

5 June 2024

The 12th Large Hadron Collider Physics Annual Conference June 3-7, 2024 @ Northeastern University http://lhcp2024.cos.northeastern.edu

Multiboson Measurements Karolos Potamianos, University of Warwick (GB) on behalf of the ATLAS and CMS Collaborations

КК

Science and Technology Facilities Council

WARWICK THE UNIVERSITY OF WARWICK

Multiboson Measurements – Motivation I

- Multiboson physics probes the nature of **Electroweak Symmetry Breaking**
- Wide range of processes: diboson, triboson, vector boson scattering
- Portal to BSM physics through interpretations: **EFT, resonant searches**
- Encompasses a broad range of measurements and searches

A wealth of measurements ...

VBF, VBS, and Triboson Cross Section Measurements Status: October 2023

ATLAS summary multiboson measurements (10/23) – Also available from CMS (11/23)

Related Presentations This Week

Friday, June 7, 2024

:00 → 12:48	Electrowe	pak Physics	9 ISEC Room 138
	Conveners (University of	:: Davide Napoletano (Universita & INFN, Milano-Bicocca (IT)), Francesca Cavallari (Sapienza Universita e INFN, Roma I (IT)), Garvita Agar Notre Dame (US)), Oldrich Kepka (Czech Academy of Sciences (CZ))	wal
	11:00	Diboson and polarization measurements in ATLAS Speaker: Prajita Bhattarai (SLAC National Accelerator Laboratory (US))	(18m
	11:18	Dibosons and polarization measurements in CMS Speaker: Giulia Sorrentino (Kansas State University (US))	③ 18m
	11:36	Theory of diboson production Speaker: Diana Mareen Hoppe (Technische Universitaet Dresden (DE))	③ 18m
	11:54	Experimental overview of VBS/VBF measurements at the LHC Speaker: Pietro Govoni (Universita & INFN, Milano-Bicocca (IT))	③ 18m
	12:12	Theory overview of EFT in the electroweak sector Speaker: Raquel Gomez Ambrosio	③ 18m
	12:30	Experimental overview of EFT, including global fit (EWK+Higgs+Top) Speaker: Aram Apyan (Brandeis University (US))	③ 18m

Run: 302956 Event: 1297610851 2016-06-29 09:25:24 CEST m_{jj} = 3.8 TeV arXiv:2404.02711, submitted JHEP

CMS ZZ+jets @ 13 TeV [138 fb⁻¹]

- Differential distributions & normalised differential cross-sections
- Fully leptonic final state (e, μ), unfolding w/ iterative D'Agostini
- 40 < m_{Z1} < 120 GeV, 4 < m_{Z1} < 120 GeV; **On-shell req.: 60 < m_{Z1,Z2} < 120 GeV**
- Discrepancy in 1 jet bin
- Discrepancy in N >= 3 jets due to need for NNLO and higher order corrections

arXiv:2404.02711, submitted JHEP

CMS ZZ+jets @ 13 TeV [138 fb⁻¹]

- Better Njet description with nNNLO+PS
- Better description of m_{4l} with EW-corrected
 nNNLO+PS, but negligible effect on other distributions

nNNLO+PS:

NNLO qq w/ MiNNLO_{PS} + NLO ggF

7

arXiv:2402.16365, submitted to Phys. Rev. Lett.

ATLAS high-p_T^z WZ @ 13 TeV [140 fb⁻¹]

- Study of polarisation states sensitive to Electroweak Symmetry Breaking
- BDT (7 variables) trained to measure polarisation tractions f_{WZ} : f_{00} , f_{0T+T0} & f_{TT}
- Fractions measured in high p_T^z and low p_T^{wz} yields 20-30% enhancement of f₀₀
- 5.2 σ (4.3 σ) obs. (exp.) for 100 < p_T^Z < 200 GeV
 - 1.6 σ (2.5 σ) obs. (exp.) for $p_T^Z > 200 \text{ GeV}$

	Measurement			Prediction		
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$	
f_{00}	$0.19 \pm _{0.03}^{0.03}$ (stat) $\pm _{0.02}^{0.02}$ (syst)	$0.13 \pm _{0.08}^{0.09}$ (stat) $\pm _{0.02}^{0.02}$ (syst)	f_{00}	0.152 ± 0.006	0.234 ± 0.007	
f_{0T+T0}	$0.18 \pm _{0.08}^{0.07} (\text{stat}) \pm _{0.06}^{0.05} (\text{syst})$	$0.23 \pm_{0.18}^{0.17} (\text{stat}) \pm_{0.10}^{0.06} (\text{syst})$	f_{0T}	0.120 ± 0.002	0.062 ± 0.002	
ftt	$0.63 \pm _{0.05}^{0.05} (\text{stat}) \pm _{0.04}^{0.04} (\text{syst})$	$0.64 \pm_{0.12}^{0.12} (\text{stat}) \pm_{0.06}^{0.06} (\text{syst})$	f_{T0}	0.109 ± 0.001	0.058 ± 0.001	
f_{00} obs (exp) sig.	5.2 (4.3) σ	1.6 (2.5) σ	f_{TT}	0.619 ± 0.007	0.646 ± 0.008	

cos 0,

arXiv:2402.16365, submitted to Phys. Rev. Lett.

ATLAS high-p_T^z WZ @ 13 TeV [140 fb⁻¹]

- Radiation Amplitude Zero Effect: drop at 0 in $\Delta Y(WZ)$ and $\Delta Y(I_WZ)$ for TT events
 - Scattering angle of the W in the WZ frame ~90° w.r.t. incoming antiquark
- First observation of RAZ effect in WZ production (previously seen in Wy by CMS)
 - Challenges due to longitudinally-polarised W and NLO QCD corrections diluting effect (hadronic activity reduced by p_T^{WZ} requirement)

Vector Boson Scattering

arXiv:2403.02809, submitted to EPJC

ATLAS Wyjj VBS @ 13 TeV [140 fb⁻¹]

- Observation of EW Wyjj with 6.3σ
- NN (13 variables) to enhance EW Wyjj (inclusive)

-	Uncertainty Source	Fractional Uncertainty [%]
	Statistics	11
1	Jets	8
	Lepton, photon, pile-up	8
	EW $W\gamma j j$ modelling	7
	Strong $W\gamma j j$ modelling	6
	Non-prompt background	2
	Luminosity	2
	Other Background modelling	2
	$E_{\mathrm{T}}^{\mathrm{miss}}$	1

arXiv:2403.02809, submitted to EPJC

ATLAS Wyjj VBS @ 13 TeV [140 fb⁻¹]

• Particle-level fiducial and differential cross-sections as a function of m_{jj} , p_T^{jj} , $\Delta_{\phi jj}$, p_T^{l} , m_{ly} and $\Delta_{\phi ly}$ corrected for detector effects (efficiency and resolution)

arXiv:2403.02809, submitted to EPJC

ATLAS Wyjj VBS @ 13 TeV [140 fb-1] $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{f_{j}^{(8)}}{\Lambda^{4}} O_{j}^{(8)}$

- EFT Interpretation
 - Pure dim-8 terms have higher impact than interference

$$|\mathcal{M}|^2 = |\mathcal{M}_{\mathrm{SM}}|^2 + 2Re(\mathcal{M}_{\mathrm{SM}}^*\mathcal{M}_{\mathrm{D-8}}) + |\mathcal{M}_{\mathrm{D-8}}|^2$$

arXiv:2403.15296, submitted to JHEP

ATLAS WZjj VBS @ 13 TeV [140 fb⁻¹]

- Simultaneous extraction of EW and strong WZjj
 - In Njet = 2 and \geq 3 & m_{jj} in [500, 1300, 2000]
- Enhanced sensitivity using BDT discriminant
- Adverserial NN to separate EW and QCD w/o m_{ii} bias

п									
-	$\sigma_{WZjj-EW}$								
	Measured MadGraph+Pythia8	$0.368 \pm 0.037~{\rm (stat.)} \pm 0.059~{\rm (syst.)} \pm 0.003~{\rm (lumi.)}$ fb $0.370 \pm 0.001~{\rm (stat.)} \pm 0.006~{\rm (PDF)}^{+0.030}_{-0.026}~{\rm (scale)}$ fb							
-	$\sigma_{WZjj- m strong}$								
	Measured MadGraph+Pythia8	1.093 = 0.066 (stat.) \pm 0.131 (syst.) \pm 0.009 (lumi.) fb 1.537 = 0.009 (stat.) \pm 0.016 (PDF) ^{+0.087} _{-0.149} (scale) fb							

0.7 factor between data and MG

within 1.80 given unc. on MG

Also observed in $W^{\pm}W^{\pm}jj$ and previous WZjj and WZ measurements by ATLAS

arXiv:2403.15296, submitted to JHEP

ATLAS WZjj VBS @ 13 TeV [140 fb⁻¹]

K. T Otannianos – Linci zoz

15

aXiv:2403.04869, submitted to JHEP

ATLAS OS WWjj VBS @ 13 TeV [138 fb⁻¹]

- Observation of EW W[±]W[∓]jj
 - 7.1σ (6.2σ) obs. (exp.) in 2&3 jets
- 2 NNs trained to separate signal from top and QCD WWjj

stical uncertainty	1.1
theoretical uncertainties	6.3
eoretical uncertainties	5.8
mental uncertainties	4.9
$W^{-}jj$ theoretical uncertainties	1.3
ty	0.8
fied lepton uncertainty	0.5
5	0.4
perimental uncertainties	0.1
	0.3
stical uncertainty	12.3
c normalisation uncertainty	4.9
$W^{-}jj$ normalisation uncertainty	2.2
ertainty	18.5
	,

 $2.65^{+0.49}_{-0.46}$ fb $2.20^{+0.14}_{-0.13}$ fb

 $\sqrt{(\Delta \mu)^2 - (\Delta \mu')^2}$

[%]

 $\sigma_{\rm OBS}$

 $\sigma_{\rm POWHEG}$

arXiv:2312.00420, JHEP 04 (2024) 026

ATLAS (SS) W[±]W[±]jj VBS @ 13 TeV [139 fb⁻¹]

 Integrated EW and total W[±]W[±]jj fiducial cross-sections (most precise to date)

Source	Impact [%]
Experimental	4.5
Electron calibration	0.4
Muon calibration	0.5
Jet energy scale and resolution	1.7
$E_{\rm T}^{\rm miss}$ scale and resolution	0.1
b-tagging inefficiency	0.7
Background, misid. leptons	3.5
Background, charge misrec.	0.8
Pileup modelling	0.1
Luminosity	1.8
Modelling	3.2
$W^{\pm}W^{\pm}jj$ shower, scale, PDF & α_s	0.4
EW $W^{\pm}W^{\pm}jj$, QCD corrections	2.1
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.4
QCD $W^{\pm}W^{\pm}jj$, QCD corrections	0.0
Background, WZ scale, PDF & α_s	0.3
Background, WZ reweighting	1.2
Background, other	1.3
Model statistical	1.6
Experimental and modelling	5.5
Data statistical	6.6
Total	8.5

arXiv:2312.00420, JHEP 04 (2024) 026

ATLAS (SS) W[±]W[±]jj VBS @ 13 TeV [139 fb⁻¹]

- Differential measurement with binned signal strength
- EFT dim-8 & GM H^{±±} interpretations

CMS-PAS-SMP-22-008

CMS (SS) W[±]W[±]jj VBS with τ_h @ 13 TeV [138 fb⁻¹]

- First study of VBS with a τ lepton decaying hadronically
 - $\mu_{EW} = 1.44 + 0.63 0.56$, i.e. $2.7\sigma (1.9\sigma)$ obs. (exp.)
- DNN (9 variables) trained to separate signal from background

 W^{\pm}

W[±]

CMS-PAS-SMP-22-008

CMS (SS) W[±]W[±]jj VBS with τ_h @ 13 TeV [138 fb⁻¹]

- Simultaneous extraction of dim-6 and dim-8 EFT operators
 - Dim-6: linear, BSM and mixed contributions
 - Dim-8: linear and BSM contributions

Wilson coefficient		68% CL interval	(s)	95% CL interval		
		Expected Observed		Expected	Observed	
	$c_{ll}^{(1)}$	$[-12.9, -8.03] \cup [-2.95, 1.91]$	[-11.6, 0.045]	[-14.6, 3.53]	[-13.5, 2.11]	
	$c_{qq}^{(1)}$	[-0.501, 0.576]	[-0.341, 0.416]	[-0.742, 0.818]	[-0.605, 0.681]	
	c _W	[-0.681, 0.669]	[-0.513, 0.481]	[-0.987, 0.974]	[-0.842, 0.818]	
	c_{HW}	[-7.00, 6.09]	[-5.48, 4.31]	[-9.99, 9.05]	[-8.68, 7.60]	
	c_{HWB}	[-41.7, 69.6]	[30.7, 89.2]	[-66.6, 96.4]	[-49.7, 110]	
dim-6	$c_{H\square}$	[-16.6, 18.1]	[-12.0, 14.0]	[-24.7, 26.3]	[-20.9, 22.7]	
	c_{HD}	[-24.6, 34.7]	[-15.3, 31.5]	[-38.2, 48.8]	[-31.4, 45.5]	
	$c_{Hl}^{(1)}$	[-28.8, 29.9]	[-38.2, 39.5]	[-49.4, 49.7]	[-69.3,68.3]	
	$c_{Hl}^{(3)}$	$[-1.43, 2.23] \cup [5.88, 9.54]$	[-0.045, 8.58]	[-2.64, 10.8]	[-1.59, 9.94]	
	$c_{Hq}^{(1)}$	[-4.53, 4.42]	[-3.27, 3.44]	[-6.56, 6.44]	[-5.55, 5.60]	
	$c_{Ha}^{(3)}$	[-2.39, 1.37]	[-1.88, 0.705]	[-3.24, 2.16]	[-2.82, 1.61]	
	f_{T0}	[-1.02, 1.08]	[-0.774, 0.842]	[-1.52, 1.58]	[-1.32, 1.38]	
	f_{T1}	[-0.426, 0.480]	[-0.319, 0.381]	[-0.640, 0.695]	[-0.552, 0.613]	
	f_{T2}	[-1.15, 1.37]	[-0.851, 1.12]	[-1.75, 1.98]	[-1.51, 1.76]	
	f_{M0}	[-9.89, 9.74]	[-8.07, 7.70]	[-14.6, 14.5]	[-13.1, 12.8]	
dim 9	f_{M1}	[-12.5, 13.3]	[-9.54, 11.15]	[-18.7, 19.6]	[-16.4, 17.7]	
unii-o	f_{M7}	[-20.3, 19.2]	[-17.6, 15.3]	[-29.9, 28.8]	[-27.6, 25.8]	
	f_{S0}	[-11.6, 12.0]	[-9.60, 9.82]	[-17.4, 17.9]	[-15.9, 16.1]	
	f_{S1}	[-37.4, 38.8]	[-40.9, 41.3]	[-57.2, 58.6]	[-60.9, 61.8]	
	f_{S2}	[-37.4, 38.8]	[-40.9, 41.3]	[-57.2,58.6]	[-60.9,61.8]	

 W^{\pm}

W[±]

arXiv:2310.05164, Phys. Rev. Lett. 132 (2024) 121901

CMS WWy @ 13 TeV [138 fb⁻¹]

- Observation of WWy: 5.6 σ (4.7 σ) obs. (exp.) & search for Hy
 - Hγ fit on ΔR_{II} [0.5, 1.8, 2.0, 2.3) and m_T^{ww} [0, 10, 40, 70, 110, ∞) [initiated by light quarks]

 $\sigma = 5.9 \pm 0.8 \text{ (stat)} \pm 0.8 \text{ (syst)} \pm 0.7 \text{ (modeling) fb} = 5.9 \pm 1.3 \text{ fb}$ MADGRAPH5_aMC@NLO $\sigma = 5.33 \pm 0.34 \text{ (scale)} \pm 0.05 \text{ (PDF) fb}$

CMS Experiment at the LHC, CERN Data recorded: 2022-Sep-30 08:36:07.584192 GMT Run / Event / LS: 359612 / 7743753 / 11

RUN3 RESULTS (13.6 TeV)

CMS-PAS-SMP-24-001

CMS W⁺W⁻ @ 13.6 TeV [34.8 fb⁻¹]

• First measurement of W⁺W⁻ at 13.6 TeV w/2022 data

 $125.7 \pm 2.3 \,(\text{stat}) \pm 4.8 \,(\text{syst}) \pm 1.8 \,(\text{lumi}) \,\text{pb} = 125.7 \pm 5.6 \,\text{pb}$

• In good agreement w/ SM: 125.8 ± 3.7 pb (MATRIX v2.1.0)

24

CMS W⁺W⁻ @ 13.6 TeV [34.8 fb⁻¹]

• Comparison of normalised fiducial cross-sections using MiNNLO

arXiv:2311.09715, submitted to Phys. Lett. B

160

ATLAS ZZ @ 13.6 TeV [29 fb⁻¹]

- Fiducial and total ZZ cross-sections
 - First measurement of ZZ at 13.6 TeV \bigcirc w/2022 data

Source	Relative uncertainty $(\%)$
Data statistical uncertainty	4.2
MC statistical uncertainty	0.3
Luminosity	2.2
Lepton momentum	0.2
Lepton efficiency	3.7
Background	1.6
Theoretical uncertainty	1.0
Total	6.3

arXiv:2311.09715, submitted to Phys. Lett. B

ATLAS ZZ @ 13.6 TeV [29 fb⁻¹]

• Differential cross-sections

Additional (Recent) Results Not Covered Here

- ATLAS Wγγ @ 13 TeV [140 fb⁻¹], <u>arXiv:2308.03041</u>, <u>Phys. Lett. B 848 (2024) 138400</u>
- ATLAS WZγ @ 13 TeV [140 fb⁻¹], <u>arXiv:2305.16994</u>, <u>Phys. Rev. Lett. 132 (2024) 021802</u>
- CMS Wy @ 13 TeV [138 fb⁻¹], <u>arXiv:2212.12592</u>, <u>Phys. Rev. D 108 (2023) 032017</u>
- CMS osWWjj @ 13 TeV [138 fb-1], <u>arXiv:2205.05711</u>, <u>PLB 841 (2023) 137495</u>
- ATLAS Z_LZ_L & CP prop. @ 13 TeV [140 fb⁻¹], <u>arXiv:2310.04350</u>, <u>JHEP 12 (2023) 107</u>
- ATLAS 4ljj @ 13 TeV [140 fb⁻¹], <u>arXiv:2308.12324</u>, <u>JHEP 01 (2024) 004</u>

List of ATLAS results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

List of CMS results:

https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/VV.html

Summary and Outlook

Rich potential from Multiboson
 Measurements & Searches/Probes

- Precision multiboson (diboson, VBS) measurements
- Observation of triboson processes
- Anomalous couplings, EFT, Higgs properties & extensions
- Lots of opportunities with the Run-3 data coming in!

Stay tuned !!!

Comprehensive Multiboson Experiment-Theory Action EU COST Action CA22130

ADDITIONAL MATERIAL

CMS ZZ+jets @ 13 TeV [138 fb⁻¹]

Particle type	Selection
	ZZ base selection
Leptons	$p_{\mathrm{T}}(\ell_1) > 20 \mathrm{GeV}$
	$v_{\rm T}(\ell_2) > 10 {\rm GeV}$
	$p_{\rm T}(\ell) > 5 {\rm GeV}$
	$ \eta'(\ell) < 2.5$
Z and ZZ	$40 < m_{Z_1} < 120 \text{GeV}, 4 < m_{Z_2} < 120 \text{GeV}$
	$m_{\ell\ell} > 4 { m GeV}$ (any oppositely charged same-flavor pair)
Jets	$p_{\mathrm{T}}(\mathbf{j}) > 30 \mathrm{GeV}$
	$ \eta(j) < 4.7$
	$\Delta R(\ell, j) > 0.4$ for each ℓ, j
	On-shell ZZ region
Z and ZZ	ZZ base selection + 60 $< m_{Z_1,Z_2} < 120{\rm GeV}$
	Full $m_{4\ell}$ range
Z and ZZ	ZZ base selection + $m_{4\ell} > 80 \text{GeV}$

			Z	ℓ^+	
		/	×	\sim ℓ^-	reeg
		ą́		g	9
Process	eeee	eeµµ	μμμμ	$2\ell 2\ell'$	-
	80	$< m_{4\ell} < 100 \mathrm{GeV}$	r		-
Background	$4.6\pm0.5\pm1.8$	$15.5 \pm 1.6 \pm 6.2$	$22.8\pm2.1\pm9.1$	$43\pm3\pm17$	
Signal	$216\pm1^{+40}_{-36}$	$731\pm2^{+66}_{-64}$	$841\pm2^{+59}_{-57}$	$1790 \pm 3^{+140}_{-140}$	
Total expected	$220\pm1^{+40}_{-36}$	$747\pm3^{+66}_{-64}$	$864\pm3^{+59}_{-58}$	$1830 \pm 4^{+ar{1}ar{4}ar{0}}_{-140}$	
Data	194	698	838	1730	
	60 -	$< m_{Z_1,Z_2} < 120 \text{Ge}$	V		-
Background	$22.9\pm0.9\pm5.7$	$46 \pm 2 \pm 10$	$28.9 \pm 1.3 \pm 6.5$	$98\pm2\pm23$	
Signal	$716\pm2^{+63}_{-60}$	$1830 \pm 3^{+140}_{-140}$	$1138\pm3^{+85}_{-82}$	$3680 \pm 5^{+280}_{-270}$	
Total expected	$739 \pm 2^{+ \widetilde{63}}_{- 60}$	$1870 \pm 4^{+\hat{1}\hat{4}\check{0}}_{-140}$	$1167 \pm 3^{+85}_{-82}$	$3780 \pm 5^{+\overline{2}80}_{-270}$	
Data	671	1805	1106	3582	

q

 $\sim\sim\sim\sim\sim$

Z

VIIIIIII g

Systematic source	$m_{4\ell}$ with all jets	0 jet	1 jet	2 jets	3 and more jets	
Electron efficiency	0.42%	0.38%	0.66%	0.36%	0.26%	
Muon efficiency	0.05%	0.06%	0.07%	0.09%	0.08%	
Jet energy resolution	—	0.07%	1.72%	1.65%	0.80%	
JES correction	—	0.17%	1.77%	1.95%	0.97%	
Reducible background	0.18%	0.18%	0.32%	0.33%	0.96%	
Pileup	0.02%	0.05%	0.11%	0.13%	0.35%	
Luminosity	0.01%	0.01%	0.02%	0.02%	0.05%	
$q\overline{q} \rightarrow ZZ$ MC choice	0.35%	0.65%	0.94%	0.48%	0.35%	
$gg \rightarrow ZZ$ cross section	0.02%	0.03%	0.09%	0.06%	0.09%	
QCD scales	0.15%	0.16%	0.58%	0.54%	0.62%	
PDF	0.05%	0.05%	0.15%	0.15%	0.21%	
PDF $\alpha_{\rm S}$	0.02%	0.01%	0.05%	0.03%	0.02%	
K. Potamianos – LHCP2024						

Systematic source	$m_{4\ell}$ with all jets	0 jet	1 jet	2 jets	3 and more jets
Electron efficiency	2.12%	2.55%	2.28%	1.77%	1.46%
Muon efficiency	0.71%	0.78%	0.92%	0.79%	0.42%
Jet energy resolution	—	0.11%	1.73%	2.63%	2.32%
JES correction	—	0.33%	1.64%	3.01%	2.02%
Reducible background	2.22%	2.19%	2.88%	3.40%	5.09%
Pileup	0.21%	0.28%	0.19%	0.32%	0.52%
Luminosity	0.12%	0.12%	0.16%	0.17%	0.25%
$q\overline{q} \rightarrow ZZ$ MC choice	0.57%	0.48%	1.22%	3.07%	4.21%
$gg \rightarrow ZZ$ cross section	0.10%	0.18%	0.61%	0.80%	0.46%
QCD scales	0.27%	0.25%	0.67%	1.25%	1.86%
PDF	0.07%	0.09%	0.20%	0.23%	0.28%
PDF $\alpha_{\rm S}$	0.08%	0.08%	0.15%	0.20%	0.28%
					3

g Lele

 $\sim\sim\sim\sim$

VIIIII g

Z

 \sim

 $\rho +$

arXiv:2402.16365, submitted to Phys. Rev. Lett.

ATLAS high-p_T^z WZ @ 13 TeV [140 fb⁻¹]

ATLAS high-p_T^z WZ @ 13 TeV [140 fb⁻¹]

ATLAS Wyjj VBS @ 13 TeV [140 fb-1]

Object	Selection requirements
Dressed muons	$p_{\rm T} > 30 \text{ GeV} \text{ and } \eta < 2.5$
Dressed electrons	$p_{\rm T} > 30 \text{ GeV}$ and $ \eta < 2.47$ (excluding $1.37 < \eta < 1.52$)
Isolated photons	$E_{\rm T}^{\gamma} > 22 \text{ GeV and } \eta < 2.37 \text{ (excluding } 1.37 < \eta < 1.52) \text{ and } E_{\rm T}^{\rm iso} < 0.2 E_{\rm T}^{\gamma}$
Jets	At least two jets with $p_{\rm T} > 50$ GeV and $ y < 4.4$, b -jet veto
Missing transverse momentum	$E_{\rm T}^{\rm miss} > 30 \text{ GeV} \text{ and } m_{\rm T}^W > 30 \text{ GeV}$
VBS topology	$N_{\ell} = 1, N_{\gamma} \ge 1, m_{\ell\gamma} - m_Z > 10 \text{ GeV}$
	$\Delta R_{\min}(\ell, j) > 0.4, \ \Delta R_{\min}(\gamma, j) > 0.4, \ \Delta R_{\min}(\ell, \gamma) > 0.4$
	$\Delta R_{\min}(j_1, j_2) > 0.4, \ \Delta \phi_{\min}(E_{\mathrm{T}}^{\mathrm{miss}}, j) > 0.4$
	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{j1}, p_{\text{T}}^{j2} > 50 \text{ GeV}$
	$m_{jj} > 500 \text{ GeV}, \ \Delta y_{jj} > 2$
Fiducial measurement	VBS topology
Differential measurement	VBS topology \oplus ($m_{jj} > 1000$ GeV, $N_{jets}^{gap} = 0$, and $\xi_{W\gamma} < 0.35$)

N. FULAIIIIAIIUS - LIICFZUZ4

ATLAS WZjj VBS @ 13 TeV [140 fb⁻¹]

arXiv:2312.00420, JHEP 04 (2024) 026

ATLAS W[±]W[±]jj VBS @ 13 TeV [139 fb⁻¹]

- Most precise fiducial and differential cross-section measurements
- Limits on dim-8 EFT operators to probe aQGC
- Limits on H^{±±} decaying to pair of W[±] (GM model)

Process	ee	$e\mu$	με	$\mu\mu$	Combined
$W^{\pm}W^{\pm}jj$ EW	32.9 ± 3.4	81 ± 8	73 ± 7	90 ± 9	277 ± 26
$W^{\pm}W^{\pm}jj$ QCD	1.7 ± 0.5	8.0 ± 2.4	7.1 ± 2.1	9.7 ± 2.9	27 ± 8
$W^{\pm}W^{\pm}jj$ Int	1.00 ± 0.22	2.4 ± 0.5	2.1 ± 0.4	2.7 ± 0.6	8.2 ± 1.7
$W^{\pm}Zjj$ QCD	5.5 ± 0.7	18.2 ± 2.1	18.2 ± 2.2	14.0 ± 1.7	56 ± 6
$W^{\pm}Zjj$ EW	1.69 ± 0.14	4.9 ± 0.4	4.1 ± 0.4	4.2 ± 0.4	14.9 ± 1.2
Non-prompt	8.4 ± 1.6	14.9 ± 2.4	10.2 ± 1.6	21 ±5	55 ±9
$V\gamma$	1.5 ± 0.7	6.1 ± 2.4	5.5 ± 2.8	—	13 ± 5
Charge misid.	4.3 ± 2.0	5.4 ± 1.2	1.4 ± 0.4	—	11 ± 4
Other prompt	0.99 ± 0.25	2.5 ± 0.5	1.9 ± 0.5	1.4 ± 1.4	6.8 ± 2.1
Total	58 ± 4	143 ± 7	123 ± 6	143 ± 8	468 ± 21
Data	52	149	127	147	475

K. Potamianos – LHCP2024

Experimental and modelling	6.4
Data statistical	7.4
Total	9.8

1.8

36

Model statistical

<u>CMS-PAS-SMP-22-008</u>

CMS (SS) W[±]W[±]jj VBS with τ_h @ 13 TeV [138 fb⁻¹]

• First study of VBS with a τ lepton decaying hadronically

• $\mu_{EW} = 1.44 + 0.63 - 0.56$, i.e. $2.7\sigma (1.9\sigma)$ obs. (exp.)

DNN (9 variables) trained to separate signal from background

K. Potamianos – LHCP2024

 W^{\pm}

W[±]SSY.

 W^{\pm}

CMS VBS W[±]W[±]jj with τ_h @ 13 TeV [138 fb⁻¹]

Input variable	SM DNN	dim-6 DNN	dim-8 DNN
$ au_{ m h} p_{ m T}$	\checkmark	\checkmark	\checkmark
$\ell p_{ m T}$	\checkmark	\checkmark	\checkmark
${ au_{ m h}}~\eta$		\checkmark	
$\ell \eta$		\checkmark	
leading VBS jet p_{T}	\checkmark	\checkmark	\checkmark
subleading VBS jet p_{T}	\checkmark	\checkmark	\checkmark
leading VBS jet mass		\checkmark	\checkmark
subleading VBS jet mass		\checkmark	\checkmark
VBS jet pair $\Delta \phi$		\checkmark	
M_{ii}	\checkmark	\checkmark	
M_{1T}	\checkmark	\checkmark	\checkmark
M_{o1}	\checkmark	\checkmark	\checkmark
$M_{\rm T}(\tau_{\rm h}, \vec{\vec{p}}_{\rm T}^{\rm miss})$			\checkmark
$M_{\rm T}(\ell, \vec{p}_{\rm T}^{\rm miss})$	\checkmark	\checkmark	\checkmark
$M_{\rm T}(\ell, \tau_{\rm h}, \vec{p}_{\rm T}^{\rm miss})$			\checkmark
$p_{\mathrm{T}}^{\mathrm{rel}}(\hat{\ell}, j_1)$		\checkmark	
$p_{\rm T}^{\rm rel}(\ell, j_2)$		\checkmark	
$p_{\rm T}^{\rm rel}(\tau_{\rm h}, j_1)$		\checkmark	
$p_{\rm T}^{\rm rel}(\tau_{\rm h}, j_2)$		\checkmark	
$\Delta \phi(\ell, j_1)$		\checkmark	
$\Delta \phi(\ell, j_2)$		\checkmark	
$\Delta \phi(\tau_{\rm h}, i_1)$		\checkmark	
$\Delta \phi(\tau_{\rm h}, j_2)$		\checkmark	
$p_{\rm T}$ leading $\tau_{\rm t}$ track $/ p_{\rm T} \tau_{\rm t}$	\checkmark	\checkmark	
PZeppenfeld rariable (P2024	\checkmark	

The DNN implemented is optimized to discriminate signals from the main sources of background. It consists of one hidden layer with 200 neurons. The training is implemented with Adam Optimizer [32], and early stopping, dropout, and L2 regularization [33] techniques are used to avoid overfitting. arXiv:2310.05164, Phys. Rev. Lett. 132 (2024) 121901

CMS WWy @ 13 TeV [138 fb⁻¹]

• Observation of WWy: 5.6σ (4.7σ) obs. (exp.) & search for Hy

 $\sigma = 5.9 \pm 0.8 \text{ (stat)} \pm 0.8 \text{ (syst)} \pm 0.7 \text{ (modeling)} \text{ fb} = 5.9 \pm 1.3 \text{ fb}$ MADGRAPH5_amc@nlo $\sigma = 5.33 \pm 0.34 \text{ (scale)} \pm 0.05 \text{ (PDF)} \text{ fb}$

