

Resonance searches with ATLAS & CMS

Louis Portalès, on behalf of ATLAS & CMS

LHCP 2024, Boston - 04/06/2024

Introduction

We are all aware of how successful the SM is

- \rightarrow But we also know there has to be something more
 - The SM alone can't explain many things
 - Matter/antimatter asymmetry
 - Dark matter
 - Hierarchy problem
 - • •
- → MANY clever ideas from theorists to tackle these issues
 - In most cases, these imply the existence of new fields/particles
 - And these could decay into some of our SM particles
- → We can test these ideas by looking for new resonances
 - The same way we did to observe the SM particles
 - Constructing mass spectra, and looking for bumps
 - Although it is becoming common (for good reasons) to replace the mass with DNNs
 - Except that now we do not know exactly where to look
 - So we need to look everywhere!

2/24

ATLAS-EXOTICA

Introduction

"Resonance searches" covers a lot

\rightarrow Too much for a single talk

- Here the focus will (mostly) be on:
 - High mass (TeV scale) resonances
 - Extended Higgs sectors
 - Heavy bosons (Higgs,Z'/W'), VLQ, ...
 - And even then, hard to be exhaustive
- More on other specific resonances in plenaries
 - LLPs Guglielmo Frattari (yesterday)
 - BSM Higgs Shigeki Hirose (yesterday)
 - Feebly interacting particles Joscha Knolle (tomorrow)
- And even more in the various "BSM" parallels

Extended Higgs sectors (1)

More Higgs bosons...

- → Many models predicting additional Higgs bosons, e.g.
 - > 2HDM (e.g MSSM) predict 5 "Higgses": h (SM), H, A, H+, H-
 - 2HDM+S (NMSSM) predict 7!
- → Many searches looking for these (pseudo)scalars
 - Typically, a new heavy resonance decaying to
 - Two h(SM) (X->hh)
 - h(SM) + a vector boson (X->Vh)
 - $h(SM) + an additional scalar (X \rightarrow Yh)$
 - Or two SM particles
 - A constant flow of new results from ATLAS & CMS
 - Typically extracting model independent limits
 + 2HDM/NMSSM/WED/... interpretations

Note:

In large part already covered yesterday by Shigeki Hirose

Extended Higgs sectors (2)

SeV

S/(S+B) Weighted Ever

60

40

20

GeV

20

Ratio to I

Higgs bosons to SM particles

- \rightarrow Low mass $h \rightarrow \chi \chi$
 - Low mass Higgs boson from 2HDM
 - Here looked for for 70 < mH < 110 GeV</p>
 - Mild excess at 95 GeV
 - For both collaborations
 - CMS: 2.9 σ (1.3 σ) local (global) 2405.18149
 - **ATLAS: 1.7 σ local** ATLAS-CONF-2023-035

$\rightarrow ATIAS: H/A \rightarrow tt 2404.18986$

- Looking for (semi)leptonic top decays
 - And both resolved and merged hadronic top decays in the semi-lep category
 - Taking advantage of interference with SM
- Extracting limits for 2HDM+hMSSM signal:
 - As a function of Mass vs tan β
 - Largest deviation at 800 GeV (2.3 σ local)

Extended Higgs sectors (3)

New A→ZH results

[1300 [0] 1200 [0] 1200 [0] 1200 30 [tp] 1000 BIH 900 800 HZ 700 ATLAS 600 B(A ol $\sqrt{s} = 13 \,\text{TeV}, \, 139 \,\text{fb}^{-1}$ 500 Observed 95% CL, upper limits 400 500 600 700 800

900 1000 m_H[GeV]

6/24

\rightarrow CMS: $A \rightarrow Z(II)H(tt)$ CMS-PAS-B2G-23-006

- Probing 2HDM type II
 - Splitting events in bins of (b-)jet multiplicity
 - Fitting unrolled pTZ x Δm distribution
 - No deviations from SM observed

\rightarrow ATLAS: $A \rightarrow Z(II)H(ZZ) \rightarrow 4I + jj/vv$ 2401.04742

- Probing 2HDM / 2HDM+S
 - Fitting m4l in several categories
 - Extracting upper limits on cross-section for both types of signals
 - Testing width impact on 2HDM limits

Width assumptions	Mass points [GeV]	Upper limits in the $\sigma(gg \rightarrow A)$ [fb]		Ratio w.r.t
		Observed	Expected	Narrow width
Narrow width	$(m_A, m_H) = (320, 220)$	19.6	25.1	1.0
	$(m_A, m_H) = (1190, 600)$	4.8	3.5	1.0
$(\Gamma_A/m_A, \Gamma_H/m_H) = (15\%, 5\%)$	$(m_A, m_H) = (320, 220)$	31.5	36.2	1.4
	$(m_A, m_H) = (1190, 600)$	8.3	6.0	1.7
$(\Gamma_A/m_A, \Gamma_H/m_H) = (30\%, 10\%)$	$(m_A, m_H) = (320, 220)$	38.9	42.5	1.7
	$(m_A, m_H) = (1190, 600)$	8.9	6.6	1.9

Extended Higgs sectors (4)

HH) [pt

×

uo limit 10-2

dd) 10

CMS

10

$X \rightarrow HH/YH$ results & combinations

 $\rightarrow HH$

- Model-independent combined limits
 - ATLAS: Modest excess 1.1 TeV (3.2σ local, 2.1σ global) •
 - Not seen by CMS •

- New ATLAS results
 - $X \rightarrow S(bb)H(\chi\chi)$ 2404.12915
 - X→S(lep)H(yy) 2405.20926 • Including $BR(S \rightarrow WW/ZZ)$ -dependent limits
- CMS combination
 - Part of broad range review paper ► 2403.16926

138 fb⁻¹ (13 TeV)

HH Combination

• HH \rightarrow bb. $\tau\tau$

- HH \rightarrow bb, $\gamma\gamma$

 \rightarrow HH \rightarrow 4W/4 τ /2W2 τ \rightarrow \geq 2I

HH → bb, WW → ≥ 11 (resolved)

→ HH → bb.WW → ≥ 11 (merged-iet)

→ bb.bb (merged-iet) Narrow Width Approximation [q] (*µ*4

105

× 104

ATLAS

Spin-0

- bbt+t

√s = 13 TeV. 126-139 fb-

Observed limit (95% CL)

Expected limit (95% CL)

2311.15956

Expected limit ±1 σ

Expected limit ±20

Additional vector bosons (1)

...More vector bosons...

 \rightarrow W'/Z' can appear in many different contexts

- GUT-inspired models, extra dimensions, ...
 - On the analysis side, simplified benchmark models are often used
 - e.g. Heavy vector triplets models

Additional vector bosons (2)

\rightarrow CMS: Z' \rightarrow Z(II/vv)H(cc/4q) CMS-PAS-B2G-23-008

- Complementary to previous $Z' \rightarrow ZH(bb)$ search 2102.08198
 - Orthogonal thanks to requiring a large R jet with no b-tagged subjets
 - SR for H→cc/4q signals using ParticleNet tagger (X→bb/cc/qq vs QCD)
 - Fitting m(T)Z', using analytical fit to data for background (validated in VR with low tagger score)
- Competitive limits, especially at high mZ'
 - But no significant excess

\rightarrow ATLAS: W' $\rightarrow \tau + MET$ 2402.16576

- Looking in a broad phase space
 - 1 hadronic τ and large MET balancing its pT: (Δφ(τ,MET)>2.4 and 0.7 < pTτ/MET < 1.3)
 - Main background (W→τν) from MC, fake τ background from data
 - Limits extracted from fit to mTW'
- Impressive improvement w.r.t. analysis of 2016 data
 - Well beyond statistics increase!
 - Mainly attributed to improved hadronic τ identification
 - Still, no significant excess found

Additional vector bosons (3)

See Mattia's slides from this morning's BSM parallel session for more details

<u>New results</u> from CMS

→ DY Z'→TT EXO-21-016

- Probing lepton flavor non-universality
 - E.g. B-meson anomaly, g_{μ} 2
- Limits set on $\sigma BR(Z' \rightarrow \tau \tau)$
 - Excluding Z'→ττ up to 4.1(3.0) TeV assuming BR(Z'→ττ) = 10%(1%)

\rightarrow VBF Z' \rightarrow tt/WW EXO-21-015

- First LHC search for VBF Z'!
 - Clear signal topology allowing efficient (QCD) background rejection
- Limits in mZ' vs BR(Z'→ττ/WW)
 - Probing different hypotheses of coupling to SM EW bosons
 - Excluding Z'→ττ(WW) up to 2.45(1.5) TeV depending on coupling assumptions

→ Complementary analyses

- Sensitive to different Z' mass range
 - Depending on coupling assumptions

Additional vector bosons (4)

Ň

 10^{-1}

 10^{-2}

Lower mass W'/Z' are overall more constrained

→ BUT still very relevant!

- Recent search for $W \rightarrow Z'(\mu\mu)\mu\nu$ by ATLAS 2402.15212
 - Probing models with difference in lepton numbers (Lμ – Lτ)
 - Z' coupling only to 2nd & 3rd generations
 - Could help explaining e.g. muon g-2 anomaly
- Signal extracted using parametrized DNN
 - Single network trained for a wide range of signal mass hypotheses
 - Limits extracted for Z'µv signal
 - AND combined with previous 4-lepton analysis JHEP07 (2023) 090
 - Closing the gap between constrains from neutrino trident and Bs mixing measurements

Additional vector bosons (5)

W'/Z' measurement overviews, HVT interpretations

→ ATLAS 2402.10607

- Heavy spin-1 resonances in VV/qq/ll channels
 - Setting limits as a function of V' mass & couplings
 - Includes a full combination of these results

→ CMS 2403.16926

- Part of the Higgs boson search review paper
 - No combinations, but comparable limits

Additional vector bosons (6)

g_{KK}

<u>New results</u> from CMS

$\rightarrow g_{kk} \rightarrow gR \rightarrow gW(qq)W(qq) B2G-23-004$

- Probing extended WED model
 - With suppressed direct g_{kk} decay to SM particles
- Looking at topologies with merged W decays
 - But resolved R decay \rightarrow 3 (large-R) jets
 - W jets identified with ParticleNet
 - 5 SRs defined in m_{gkk}/m_R plane
 Split further in two according to sub-leading W jet
 ParticleNet score
- Limits on σxBR as a function of mR and m_{gkk}
 - Excluding m_{gkk} up to 3 TeV and mR up to 2.05 TeV
 - Downward fluctuation of data at ~3-3.5 TeV
 → yielding tight observed limits w.r.t. expectation

Worth noting: recent VLQ/VLL/HNL searches review from CMS (2405.17605)

...more fermions...

BSM fermions (1)

- \rightarrow VLQs are predicted in several models
 - Esp. models addressing hierarchy & naturalness problems
 - e.g. Composite Higgs models
 - Looking for heavy T', B'
 - Preferably coupling to 3rd gen quarks through charged/neutral currents
 - Typically looking for final states with t,b quarks, and Higgs & vector bosons

q

q'

BSM fermions (2)

Single-VLQ production

- \rightarrow CMS: T' \rightarrow t+Z/H(bb) 2405.05071
 - Fully hadronic final state
 - At least 6 jets (3 b-tagged)
 - Jets assigned to Z/H & t decay through multistep χ^2 minimization
 - 5-jet (t + Z/H) invariant mass used to extract limits
 - An excess was observed in 2016 data 1909.04721
 - Washed out in full run 2 combination •

\rightarrow ATLAS: T' \rightarrow t+Z(||) 2307.07584

- Both leptonic & hadronic top decay
 - Fitting pTZ in both case and combining limits •
- Limits for singlet and doublet representations
 - No significant excess
 - Strongest experimental limits for singlet case

Data / Bkg. 10

1.25

0.75

0.5^E

tb<u>b</u>) [pb]

 \uparrow

CMS Preliminary 138 fb⁻¹ (13 TeV)

 \rightarrow tHbg, $\Gamma/m_{T} = 0.01$

Expected limit $\pm 1\sigma$

Expected limit $\pm 2\sigma$

Singlet T model, $\Gamma/m_{T} = 0.01$

Observed 95% CL upper limit

Expected 95% CL upper limit

m_T [GeV]

= 0.5

 $\frac{1}{M} = 0.3$

 $\frac{1}{M} = 0.1$

M_T [GeV]

15/24

2400

2200

95% CL Obs. Limi

····· 95% CL Exp. Limit

Exp. Limit $\pm 1\sigma$ Exp. Limit $\pm 2\sigma$

T-sinalet

2000

1800

BSM fermions (3)

Pair production

\rightarrow CMS: B'B' \rightarrow b+Z/H, tW 2402.13808

- Search in fully hadronic & jets+Z(ll)
 - Hadronic decays both resolved & merged
 - Fitting VLQ mass spectra in Njet/Nlep categories
 - No deviations from SM observed
 - Upper limits on B VLQ mass as a function of BR to tW /bH

\rightarrow ATLAS new result: T'T' \rightarrow WqWq 2405.19862

- Considering VLQ mixing with light quarks
 - Much less explored scenario
- Limits as a function of BR(W/Z/Hq)
 - MVLQ > 1530 GeV assuming BR(Wq)=1
 - Improved by ~ factor 2 w.r.t. previous limits (Run 1)

BSM fermions (4)

Excited tau Lepton

→ Brand new result from CMS EXO-22-007

- And first ττγ search since LEP!
 - Looking for ττ* pairs produced through contact interaction
 - Probing τ compositeness
- Evaluating both m_{τγ} combinations
 - Assuming colinearity b/w visible tau & neutrinos
 - Defining Mass-specific SRs in mass plane for fit
 - Excluding $m_{\tau^*} > 2.8$ (4.7) TeV for $\Lambda = 10$ TeV (m_{τ^*}) \rightarrow comparable to previous τ^* search by ATLAS 2303.09444

"New" tools for searches

... more ideas to look deeper

 \rightarrow Our searches are only as good as the tools we use to design them

- The detectors are what they are, but we can make the most out of them
 - E.g. getting away from the typical objects we reconstruct
- And we can exploit "new" tools
 - Two great examples for searches: Scouting & anomaly detection algorithms

Searches with "new" objects

29

10

Ratio

Data

Background-only fit

600

800

1000

1200

1400

1600 m [GeV]

Getting creative with our detectors

\rightarrow CMS: X $\rightarrow \phi \phi \rightarrow \chi \chi \chi \chi$ 2405.00834

- Looking at topologies with highly merged photons
 - Could not rely on standard photon reconstruction
 - New (ML) reco. Algorithm designed for that purpose
- Deriving model independent limits ►
 - No significant excess found

 \rightarrow ALPs search with AFP JHEP 07 (2023)

- Through Light-by-Light scattering
 - Tagging forward protons with AFP
- Unbinned fit to diphoton mass
 - Mild excess at 454 GeV (2.5 σ local)

√s = 13 TeV. 14.6 fb⁻¹

 $x^{2}/DOF = 1.11$

138 fb⁻¹ (13 TeV)

CMS

35% CL upper limit on cross section [fb]

Searches with scouting

How to maximize data statistics for searches

- \rightarrow High trigger rates at the cost of granularity
 - Standard HLT: ~ 1 kHz x 1 MB/evt → 1 GB/s
 - Scouting (Run2): ~ 5 kHz x 10 kB/evt \rightarrow 10 MB/s
 - Allows for much looser requirements on trigger objects

→ Extremely well suited for searches with

- Multijets 2404.02992
 - Most stringent limits to date on RPV Gluinos & top squarks production
 - Small excess at 770 GeV (2.6 σ local) in 3-jet mass
- Muons JHEP 12 (2023) 070
 - Covered in FIP plenary talk tomorrow
- → Extended scouting program for Run 3
 - See review of scouting & parking in CMS 2403.16134
 - More allocated rate, more complete set of objects (e.g. e/γ)
 - See also Trigger performance talk by S. Donato

Worth noting:

Similar approach in ATLAS: Trigger-Level Analysis, e.g. Phys. Rev. Lett. 121, 081801 (2018)

Anomaly detection

Looking for everything at once

→ Alternative model-independent paradigm in searches

- Looking for e.g. resonances in multi-jet final states
 - With anomalous behavior w.r.t. SM (e.g. jet substructure)
- A plethora of algorithms developed for this task
 - Outlier detection with VAE, weak supervision, ...
 - For the most part fully data-driven approaches

→ Recent showcases of the approach

- CMS CMS-PAS-EXO-22-026
 - Search for di-jet resonances, w/ minimal kinematics assumptions
 - Benchmarking several algorithms, selecting events with high "anomaly score"
 - Large sensitivity improvement (~x3-7) w.r.t. conventional approaches
- ATLAS PRL 132 (2024) 8, 081801
 - BumpHunter algorithm (AE)
 - Search for anomalous object pairs (di-(b)jet, (b)jet+e/μ/γ)

→ See dedicated session on Wednesday

21 / 24

Conclusion

A broad program of search for new resonances at ATLAS and CMS

→ New Higgs bosons, Vector bosons, fermions, and more

- Probed both in theory-driven and model-independent searches
- Including this year several large scale combinations and review papers!

→ Analyses are showing more and more creativity in their methods

 And taking advantage to the fullest of our detectors capabilities, and of the new tools and techniques becoming available

\rightarrow So far, no excess significant enough to challenge the SM

• A few mild ones here and there to be carefully checked

\rightarrow Run 3 is ongoing, with higher energy and more data to analyze

And we should expect a multitude of new and exciting results with it!

Extended Higgs sectors (5)

On finite width & interference in HH

→ In most cases HH searches consider NWA

- Some analyses probing width effect
 - BUT neglecting interference with SM
 - Push from theory community to include their effect
- → Ramping effort to understand experimental sensitivity
 - Focusing on simplest BSM scenario for now
 - SM + real singlet
 - Scanning the width/interference impact on total cross-section as a function of:
 - New scalar mass (MX)
 - hhX coupling (λHHX in figure)
 - Mixing angle (sin α)
 - Preliminary conclusions:
 - For low (<~400 GeV) and high (>~700 GeV) mX negligible interference effects where our analyses are sensitive
 - For medium mX, interference effects are larger
 - More work needed to understand the actual sensitivity
 - Effects may still be drowned due to experimental resolution

24 / 24