

OZLEM OZCELIK

(ON BEHALF OF LHCB, ATLAS AND CMS COLLABORATIONS)

CKM AND CPV MEASUREMENTS IN THE BEAUTY AND CHARM SECTOR

LHCP BOSTON, 2024

Outline

Only Run 1 and Run 2 results today!

04/06/24

OZLEM OZCELIK

y measurement !

a decade of CKM

through the tree level decays ..

http://ckmfitter.in2p3.fr

CPV in $B^0 \rightarrow DK^*(892)^0$

 D^0/D^0 meson is reconstructed through various hadronic states $(\pi^{+}\pi^{-}, K^{+}K^{-}, 4\pi^{\pm})$ and $(K^{\mp}\pi^{\pm}, K^{\pm}\pi^{\mp}\pi^{+}\pi^{-})$ Simultaneous fit to D final states in B^0/B^0 invariant mass to extract CPV observables.

	Value	Parameter
	$0.031 \pm 0.017 \pm 0.015$	$\mathcal{A}_{K\pi}$
	$0.069 \pm 0.013 \pm 0.005$	$\mathcal{R}^+_{\pi K}$
	$0.093 \pm 0.013 \pm 0.005$	$\mathcal{R}^{\pi K}$
600/improven	$-0.012 \pm 0.018 \pm 0.016$	$\mathcal{A}_{K\pi\pi\pi}$
00% improven	$0.060 \pm 0.014 \pm 0.006$	$\mathcal{R}^+_{\pi K\pi\pi}$
to the previous	$0.038 \pm 0.014 \pm 0.006$	${\cal R}^{\pi K\pi\pi}$
	$0.811 \pm 0.057 \pm 0.017$	\mathcal{R}_{CP}^{KK}
	$-0.047 \pm 0.063 \pm 0.015$	\mathcal{A}_{CP}^{KK}
	$1.104 \pm 0.111 \pm 0.026$	$\mathcal{R}_{CP}^{\pi\pi}$
	$-0.034 \pm 0.094 \pm 0.016$	$\mathcal{A}_{CP}^{\pi\pi}$
	$0.882 \pm 0.086 \pm 0.033$	$\mathcal{R}^{4\pi}_{CP}$
	$0.021 \pm 0.087 \pm 0.016$	${\cal A}^{4\pi}_{CP}$

JHEP 05(2024)025

4

$\gamma \operatorname{in} B^{\pm} \to D^* h^{\pm}$

$D^* \to D\pi^0/\gamma$ as $D \to K_s^0 \pi^+ \pi^-/K_s^0 K^+ K^$ strong phase inputs from BESIII and CLEO

Approach 1 : fully reconstructed final states

$$\gamma = (69^{+13}_{-14})^{\circ},$$

$$r_B^{D^*K} = 0.15 \pm 0.03,$$

$$r_B^{D^*\pi} = 0.01 \pm 0.01,$$

$$\delta_B^{D^*K} = (311 \pm 14)^{\circ},$$

$$\delta_B^{D^*\pi} = (37 \pm 37)^{\circ}.$$

Most precise measurement in these modes!

JHEP12(2023)013

$\gamma \operatorname{in} B^{\pm} \to D^* h^{\pm}$

$D^* \to D\pi^0 / \gamma$ as $D \to K_c^0 \pi^+ \pi^- / K_c^0 K^+ K^-$

strong phase inputs from BESIII and CLEO

Approach 2 : partially reconstructed final states

$$\gamma = (92^{+21}_{-17})^{\circ},$$

$$r_B^{D^*K} = 0.080^{+0.022}_{-0.023},$$

$$\delta_B^{D^*K} = (310^{+15}_{-20})^{\circ},$$

$$r_B^{D^*\pi} = 0.009^{+0.005}_{-0.007},$$

$$\delta_B^{D^*\pi} = (304^{+37}_{-38})^{\circ}.$$

 r_B parameters propagates the difference in γ precision. Negligible correlation within two approaches.

JHEP12(2023)013

$\beta_{(s)}$ angle through the $b \to c\bar{c}s$ decays

$$\beta$$
 angle with $B^0 \to \psi(\to ll)K$

[Phys. Rev. Lett. 132 (2024) 021801]

Pure CP-even mode, no angular analysis needed

$$\mathscr{A}^{CP}(t) = \frac{\bar{\Gamma}(\bar{B^0}(t) \to f) - \bar{\Gamma}(B^0(t) \to f)}{\bar{\Gamma}(\bar{B^0}(t) \to f) + \bar{\Gamma}(B^0(t) \to f)} = \frac{S}{\cosh(1-S)}$$

time-dependent CP asymmetry

 $B^{0} \rightarrow J/\psi(\rightarrow \mu^{+}\mu^{-})K_{s}:\sim 306 \text{K}$ $B^{0} \rightarrow \psi(2S)(\rightarrow \mu^{+}\mu^{-})K_{s}:\sim 43 \text{K}$ $B^0 \rightarrow J/\psi (\rightarrow e^+ e^-) K_{\rm s} : 24 {\rm K}$

 $\sin(\Delta m_d t) - C\cos(\Delta m_d t)$ $(2\Delta\Gamma_d t) + A_{\Delta\Gamma}\sinh(1/2\Delta\Gamma_d t)$ $S \approx \sin 2\beta$

CPV parameters: S = CPV in mixing C = CPV in direct decays

 β angle with $B^0 \to \psi(\to ll)K_s$

[Phys. Rev. Lett. 132 (2024) 021801]

Pure CP-even mode, no angular analysis needed

 $B^0 \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K_s : \sim 306 \text{K}$ $B^0 \rightarrow \psi(2S)(\rightarrow \mu^+\mu^-)K_s : \sim 43 \mathrm{K}$ $B^0 \rightarrow J/\psi (\rightarrow e^+ e^-) K_{\rm s} : 24 {\rm K}$

Time-dependent CPV - ϕ_s

Time-dependent CP violation by the interference between direct decays and B_s^0 mixing

SM prediction of ϕ_s is highly suppressed compared to B^0 system $\phi_{s} \approx -2\beta_{s} = -0.037 \pm 0.001$ rad.

It is highly sensitive to New Physics contributions in mixing up to $\mathcal{O}(100\%)$

11

Parameter		Values	
ϕ_s [rad]	-0.039	±0.022	±0.006
$ \lambda $	1.001	± 0.011	± 0.005
$\Gamma_s - \Gamma_d[ps^{-1}]$	-0.0056	+0.0013 -0.0015	± 0.0014
$\Delta \Gamma_s [\text{ps}^{-1}]$	0.0845	± 0.0044	± 0.0024
$\Delta m_s [\mathrm{ps}^{-1}]$	17.743	± 0.033	± 0.009
$ A_{\perp} ^2$	0.2463	± 0.0023	± 0.0024
$ A_0 ^2$	0.5179	± 0.0017	± 0.0032
$\delta_{\perp} - \delta_0$ [rad]	2.903	+0.075 -0.074	± 0.048
$\delta_{\parallel} - \delta_0$ [rad]	3.146	± 0.061	± 0.052

- Full Run 2 dataset used in the analysis $\phi_s^{J/\psi KK} = -0.039 \pm 0.022 \pm 0.006$ rad
- No evidence for CP asymmetry observed.
- Most precise measurement but still statistically limited.

12

Parameter	Fit value	Stat. uncer.	Syst. uncer.
ϕ_s [mrad]	-73	± 23	± 7
$\Delta\Gamma_s$ [ps $^{-1}$]	0.0761	± 0.0043	± 0.0019
Γ_s [ps ⁻¹]	0.6613	± 0.0015	± 0.0028
$\Delta m_s [\hbar { m ps}^{-1}]$	17.757	± 0.035	± 0.017
$ \lambda $	1.011	± 0.014	± 0.012
$ A_0 ^2$	0.5300	± 0.0016	± 0.0044
$ A_{\perp} ^2$	0.2409	± 0.0021	± 0.0030
$ A_{\rm S} ^2$	0.0067	± 0.0033	± 0.0009
δ_{\parallel}	3.145	± 0.074	± 0.025
$\delta_{\perp}^{''}$	2.931	± 0.089	± 0.050
$\delta_{ m Sot}$	0.48	± 0.15	± 0.05

* Major improvement on the flavour tagging algorithm and the trigger strategies.

Combination with results at 8 TeV [PLB757(2016)97]

 $\phi_s = -0.074 \pm 0.023$ [rad] $\Delta \Gamma = 0.0780 \pm 0.0045 \text{ ps}^{-1}$

The first evidence of CPV found in $B_s^0 \rightarrow J/\psi K^+ K^-$ mode with 3.2σ The most precise measurement of $\Delta \Gamma_s$ in single measurement.

Comparison within LHC

$\Delta \Gamma_{\rm c}$ measurement

CP-even $B_s \to J/\psi \eta'$ to measure $\tau_L = 1/\Gamma_L$ CP-odd $B_s \to J/\psi \pi^+ \pi^-$ to measure $\tau_H = 1/\Gamma_H$

Important to measure in single measurements to resolve the tension within LHC.

04/06/24

JHEP 05(2024)253

$\Delta \Gamma_{\rm s} = 0.087 \pm 0.012 \pm 0.009 \ {\rm ps}^{-1}$

Excellent agreement with LHCb [Phys. Rev. Lett. 132 (2024) 051802] $\Delta \Gamma_s(J/\psi\phi) = 0.0845 \pm 0.0044 \pm 0.0024 \text{ ps}{-1}$

 $\tau_H \text{ with } B^0_s \to J/\psi K^0_s \text{ decays}$ CPV conserved: CP-odd (CP-even) mode to measure $\tau_H(\tau_I)$ Complementary channel of $B^0 \to J/\psi K_s^0$ as related through U-spin symmetry (sin($2\beta + \Delta \phi_d$)) 2D maximum likelihood fit to decay time and invariant mass to extract the τ_H from $B_{\rm s}^0 \to J/\psi K_{\rm s}^0$ decays.

<u>CMS-PAS-BPH-22-001</u>

$$\frac{140 \text{ fb}^{-1}(13 \text{ TeV})}{\text{Fit}} \neq \text{Data}$$

$$Fit = B^{0} \rightarrow J/\psi \text{ K}_{s}^{0}$$

$$B^{0}_{s} \rightarrow J/\psi \text{ K}_{s}^{0}$$

$$Good \text{ agreement with the SM prediction of } 1.62 \pm 0.02 \text{ ps.}$$

$$Compatible \text{ within } 2.1\sigma \text{ with LHCb}$$

$$\text{measurement } \tau(J/\psi \text{K}_{s}^{0})^{eff} = 1.75(0.12) \text{ ps}$$

Charm decays

Direct CPV in $D^0 \to K_S K_S$

- First! CMS CP measurement in charm sector - Uses D^0 from the $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ decays to tag $D^0 s$ from π charge.
- A_{CP} is measured relative to $D^0 \to K_s \pi^+ \pi^-$ reference channel to cancel the production and detection asymmetries, $\Delta A_{CP} = A_{CP}^S - A_{CP}^R$
 - 2D ML fit is to the D^{*+} and D^{0} invariant mass to extract the yields.
- $A_{CP}(K_s K_s) = [6.3 \pm 3.0 \pm 0.2 \pm 0.8 \ (A_{CP}(K_s \pi^+ \pi^-))]\%$
- Consistent with no CP violation
- Consistent with LHCb ($3.1 \pm 1.2 \pm 0.4 \pm 0.2$)% and Belle ($0.02 \pm 1.53 \pm 0.02 \pm 0.17$)%

Mixing and CPV in $D^0 \to K^+ \pi^-$

Tagging D^0s from $D^{*\pm} \to D^0\pi^{\pm}$ decays via π charge

To measure the CPV fit time-dependent WS/RS ratios

$$R^+_{K\pi}(t) \equiv \frac{\Gamma(D^0(t) \to K^+\pi^-)}{\Gamma(\overline{D}^0(t) \to K^+\pi^-)} \qquad R^-_{K\pi}(t) \equiv \frac{\Gamma(D^0(t) \to K^+\pi^-)}{\Gamma(D^0(t) \to K^+\pi^-)}$$

since oscillating parameters of $x, y \ll 1$

$$R_{K\pi}^{\pm}(t) \approx R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})}(c_{K\pi} \pm \Delta c_{K\pi})\frac{t}{\tau_{D^0}} + (c'_{K\pi} \pm \Delta c'_{K\pi})\left(\frac{t}{\tau_{D^0}}\right)^2$$

CP-violating parameters mixing parameters

15

LHCb-PAPER-2024-008

Mixing and CPV in $D^0 \to K^+ \pi^-$

LHCb-PAPER-2024-008

Time dependent CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^0$

Time dependent asymmetry

$$A_{CP}(f_{CP}, t) \equiv \frac{\Gamma_{D^0 \to f_{CP}}(t) - \Gamma_{\overline{D^0} \to f_{CP}}(t)}{\Gamma_{D^0 \to f_{CP}}(t) + \Gamma_{\overline{D^0} \to f_{CP}}(t)} \approx \frac{\Gamma_{D^0 \to f_{CP}}(t)}{\Gamma_{D^0 \to f_{CP}}(t)}$$

arXiv:2405.06556

 $\approx a_{f_{CP}}^{dir} + \Delta Y_{f_{CP}} \frac{\iota}{\tau_{D^0}}$ ect CPV mixing CPV

$\Delta Y = (-1.3 \pm 6.3 \pm 2.4) \times 10^{-4}$

No CPV is observed.

Excellent agreement with WA : Phys. Rev. D 107, 052008 $\Delta Y^{WA} = (0.9 \pm 1.1) \times 10^{-4}$

Summary

- -Many achievements with the Run 1 + Run 2 data but still statistically limited!

-A long journey towards these precise measurements of CPV observables

Extra slides

$B_s^0 \to \mu^+ \mu^-$ effective lifetime

- •First! $\tau_{\mu\mu}$ measurement corresponding to 2015 + 2016 pp data (26.3 fb⁻¹)
- •Background-subtracted decay time is fit with simulated templates
- Data-MC χ^2 scan with several lifetime hypothesis

 $\tau_{\mu\mu} = [0.99^{+0.42}_{-0.07}(\text{stat}) \pm 0.17(\text{syst})] \text{ ps}$

consistent with SM prediction of $\tau_{B_s^0,H} = 1.624 \pm 0.009$ ps.

04/06/24

16 pp data ated templates = 0.009 ps. $\frac{ATLAS}{VS=13 \text{ TeV}, 26.3 \text{ fb}^{-1}} = \frac{2015-2016 \text{ Data}}{\text{Signal + Background Fit}} = \frac{2015-2016 \text{ Data}}{\text{Signal + Background Fit}} = \frac{2015-2016 \text{ Data}}{\text{Signal + Background}} = \frac{2015-2016 \text{ Data}}{\text{Signal + B$

- see talk from Z.Wang

