 tΗ 0.2 ∅ inclusive 0.46 0.17 0.45 0.27 0.27 0.16 0.16 0.14 0.06 0.05 0.03 0.02 -0.0 0.16 -0.15 -0.05 -0.06 -0.2 -0.11 -0.03 -0.02 -0.0⁻¹ 9^[3] 0.32 <mark>.13 -0.08 -0.08</mark> -0.03 -0.03 <mark>-0.17</mark> -0.04 -0.02 -0.01 -0.01 10¹ Linear (obs.) $\sqrt{\sigma}$) [TeV] 0.64 -0.48 -0.48 0.36 Symmetrized uncertainty (σ) Linear (exp.) Cor Cro Che Ch 10⁰ Scale ($\Lambda/$ 3.2 10 **Probed** 10 32 10^{-3} probed NP scale · value scaled I uncertainty (c'/σ) Linear (obs.) *p*_{SM} = 94.5% Linear (exp.) Best Fit ----- 68 % CL Parameter v by symmetrized u •••••• 95 % Cl ł 민 ł. . . 1.1 1.1 $\{I_{i}\}_{i\in I}$ Cetil Corrado Corr 0/7,0/2,0/3, 90,00,00 0/7,0/2,0/3,0/7, 2, 2, 2, 2, 2, 2, 0177 9106 0[7] 1-1]]] 017,012,013, 14,1 14,1 14,1 14,1 14,1 14,1

BSM interpretations of STXS measurements ATLAS \sqrt{s} =13 TeV, 139 fb⁻¹, m_H = 125.09 GeV SMEFT $\Lambda = 1$ TeV **ATLAS** EFT Exp. 95% CL $H \rightarrow \gamma \gamma$ 0.8 $H \rightarrow Z\gamma$ EFT Obs. 95% CL \sqrt{s} = 13 TeV, 36.1 - 139 fb⁻¹ $H \rightarrow WW^* \rightarrow l\nu l\nu$ Expected contribution production decay 0.6 к Exp. 95% CL $H \rightarrow ZZ^* \rightarrow 4I$ $m_h = 125.09 \text{ GeV}$ 0.4 $H \rightarrow b\bar{b}$ к Obs. 95% CL $H \rightarrow \tau \tau$ 0.2 2HDM Type-II $\blacksquare H \rightarrow \mu \mu$ SM-like coupling 10^{1} $\tan\!eta$ **_** ggF VBF 0.8 🗌 WH 0.6 ZH 0.4 Model matched to EFT (example: 2HDM 0.2 type-II) \rightarrow constraints similar (but not 10¹ Linear (obs.) identical) to coupling modifier based Symmetrized uncertainty (σ) Linear (exp.) constraints 10⁰ Scale (A 10⁰ 10-3.2 10^{-2} 10 10^{-3} · value scaled I uncertainty (c'/σ) Linear (obs.) *p*_{SM} = 94.5% Linear (exp.) 10- Best Fit 0.0 —— 68 % CL -0.2-0.10.1 0.2 -0.3Parameter v by symmetrized u ••••• 95 % CL ł T 1.1 017701270137 90790730 907907 Cert³³ Cort³³ Cort³³ 0[7] 9106 0[7] 1-1]]]] 0/7,0/2,0/3, 14, 14, 14,

(Anomalous) couplings

Overview

- Inclusive production and decay rates \rightarrow couplings (coupling modifiers)
- Not all effects can be covered by this

expectation!

Anomalous Higgs interactions

- Higgs boson confirmed to be spin-0, and consistent with CP++ since run 1
- Pure CP-odd state excluded \neq CP-even state \rightarrow active field of study
- **Compatible** with the SM expectation so far
- Here: $H \rightarrow VV$; previous results with $H \rightarrow \tau \tau$, ttH available

Constraints on CP-odd Wilson coefficients in SMEFT $H \rightarrow ZZ \rightarrow 4I$ (black points) + comparison with other approaches

Constraints on CP-even and CP-odd Wilson coefficients H→WW→2l2v

Mass & width

Overview of mass and width measurements

- Mass: Exploit best-resolution channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$
 - **m**_H measured from fitting the reconstructed Higgs boson invariant mass distribution (categorized by resolution)
- Width: $H \rightarrow ZZ \rightarrow 4I$, 2I2v
 - Indirect measurement, using $\frac{\Gamma_{H}}{\Gamma_{H}^{SM}} = \frac{\mu_{off-shell}}{\mu_{on-shell}}$

• Combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4I$

Run 1+2 combined: $m_{H}= 125.11\pm0.11$ (±0.09 (stat.)±0.06 (syst.)) GeV \rightarrow 0.09% relative precision (most precise) measurement to date)

- discriminant
- Direct constraint on $\Gamma_{\rm H}$

Width measurements • Off-shell region ($m_{4l}^{reco} > 200 \text{ GeV}$) studied in H \rightarrow ZZ \rightarrow 4l and H \rightarrow ZZ \rightarrow 2l2v

- channels + combination with on-shell $H \rightarrow ZZ \rightarrow 4I$
- 3D observable (CMS) / NN (ATLAS) → comparable sensitivity O(70%) precision -2-3 MeV!

Summary & outlook

- Many Higgs boson production and property measurements already performed with Run 2 data
- Run 3 well underway → expect more Higgs measurements at 13.6 TeV soon
- Much more to be learned about the Higgs boson with Run 3 and HL-LHC data !

C.					
	Tue 04/0	06 Wed 05/06 All days	< Tue 04/	06 Wed 05/06 All days	
		Print PDF Full screen Detailed view Filter		Print PDF Full screen	Detailed view Filter
•	11:00	NLO EW corrections to HH production Huan-Yu B	11:00	Higgs differential measurements and EFT interpretation in CMS	Suman Chatterj
		ISEC Room 102 11:00 - 11:18		ISEC Room 102	11:00 - 11:
		Non-resonant di-Higgs searches and measurements with the ATLAS detector Arely Cortes Gonzalez		Higgs differential measurements and EFT interpretation in ATLAS	Giuseppe Call
		ISEC Room 102 11:18 - 11:36		ISEC Room 102	11:18 - 11:
		Non-resonant di-Higgs searches and measurements with the CMS detector Irene Dutta		Uniqueness of the matching in the HEFT	Duarte Font
		ISEC Room 102 11:36 - 11:54		ISEC Room 102	11:36 - 11:
•	12.00	Light Yukawa couplings from H* production Marco Vitt	12:00	ZH production in SMEFT from ggF	Marion Thom
	12.00	ISEC Room 102 11:54 - 12:12	12.00	ISEC Room 102	11:54 - 12:
		Higgs property measurements (mass, width, CP) with the ATLAS detector Sebastien Rettie		Higgs boson coupling measurements in CMS	Clara Ramon Alvar
		ISEC Room 102 12:12 - 12:30		ISEC Room 102	12:12 - 12:
		Higgs propery measurements (mass, width, CP) with the CMS detector Lucas Kang		Higgs boson coupling measurements in ATLAS	Antonio Jesus Gomez Delegi
•		ISEC Room 102 12:30 - 12:48		ISEC Room 102	12:30 - 12:

13:00

More details in the parallel talks today and tomorrow ! See also J. Alison's talk on di-Higgs production in tomorrow's plenary, and S. Hirose's talk on rare/BSM Higgs boson decays in yesterday's plenary

14:00 ttl	H+tH Production (ATLAS)	Anastasia Kotsok
IS	SEC Room 102	14:00
ttł	H+tH Production (CMS)	Matteo Marc
IS	SEC Room 102	14:18
tt+	+HF measurements including ttbb (ATLAS+CMS)	Luisa C
IS	SEC Room 102	14:36
15:00 To	op-Bottom Interference Contribution to Higgs Production	Mr Marco Ni
IS	SEC Room 102	14:54
4te	top searches including constraints on Top Yukawa (ATLAS+CMS)	Nick Ma
IS	SEC Room 102	15:12

 \checkmark

