

QCD Measurements in pp collisions

Sarah Porteboeuf Houssais UCA LPC CNRS

On behalf of the LHC Collaborations

- > The quark model toward tetraquark and pentaquark
- \succ The strong force: running of α_s and v from FASER
- Factorization approach in QCD, measurements of PDFs and TMDs
- > Insight on multi-parton scattering with associated production
- > Jet fragmentation and substructure

Cambridge-Aachen declustering

/GeV)

In(1 / AR)

$$\frac{d\sigma^{pp\to h+X}}{dp_T d\eta} = \sum_{abc} f_{a/p} \otimes f_{b/p} \otimes \hat{\sigma}_{ab\to 0}$$

 $\otimes f_{b/p} \otimes \hat{\sigma}_{ab \to c}(z,\mu) \otimes D_c^h(z,\mu)$

CMS Theory at NLO

α_s with multi-jet

Azimuthal correlations among jets allow to probe α_s running up to 2 TeV

$$R_{\Delta\phi}(p_{\mathrm{T}}) = rac{\sum_{i=1}^{N_{\mathrm{jet}}(p_{\mathrm{T}})} N_{\mathrm{nbr}}^{(i)}(\Delta\phi, p_{\mathrm{Tmin}}^{\mathrm{nbr}})}{N_{\mathrm{jet}}(p_{\mathrm{T}})},$$

NLO pQCD behaviour confirmed up to 2 TeV

More from D. Koeck

Tuesday 04/06 at 14:18

σ(E_ν)/E_ν [10⁻³⁸ cm² GeV⁻¹] 0 1

 10^{-2}

10

Accelerator v

▼ IHEP-ITEP 79 & SKAT 79

 10^{2}

NOMAD 08 GGM-SPS 81 ♦

O BEBC 79

Neutrino cross section with FASER & SND

FASER Forward Search Experiment SND Scattering and Neutrino Detector 480 m from ATLAS IP on both sides

Neutrinos coming from the decay of very forward hadrons light-flavour and charm

FASER arXiv:2403.12520

FASERν σ_{ν...}

FASERv stat.+svst. unc

 10^{3}

Neutrino Energy E_{ν} [GeV]

FASERv stat. und

Faser

Observation of ν_{μ} interactions the LHC by SND

First neutrino cross-section measurement at a collider, in an unexplored energy regime from FASER

Factorization in QCD

Factorization of the perturbative and non perturbative component of the interaction

 $f_{a/p}$ one-dimensional parton distribution functions (PDFs) parameterize the longitudinal momentum fraction distributions of partons inside the proton

PDF from W^{\pm} and Z-bosons

Recent results on PDFs

PDF from di-jet cross section

PDF from Z cross section

Also in pp 5 TeV CMS Submited to JHEP arXiv:2312.16669v1 arXiv:2401.11355

More from J. Roloff & Tim Martin Thursday 06/06

Testing pQCD with jet cross section ratio

Events with multiple jets

Scalar sum of the transverse momenta of the leading two jets

 $H_{T2} = p_{T,1} + p_{T,2}$

 $H_{T2} \ge 250 \text{ GeV}$

Proxy for the energy scale of the hard-scattering interaction

NNLO computations better described 3-to-2 cross section ratio, R_{32} , than NLO (ratios reduce uncertainties from PDF)

Importance of the higher-order predictions in describing multijet production

Di-J/ ψ to access TMDs

Transverse-Momentum Dependent Parton Distribution Functions

3 dimensional imaging of hadrons including transverse momentum and polarization degrees of freedom

Di-J/ ψ produced with **one hard process** (Single Parton Scattering) as a **golden channel to probe gluon TMDs** $f_1^g(x, k_T^2, \mu)$

No obvious broadening of the p_T spectrum can be seen in the TMD region

Di-J/ ψ to access TMDs

Transverse-Momentum Dependent Parton Distribution Functions

3 dimensional imaging of hadrons including transverse momentum and polarization degrees of freedom

The **azimuthal asymmetry of J/\psi pairs** is measured to probe the TMD function $h_1^{\perp g}(x, k_T^2, \mu)$

$$\begin{split} &\langle\cos 2\phi_{\rm CS}\rangle = -0.029 \pm 0.050 ~({\rm stat}) \pm 0.009 ~({\rm syst}), \\ &\langle\cos 4\phi_{\rm CS}\rangle = -0.087 \pm 0.052 ~({\rm stat}) \pm 0.013 ~({\rm syst}), \\ & {}_{\rm LHCb~JHEP~03~(2024)~088~arXiv:2311.14085v2} \end{split}$$

Measurement consistent with 0 Presence of an azimuthal asymmetry at a few percent level is allowed

First experimental measurement of linear polarization of gluons inside unpolarized protons

No obvious broadening of the p_T spectrum can be seen in the TMD region

Double parton scattering: $J/\psi + \psi(2S)$ or $\Upsilon(nS)$

Double parton scattering: $J/\psi + \psi(2S)$ or $\Upsilon(nS)$

m=2 when A and B are distinguishable m=1 when indistinguishable

Assume PDF factorization Expected properties of σ_{eff} :

- collision energy independent
- process independent

Double parton scattering: $J/\psi + \psi(2S)$ or $\Upsilon(ns)$

pp@13 TeV LHCb $(J/\psi - \Upsilon(1S))$ LHCb $(J/\psi - \Upsilon(2S))$ LHCb $(J/\psi - J/\psi)$ pp@8 TeV ATLAS $(J/\psi - Z^0)$ ATLAS $(J/\psi - J/\psi)$ LHCb ($\Upsilon(1S)$ - D^0) pp@7 TeV ATLAS $(J/\psi - W^{\pm})$ -0-CMS $(J/\psi - J/\psi)$ LHCb $(J/\psi - D^0)$ LHCb $(D^0 - D^0)$ ATLAS (W^{\pm} -2 jets) CMS (W^{\pm} -2 jets) pp@1.96 TeV D0 $(J/\psi - \Upsilon)$ D0 $(J/\psi - J/\psi)$ D0 (γ -3 jets) *pp@*1.8 TeV CDF (4 jets) CDF (γ -3 jets) 20 40 60 80 100 0 $\sigma_{\rm eff}$ [mb]

12

Boston

Double parton scattering: $J/\psi + \psi(2S)$ or $\Upsilon(ns)$

m=2 when A and B are distinguishable m=1 when indistinguishable

Assume PDF factorization Expected properties of σ_{eff} :

- collision energy independent
- process independent

 $\begin{aligned} & \text{ALICE di-J/ψ} \\ \sigma_{eff} = 6.7 \pm 1.6(\text{stat}) \pm 2.7 \text{ (syst)mb} \\ & \text{ALICE Phys. Rev. C 108, 045203 (2023) arXiv:2303.13431} \end{aligned}$

Observed properties of σ_{eff} Process dependent Kinematic dependent Energy dependent

	4) 239 al XIV. 2311. 1392 IVI
	<i>pp</i> @13 TeV
——— ——	LHCb $(J/\psi - \Upsilon(1S))$
———	LHCb $(J/\psi - \Upsilon(2S))$
	LHCb $(J/\psi - J/\psi)$
	<i>pp</i> @8 TeV
-	ATLAS $(J/\psi - Z^0)$
	ATLAS $(J/\psi - J/\psi)$
	LHCb ($\Upsilon(1S)$ - D^0)
	<i>pp</i> @7 TeV
	ATLAS $(J/\psi - W^{\pm})$
	CMS $(J/\psi - J/\psi)$
	LHCb $(J/\psi - D^0)$
	LHCb $(D^0 - D^0)$
	ATLAS (W^{\pm} -2 jets)
	CMS (W^{\pm} -2 jets)
	<i>pp@</i> 1.96 TeV
	D0 $(J/\psi - Y)$
	D0 $(J/\psi - J/\psi)$
	D0 (γ -3 jets)
	<i>pp@</i> 1.8 TeV
	CDF (4 jets)
H.	CDF (γ -3 jets)
0 20 40	60 80 100
	$\sigma_{\rm eff}$ [mb]
	12

Next orders: tri-J/ ψ in pp and di-J/ ψ in p-Pb

Confirm the dependence of the effective DPS cross^{™S:} section on the relevant parton species and *x* fractions probed

CMS, $\sqrt{s_{NN}}$ =8.16 TeV, J/ ψ +J/ ψ CMS, \sqrt{s} =13 TeV, J/ ψ +J/ ψ +J/ ψ Nat. Phys. 19 (2023) 338 CMS*, √s=7 TeV, J/ψ+J/ψ Phys. Rept. 889 (2020) 1 ATLAS, √s=8 TeV, J/ψ+J/ψ Eur. Phys. J. C 77 (2017) 76 **D0**, √s=1.96 TeV, J/ψ+J/ψ Phys. Rev. D 90 (2014) 111101 **D0***, √s=1.96 TeV, J/ψ+Y Phys. Rev. Lett. 117 (2016) 062001 ATLAS*, Vs=7 TeV, W+J/ψ Phys. Lett. B 781 (2018) 485 ATLAS*, √s=8 TeV, Z+J/ψ Phys. Rept. 889 (2020) 1 ATLAS*, √s=8 TeV, Z+b→J/ψ Nucl. Phys. B 916 (2017) 132 D0, √s=1.96 TeV, γ+b/c+2-jet Phys. Rev. D 89 (2014) 072006 D0, vs=1.96 TeV, v+3-iet Phys. Rev. D 89 (2014) 072006 D0, √s=1.96 TeV, 2-y+2-jet Phys. Rev. D 93 (2016) 052008 D0. vs=1.96 TeV. v+3-iet Phys. Rev. D 81 (2010) 052012 CDF, √s=1.8 TeV, γ+3-jet Phys. Rev. D 56 (1997) 3811 UA2, vs=640 GeV, 4-jet Phys. Lett. B 268 (1991) 145 CDF, √s=1.8 TeV, 4-jet Phys. Rev. D 47 (1993) 4857 ATLAS. Vs=7 TeV. 4-iet JHEP 11 (2016) 110 CMS, √s=7 TeV, 4-jet Eur. Phys. J. C 76 (2016) 155 CMS, vs=13 TeV, 4-jet JHEP 01 (2022) 177 CMS, vs=7 TeV, W+2-jet JHEP 03 (2014) 032 ATLAS, vs=7 TeV, W+2-jet New J. Phys. 15 (2013) 033038 CMS, vs=13 TeV, WW Phys. Rev. Lett. 131 (2023) 091803

CMS PAS HIN-23-013

Also extracted from p-Pb collisions

g

q

Jet Fragmentation Function of charged hadrons

Extraction of the **double differential JFFs** in j_T and z, in 3 jet p_T intervals for unidentified charged hadrons

Probe the longitudinal and transverse profiles of identified charged pions, kaons, and protons inside predominantly light-quark-initiated jets

Probe the 3D picture of FF in the collinear and transverse dimension with respect to the jet axis

More from I. Chahrour Thursday 06/06 at 14:36

Two-dimensional representation of the phase space of emissions inside a jet ...

More from I. Chahrour Thursday 06/06 at 14:36

Lund sub-jet multiplicities

Two-dimensional representation of the phase space of emissions inside a jet ...

Running of α_s in the jet shower

dominant mechanism responsible for the rise of the LJP density at low k_T (k_T characteristic energy scale in α_s evolution)

Testing QCD with jet substructure

More from I. Chahrour Thursday 06/06 at 14:36

Lund sub-jet multiplicities

Two-dimensional representation of the phase space of emissions inside a jet ...

Running of α_s in the jet shower

dominant mechanism responsible for the rise of the LJP density at low k_T (k_T characteristic energy scale in α_s evolution)

CMS

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Measurement of average number of Lund subject multiplicities to constrained models

Testing QCD with jet substructure

QCD measurements in pp collisions

Substructure of D₀ tagged jets

Direct experimental constraint of the splitting function of heavy-flavour quarks

Substructure of D₀ tagged jets

> Charm quarks R_g distribution: reduction at large-angles. Inclusive sample with larger-angle perturbative emissions (gluon)

Direct experimental constraint of the splitting function of heavy-flavour quarks

Substructure of D₀ tagged jets

- > Charm quarks R_g distribution: reduction at large-angles. Inclusive sample with larger-angle perturbative emissions (gluon)
- *n*_{sD} distribution (number of emissions of the charm quark satisfying the Soft Drop condition): shift to smaller values for the charm-tagged jets. Charm quarks on average emit fewer gluons. Consistent with dead cone effect for charm quark.
- Different characteristics of heavy-quark emissions vs. light quarks and gluons: constrain the roles of quark mass and Casimir colour factors in the parton shower.

Direct experimental constraint of the splitting function of heavy-flavour quarks

 Λ_c^+ -baryon yields much higher than predicted (general-mass variable-flavor-number scheme with FF from OPAL and Belle fits) Breakdown of the universality of charm quark fragmentation

More from V. Feuillard & P. Das Wednesday 05/06 & Thursday 06/06

Charm hadronization is different in hadronic environment and in e^+e^-

 Λ_c^+ -baryon yields much higher than predicted (general-mass variable-flavor-number scheme with FF from OPAL and Belle fits) Breakdown of the universality of charm quark fragmentation

ALICE measured several charm hadron species Prompt Λ_c^+ -baryon fragmentation fraction in pp is ~3x larger than in e^+e^- and ep

Imply an overall reduction of the relative D-meson abundance (charm fragmentation function sum up to 1)

More from V. Feuillard & P. Das Wednesday 05/06 & Thursday 06/06

 Λ_c^+ -baryon yields much higher than predicted (general-mass variable-flavor-number scheme with FF from OPAL and Belle fits) Breakdown of the universality of charm quark fragmentation functions

ALICE measured several charm hadron species Prompt Λ_c^+ -baryon fragmentation fraction in pp is ~3x larger than in e^+e^- and ep

Imply an overall reduction of the relative D-meson abundance (charm fragmentation function sum up to 1)

More from V. Feuillard & P. Das Wednesday 05/06 & Thursday 06/06

Charm hadronization is different in hadronic environment and in e^+e^-

- > First measurement of the $\Sigma_c^{0,++}(2520)$ relative production at the LHC
- > ALICE measurement in p_T range 6-14 GeV/c compatible with $e^+e^- p_T$ integrated within uncertainties
- > SHMc reproduces the ratio p_{T} integrated
- PYTHIA 8 (Monash + Mode 0/2/3) and Statistical Hadronization Model + RQM do not describe the data (feed-down from higher states under discussion)

ALI-PREL-574270

Charm abundance in pp under study

Beauty, charm, and strange hadrons show a similar trend as a function of p_T

Beauty, charm, and strange hadrons show a similar trend as a function of p_T

Beauty, charm, and strange hadrons show a similar trend as a function of p_T

Lowest multiplicity bins: pp data ~ e^+e^- data at LEP => fragmentation in vacuum

Beauty, charm, and strange hadrons show a similar trend as a function of p_T

Rise of the baryon fraction with multiplicity, plateaus for collisions > 2x average number of VELO tracks

Hadronization in and out of jets

Strange baryon-to-meson and baryon-to baryon ratios suppressed by a factor ~ 2 in jets w.r.t inclusive measurements

Hadronic environment (in jet vs. out of jet) impact hadronization

Hadronization in and out of jets

Strange baryon-to-meson and baryon-to baryon ratios suppressed by a factor ~ 2 in jets w.r.t inclusive measurements

Deuteron coalescence probability in jets x 10 vs. underlying event

Nucleons have a smaller average phase-space distance

Hadronic environment (in jet vs. out of jet) impact hadronization

Underlying event study with strangeness production

Phase space divided in 3 regions

- > Toward the leading jet: dominated by jet fragmentation
- Away from the leading jet (back-to-back)
- > Transverse region: dominated by underlying event, MPI and soft processes

Boston

Underlying event study with strangeness production

Phase space divided in 3 regions

- > Toward the leading jet: dominated by jet fragmentation
- Away from the leading jet (back-to-back)
- > Transverse region: dominated by underlying event, MPI and soft processes

Boston

Underlying event study with strangeness production

- Phase space divided in 3 regions
 - > Toward the leading jet: dominated by jet fragmentation
 - > Away from the leading jet (back-to-back)
 - > Transverse region: dominated by underlying event, MPI and soft processes

Boston

 A and K⁰_s production in 3 regions allow to understand modelling of underlying event from event generators
None tested can reproduce all aspects
Strangeness production to study underlying event dynamic

Event shape modeling

Strangeness production Suppressed in events with jet-like topologies Slightly enhanced in softer, isotropic event topologies

Event shape modeling to understand strangeness production in pp collisions

Event shape modeling

The tensor S

$$S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |\overrightarrow{p_{i}}|^{2}}$$

 α , $\beta \in \{x, y, z\}$ cartesian coordinates *i* is the index for the final-state charged particles that passed the selections based on the detector acceptance

Sphericity *S* from the two eigenvalues

Data more isotropic than the modeling in event generators

Conclusions

> The strong force: running of α_s and v from FASER

- > Running of α_s up to 2 TeV
- First v cross section at collider

Factorization approach in QCD, measurements of PDFs and TMDs

- Precision measurement with electroweak bosons
- > Jet cross section ration highlight the importance of NNLO computations
- Accessing the transverse-Momentum Dependent Parton Distribution Function

Insight on multi-parton scattering with associated production

- \succ DPS with charm and beauty show non universal σ_{eff}
- > Next orders : Tri-J/ ψ in pp and di-J/ ψ in p-Pb

Jet fragmentation and substructure

- > Direct experimental constraint of the splitting function of heavy-flavour quarks
- > Testing QCD with jet substructure

Hadronization in hadronic environment

- \succ Charm and beauty hadronization are different in hadronic environment and in e^+e^-
- > Hadronic environment (in jet vs. out of jet) impact hadronization
- Underlying event dynamic and event shape modeling under study

Backup

Exploring the strong interaction of 3-body systems

Measuring correlation functions of 3-body systems with femtoscopic techniques in high multiplicity pp collisions at 13 TeV

 $p - p - p / \overline{p}$ and $p - p - \Lambda$

Only a full 3-body calculation that accounts for the internal structure of the deuteron can explain the data (Av18+UIX full)

Non zero 3-particle cumulant hints for 3-body forces

Exploring the strong interaction of 3-body systems

Measuring correlation functions of 3-body systems with femtoscopic techniques in high multiplicity pp collisions at 13 TeV

Only a full 3-body calculation that accounts for the internal structure of the deuteron can explain the data (Av18+UIX full)

Non zero 3-particle cumulant hints for 3-body forces

Testing L-QCD with strangeness

- Measurement of two-particle correlations as a function of the relative momentum to test the strong interaction among hadrons with strange quarks
- Comparisons with theoretical models:
 - > including leading-order and next-to-leading-order chiral Effective Field Theory calculations
 - > a meson exchange model
 - > Lattice QCD calculations close to the physical point for systems rich in strangeness

ALICE Phys. Lett. B 844 (2023) 137223 arXiv:2204.10258

Data more compatible with predictions of small scattering parameters and hence a weak $\Lambda - \Xi^-$ interaction

sarah.porteboeuf@clermont.in2p3.fr

41

More from D.L. Mihaylov

Tetraquark with di-J/ ψ spectrum

- Tetraquark candidate X(6900) first observed by LHCb in 2020 Sci. Bull. 65, 1983 (2020) \succ
- ≻ X(6900) confirmed by CMS and ATLAS in channel $T_{ccccc} \rightarrow J/\psi J/\psi$ and $T_{ccccc} \rightarrow J/\psi \psi(2s)$
- Structure observed by CMS in $J/\psi J/\psi$ spectrum, hint for X(6600) and X(7100) \succ

New charmed Tetraquark candidates

2[-

1.5[†] 0

1.5[‡] 0

0.5

ALI-PUB-565665

0.5

о

ALICE

f_o(980)

p–Pb, $\sqrt{s_{\text{NN}}}$ = 5.02 TeV, -0.5 < y <

h^{ch} PRC 91(2015) 064905

 $p_{_{\rm T}}$ (GeV/c)

o|○|○|∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

6

f₀(980) : hint at a 2-quark structure with p-Pb collisions

> Is the f₀(980) a $q\bar{q}$ meson, a tetraquark state, a K \overline{K} molecule or a $q\bar{q}$ -gluon hybrid state ?

20-40%

60-80%

6

> Study of $f_0(980)$ production and dynamic in p-Pb collisions

ZNA Multiplicity

2

Scaling Uncertainty

 $p_{_{\mathbf{T}}}(\mathbf{\bar{GeV}}/c)$

0 - 20%

ALICE arXiv:2311.11786

63

f0(980) is found to be a $q\overline{q}$ meson (number-of-constituent-quarks scaling hypothesis) Other hypothesis ruled out

Presented by P. Gandini Monday 03/06 at 17:36 PBoston 2024

Search for Pentaquark

 \succ First observation of $Λ_b^0 → D^+D^-Λ$

▶ First observation of
$$\Lambda_b^0 o J / \psi \Xi^- K^+$$

Opens the possibility to search for doubly-strange hidden-charm pentaquarks

$J/\psi \& \psi(2S)$ (non-)prompt production cross section

- Cross sections measured up to 100 GeV
- > Similar p_{T} dependences for the prompt and non-prompt differential cross-sections
- > Non-prompt fractions nearly constant for both J/ψ and ψ (2S) states

ATLAS Eur. Phys. J. C 84 (2024) 169 arXiv:2309.17177

Charmonia cross sections up to 100 GeV

Boston

Charm fragmentation is different in hadronic environment and in e^+e^-