

Precision Electroweak and top quark measurements

on behalf of the ATLAS, CMS and LHCb Collaborations

LHCP 2024 Boston | 5 June 2024

Andrew Gilbert

Motivation for precision EW & top measurements at the LHC

- Test the self-consistency of the SM
 - -

[1]

Electroweak sector over-constrained \Rightarrow identify tension between direct & indirect constraints on observables

← and compare to measurements

W and Z measurements

- - eff.

Measurement of $\sin^2 \theta_{eff}^{\ell}$

- Fundamental EW parameter: $\sin^2 \theta_{\text{eff}}^{\ell} = (1 m_W^2 / m_Z^2) \kappa^{\ell}$
- Recent CMS measurement at 13 TeV
 - $\sin^2 \theta_{\text{eff}}^{\ell}$ measured via A_{FB} (simila
 - New: unfolded A4 (for future rei
- Strong dependence on PDFs
 - Profile in $\sin^2 \theta_{\rm eff}^{\ell}$ fits
- Adds reconstruction of electrons outside tracker acceptance for increased A_{FB} sensitivity
 - e: |η| < 2.5
 - g: $2.5 < |\eta| < 2.87$ (fwd. ECAL)
 - h: $3.14 < |\eta| < 4.36$ (fwd. HCAL)

Measurement of $\sin^2 \theta_{\text{eff}}^{\ell}$

- Consistent results for A_{FB} , A_4 and direct $\cos\theta$ fits
 - PDF profiling reduces differences between PDF sets
 - CT18Z chosen (pre-unblinding) for nominal result best coverage of other PDF central values

Best hadron collider measurement, approaching LEP and SLD:

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23157 \pm 0.00010 (\text{stat}) \pm 0.00015 (\text{syst}) \pm 0.00009 (\text{theo}) \pm 0.00027 (\text{pdf})$

- - with SM prediction and other experimental results

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lun
p_{T}^ℓ	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1
m_{T}	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3

arXiv:2403.15085 (submitted to EPJC)

W boson width

- First Γ_W measurement at the LHC and most precise single measurement to date (w/m_w constrained to prediction)
 - Similar strategy to m_W : fit to p_T^{ℓ} and m_T (more sensitive)
- Modelling (shower tune variations) and recoil dominate uncertainty
- Simultaneous fit for m_W and Γ_W reveals interplay:

arXiv:2403.15085 (submitted to EPJC)

	•		. •	
12		n		ΔС
La				CJ

V]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	<i>u</i> _T	Lumi	m_W
	72	27	66	21	14	10	5	13	12	12	10	6
	48	36	32	5	7	10	3	13	9	18	9	6
1	47	32	34	7	8	9	3	13	9	17	9	6

Momentum calibration

- Crucial to control muon momentum scale to high precision for m_W and other precision EW measurements
- New calibration from LHCb to correct for charge-dependent curvature biases:
- Method: measure "pseudomass" variable
 - Extract via asymmetry in peak positions

JINST 19 (2024) P03010

LHCD

$$\frac{q}{p} \to \frac{q}{p'} = \frac{q}{\alpha p} + \delta,$$

$$\mathcal{M}^{\pm} \equiv \sqrt{\frac{p_{\rm T}^{\pm}}{p_{\rm T}^{\mp}}} M = \sqrt{2p^{+}p^{-}\frac{p_{\rm T}^{\pm}}{p_{\rm T}^{\mp}}} \left(1 - \cos\theta\right) = \sqrt{2p^{\pm}p_{\rm T}^{\pm}\frac{p^{\mp}}{p_{\rm T}^{\mp}}} \left(1 - \cos\theta\right),$$

Differential p_T^{miss} + jets

- **ATLAS** EXPERIMENT
- **Aim**: precise detector-corrected p_T^{miss} + jet measurement
 - Inclusive, minimize model dependence
- Plus auxiliary p_T^{recoil} in ℓ + jet and γ + jet systems
 - Uncertainties cancel in ratios
 - BSM contributions (e.g. dark matter) would not cancel

5/6/24

A. Gilbert (LLR)

12

From vector bosons to quarks to leptons

A. Gilbert (LLR)

13

W/Z + heavy flavour

- ATLAS
- ATLAS analysis studies $Z + \ge 1b$, $\ge 1c$, $\ge 2b$ jet topologies
- Wide range of differential distributions

E.g. m_{bb} useful input for MC modelling for H(bb) -

- 3FS significantly underestimates rate
- Largest improvement with

arXiv:2403.15093 (sub. to EPJC)

• Study of intrinsic charm

BHPS model (2.1% IC)

W/Z + heavy flavour

ATLAS

- ATLAS analysis studies $Z + \ge 1b$, $\ge 1c$, $\ge 2b$ jet topologies
- Wide range of differential distributions

E.g. m_{bb} useful input for MC modelling for H(bb) -

5/6/24

arXiv:2403.15093 (sub. to EPJC)

• Study of intrinsic charm

- 3FS significantly underestimates rate
- Largest improvement with BHPS model (2.1% IC)

$\gamma\gamma \rightarrow \tau\tau$ and constraints on tau g-2

SMP-23-005 To be submitted to ROPP

A. Gilbert (LLR)

m_{vis} (GeV)

$\gamma\gamma \rightarrow \tau\tau$ and constraints on tau g-2

• Select events with $N_{tracks} \leq 1$

SMP-23-005 To be submitted to ROPP

• Fiducial cross section Matching closely expt. selection ($N_{tracks} = 0$ only)

• Prediction from gamma-UPC (elastic only) rescaled for dissociative

$$\sigma_{\text{obs}}^{\text{fid}} = 12.4^{+3.8}_{-3.1} \,\text{fb}$$

 $\sigma_{\text{pred}}^{\text{fid}} = 16.5 \pm 1.5 \,\text{fb}$

Top quark properties

Discussed in other plenary talks:

- Lepton flavor violation and rare heavy flavor decays - Monday evening - Top cross-section measurements and rare ttX processes - tomorrow morning

ATLAS + CMS direct m_t combin

- Legacy combination of Run-1:
 - 6 (ATLAS) + 9 (CMS) measurements, detailed study of systematic correlations

arXiv:2402.08713 (PRL accepted)

~ ~+	
Idl	

CMS

Uncertainty in b-jet JES dominates combination

• Requires detailed understanding of correlations

tegory	ρ	Scan range	$\Delta m_{\rm t}/2$ [MeV]	$\Delta \sigma_{m_{\rm t}}/2$ [MeV]
	0			
	0	[-0.25, +0.25]	8	7
	0.5	[+0.25, +0.75]	1	<1
	0.85	[+0.5, +1]	26	5
	0.85	[+0.5, +1]	2	<1

$mt = 172.52 \pm 0.33 GeV$ (±0.14 stat) (±0.30 syst)

• Most precise to date: < 2 per mille

I nortainty atagany	Uncertainty impact			
Uncertainty category	LHC	ATLAS		
b-JES	0.18	0.17		
b tagging	0.09	0.16		
ME generator	0.08	0.13		
JES 1	0.08	0.18		
JES 2	0.08	0.11		
Method	0.07	0.06		
CMS b hadron ${\cal B}$	0.07			
QCD radiation	0.06	0.07		
Leptons	0.05	0.08		
JER	0.05	0.09		
CMS top quark $p_{\rm T}$	0.05	—		
Background (data)	0.05	0.04		
Color reconnection	0.04	0.08		
Underlying event	0.04	0.03		
g-JES	0.03	0.02		
Background (MC)	0.03	0.07		
Other	0.03	0.06		
1-JES	0.03	0.01		
CMS JES 1	0.03			
Pileup	0.03	0.07		
JES 3	0.02	0.07		
Hadronization	0.02	0.01		
$p_{\mathrm{T}}^{\mathrm{miss}}$	0.02	0.04		
PDF	0.02	0.06	<	
Trigger	0.01	0.01		
Total systematic	0.30	0.41		
Statistical	0.14	0.25		
Total	0.33	0.48		

Observation of tt entanglement

- Unique probe of entanglement via spin correlations
 - Both experiments analyses dilepton final state
 - \Rightarrow measure angle between ℓ^{\pm} in tt rest frame
- Focus on narrow range around tt production threshold
 - 80% cross section for spin-singlet state (rotational invariance needed for observation) -
- Cross section:

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+}d\Omega_{-}} = \frac{1 + \mathbf{B}^{+} \cdot \hat{\mathbf{q}}_{+} - \mathbf{B}^{-} \cdot \hat{\mathbf{q}}_{-} - \hat{\mathbf{q}}_{+} \cdot \mathbf{C} \cdot \hat{\mathbf{q}}_{-}}{(4\pi)^{2}}$$

$$D = \operatorname{tr}[\mathbf{C}]/3 = -3 \cdot \langle \cos \varphi \rangle$$

$$\mathbf{D} < -1/3 \text{ implies entanglement}$$

$$\mathbf{CMS includes Toponium effects}$$

$$- \operatorname{Maximally entangled particles}$$

$$- \operatorname{Via a colour singlet single pseudoscalar}_{[PRD 104 (2021) 034023]}$$

Observation of tt entanglement

- Both experiments observe entanglement with $> 5\sigma$ significance
 - Good agreement with theory predictions -
 - Systematics limited with full Run 2 data set -

Particle-level Invariant Mass Range [GeV]

 $D = -0.547 \pm 0.002(stat.) \pm 0.021(syst.)$

 $D = -0.478 \pm 0.017(\text{stat.})^{+0.018}_{-0.021}(\text{syst.})$

tt spin correlation and entanglement in ℓ +jets

- All polarization vector & spin correlation matrix coefficients extracted simultaneously
 - In bins of $m_{t\bar{t}}$, $p_T(t)$. and $|\cos\theta|$
- Entanglement observed for the first time at high $m_{t\bar{t}}$
 - Addition criterion based on classical information exchange at $v \le c$

5/6/24

Covered in R. Demina's <u>talk</u> in top parallel session today

Reviews

ATLAS: EW, QCD & flavour

• Extensive summary of precision single & mutiboson measurements using Run 2 13 TeV data

Also c	overs:		Dib
- Low - Higl	<pre>/ energy strong particle production h pT jet & QCD studies</pre>		γγ Wγ- Ζγ→
- EFT	constraints on new physics		Zγ→
- + m	iore		\\/\\/
_ 2	250	Status: October 2022	
tion [nb]	Theory (NNLO) ATLAS Measurement	Preliminary	WZ
ross sec	$200 \qquad $		ZZ
roduction c	150 2.76 TeV, 4 pb ⁻¹ , EPJC 79 (2019) 901 5 TeV, 25 pb ⁻¹ , EPJC 79 (2019) 128 7 TeV, 4.6 fb ⁻¹ , EPJC 77 (2017) 367 8 TeV, 20.2 fb ⁻¹ , JHEP 02, 117 (2017) (for <i>Z</i>) 8 TeV, 20.2 fb ⁻¹ , EPJC 79 (2019) 760 (for <i>W</i>) 13 TeV, 81 pb ⁻¹ , PLB 759 (2016) 601 (for <i>W</i>) 13 TeV, 3.2 fb ⁻¹ , JHEP 02, 117 (2017) (for <i>Z</i>)		
otal p	100		
Ĕ			-WW
	50		VH _ _
	0 ² 46810	 12 14 √s [TeV]	

arXiv:2404.06829 (submitted Phys Rept)

Electroweak, QCD and flavour physics studies with ATLAS data from Run 2 of the LHC

The ATLAS Collaboration

oson Cross Section Measurements ∫**£** dt Status: October 2023 Reference [fb⁻¹] = $31.4 \pm 0.1 \pm 2.4$ pb (data) NNLOjet (NNLO) (theory) 139 JHEP 11 (2021) 169 $\sigma = 16.82 \pm 0.07 + 0.75 - 0.78 \text{ pb (data)}$ $2\gamma \text{NNLO} + \text{CT10 (theory)}$ 20.2 PRD 95 (2017) 112005 $\sigma = 44 + 3.2 - 4.2 \text{ pb} \text{ (data)}$ 2 γ NNLO (theory) 4.9 JHEP 01, 086 (2013) **ATLAS** Preliminary $\sigma = 2.77 \pm 0.03 \pm 0.36$ pb (data) NNLO (theory) PRD 87, 112003 (2013 →ℓvγ 4.6 arXiv:1407.1618 $\sigma = 533.7 \pm 2.1 \pm 15.4 \text{ fb (data)}$ Matrix NNLO QCD + NLO EW (theory) JHEP 03 (2020) 054 36.1 PRD 93, 112002 (2016) arXiv:1407.1618 PRD 87, 112003 (2013) γl $\sigma = 1.507 \pm 0.01 + 0.083 - 0.078$ pb (data) NNLO (theory) $\sqrt{s} = 7,8,13,13.6$ TeV 20.3 $\sigma = 1.31 \pm 0.02 \pm 0.12 \text{ pb (data)} \\ \text{NNLO (theory)} \\ \sigma = 83.7 + 3.6 - 3.5 + 7.1 - 6.5 \text{ fb (data)} \\ \text{MCFM (NNLO) (theory)} \\ \Omega = 0.000 \text{ (theory)}$ 4.6 Ō arXiv:1407.1618 36.1 JHEP 12 (2018) 010 $\sigma = 68 \pm 4 + 33 - 32 \text{ fb (data)}$ NNLO (theory) ννγ 20.3 PRD 93, 112002 (2016) $= 0.133 \pm 0.013 \pm 0.021$ pb (data) MCFM NLO (theory) 0 4.6 PRD 87, 112003 (2013) NLO QCD $\sigma = 130.04 \pm 1.7 \pm 10.6 \text{ pb (data)}$ NNLO (theory) $\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb (data)}$ NNLO (theory) 36.1 EPJC 79 (2019) 884 PLB 763, 114 (2016) 20.3 NNLO QCD $r = 51.9 \pm 2 \pm 4.4$ pb (data) NNLO (theory) PRD 87 (2013) 11200⁻ PRL 113 (2014) 21200 4.6 0 LHC pp \sqrt{s} = 13.6 TeV $\sigma = 51 \pm 0.8 \pm 2.3 \text{ pb (data)}$ MATRIX (NNLO) (theory) 36.1 EPJC 79 (2019) 535 Data $\sigma = 24.3 \pm 0.6 \pm 0.9$ pb (data) MATRIX (NNLO) (theory) PRD 93, 092004 (2016) 20.3 stat $r = 19 + 1.4 - 1.3 \pm 1$ pb (data) MATRIX (NNLO) (theory) 4.6 EPJC 72 (2012) 2173 stat ⊕ syst $= 255 \pm 1 \pm 11$ fb (data) MATRIX (NNLO) (theory 36.1 EPJC 79 (2019) 535 $WZ \rightarrow \ell \nu \ell \ell$ $\tau = 140.4 \pm 3.8 \pm 4.6 \text{ fb (data)}$ MCFM NLO (theory) PRD 93 (2016) 092004 20.3 LHC pp $\sqrt{s} = 13$ TeV = $16.9 \pm 0.7 \pm 0.7$ pb (data) Matrix (NNLO) & Sherpa (NLO) (theory) 29.0 ATLAS-CONF-2023-062 Data $= 17.3 \pm 0.6 \pm 0.8$ pb (data) X PRD 97 (2018) 032005 stat 36.1 Matrix (NNLO) & Sherpa (NLO) (theory) $r = 7.3 \pm 0.4 + 0.4 - 0.3$ pb (data) NNLO (theory) stat ⊕ syst 20.3 JHEP 01, 099 (2017) $r = 6.7 \pm 0.7 + 0.5 - 0.4$ pb (data) NNLO (theory) JHEP 03, 128 (2013 PLB 735 (2014) 311 4.6 $\sigma = 49.3 \pm 0.8 \pm 1.1 \text{ fb (data)}$ Sherpa (NLO) (theory) $\sigma = 25.4 + 3.3 - 3 + 1.6 - 1.4 \text{ fb (data)}$ PowhegBox & gg2ZZ (theory) LHC pp $\sqrt{s} = 8$ TeV 139 JHEP 07 (2021) 005 **4***l* inclusive (60 GeV <m4*l* < 200 GeV) Data 4.6 JHEP 03 (2013) 128 stat $= 25.4 \pm 1.4 \pm 1 \text{ fb (data)}$ Matrix (NNLO) & Sherpa (NLO) (theory) 36.1 JHEP 10 (2019) 127 stat ⊕ syst = 9.7 + 1.5 - 1.4 + 1 - 0.8 fb (data) PowhegBox & gg2ZZ (theory) $ZZ \rightarrow \ell \ell \nu \nu$ JHEP 10 (2019) 127 20.3 $= 12.7 + 3.1 - 2.9 \pm 1.8 \text{ fb (data)}$ PowhegBox & gg2ZZ (theory) = 88.9 \pm 1.1 \pm 2.74 \text{ fb (data)} JHEP 03 (2013) 128 4.6 LHC pp $\sqrt{s} = 7$ TeV 139 JHEP 07 (2021) 005 Sherpa (NLO) (theory) Data = $73 \pm 4 \pm 5$ fb (data) PowhegBox norm. to NNLO & gg2ZZ (theory) $ZZ \rightarrow 4\ell$ PLB 753 (2016) 552-572 stat 20.3 = 29.8 + 3.8 - 3.5 + 2.1 - 1.9 fb (data) PowhegBox & gg2ZZ (theory) stat \oplus syst JHEP 03 (2013) 128 4.6 $= 209 \pm 28 \pm 45 \text{ fb (data)}$ MC@NLO (theory) EPJC 77 (2017) 563 20.2 →ℓvjj $= 1.37 \pm 0.14 \pm 0.37$ pb (data) MC@NLO (theory) JHEP 01, 049 (2015) 4.6 $t = 30 \pm 11 \pm 22$ fb (data) MC@NLO (theory) WV→ℓvJ EPJC 77 (2017) 563 20.2 $\sigma = 2719 + 947 - 810 \text{ fb (data)}$ NNLO(QCD)+NLO(EW) (theory 36.1 JHEP 12 (2017) 024 r = 1.03 + 0.37 - 0.36 + 0.26 - 0.21 pb (data) NNLO(QCD)+NLO(EW) (theory) $- H \rightarrow b\bar{b}$ $H \rightarrow \gamma\gamma$ 20.3 JHEP 12 (2017) 024 $1100 \pm 130 \pm 160 = 140$ fb (dat 139 ATLAS-CONF-2020-02 Powheg Box NLO(QCD) (theory) = 6 + 1.3 - 1.4 + 0.4 - 0.5 fb (data) Powheg Box NLO(QCD) (theory) Nature 607, pages 52-59 (2022) 139

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 data/theory

CMS cross section measurements

• Review of hadronic, EW, top and Higgs sector cross section measurements

ATLAS top quark review

• Extensive review of top (+X) cross section, m_t measurements, entanglement, LFU tests, and more

arXiv:2404.10674 (submitted Phys Rept)

Climbing to the Top of the ATLAS 13 TeV data

The ATLAS Collaboration

Top asymmetry summary

CMS top quark mass review

Current status

Overview of all measurement approaches

Pole mass from cross section Inclusive tt 7 TeV, NNLO \otimes CT10 Inclusive tt 7+8 TeV, NNLO @ CT14 Inclusive tt 13 TeV. NNLO ⊗ CT14 Dilepton 7+8 TeV, ATLAS+CMS cross section Differential tt+jet 13 TeV, NLO @ CT18

MS mass from cross section

Full reconstruction Dilepton 7 TeV, KINb and AMWT Lepton+jets 7 TeV, 2D ideogram Dilepton 7 TeV, AMWT All-jets 7 TeV, 2D ideogram Lepton+jets 8 TeV, Hybrid ideogram All-jets 8 TeV, Hybrid ideogram Dilepton 8 TeV, AMWT Single top quark 8 TeV, Template fit Dilepton 8 TeV, $M_{\rm bl} + M_{\rm T2}^{\rm bb}$ Hybrid fit Lepton+jets 13 TeV, Hybrid ideogram All-jets 13 TeV, Hybrid ideogram Dilepton 13 TeV, $m_{\rm bl}$ fit Single top quark 13 TeV, $\ln (m_t / 1 \text{ GeV})$ fit Lepton+jets 13 TeV, Profile likelihood Combination 7+8 TeV

Boosted measurements

Boosted 8 TeV, C/A jet mass unfolded Boosted 13 TeV, XCone jet mass unfolded Boosted 13 TeV, XCone jet mass unfolded

Past improvements Consistent reduction in both statistical and systematic uncertainties

arXiv:2403.01313 (submitted Phys Rept)

Review of top quark mass measurements in CMS

The CMS Collaboration*

Review of projection studies

NB: not always taking into account detector improvements!

- The LHC has proved more than capable as a precision physic machine
 - In many cases challenging or exceeding e⁺e⁻ collider constrain

- Future improvements may come from:
 - Better understanding / in-situ constraint of PDFs
 - Improved signal & background modelling
 - Refined detector calibrations
 - Dedicated low pileup LHC runs
 - Inter-experiment combinations

See parallel talks for more detail on these expt. topics:

CS	Precision electroweak measurements in CMS	Yongbin Feng	<u>Tuesday</u>
nts	Precision electroweak measurements in ATLAS	Alexander Bachiu	<u>Tuesday</u>
	Recent electroweak precision measurements in LHCb	Miguel Ramos Pernas	<u>Tuesday</u>
	Rare decays of electroweak bosons at CMS and ATLAS	Keith Ulmer	<u>Tuesday</u>
	ATLAS results on top spin and entanglement	Baptiste Ravina	<u>Wednesd</u>
	CMS results on top spin correlations and entanglement	Regina Demina	<u>Wednesd</u>
	ATLAS top quark mass measurements	Thomas Mclachlan	<u>Friday</u>

